A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics
Abstract
1. Introduction
2. IoT-Based Irrigation in Aeroponics
3. Technological Approaches to Monitoring Photosynthesis Rates
S. No | Pn Prediction Techs | Model | Parameters | Analytical Software | Accuracy (R2) | Crop | Reference |
---|---|---|---|---|---|---|---|
1 | Numerical models | Rectangular Hyperbolic | PPFD, CO2, Fm, and Fv | SPSS 20, OriginPro 8 | R2 = 0.999 | Lettuce | [108] |
2 | Canopy Pn | T, CO2, PPFD, and Q | Ilastik 1.3.2 | R2 = 0.81 | Spinach | [109] | |
3 | 3D Plant | T, CO2, and Li | 3D CAD | R2 = 0.79 | Mango | [125] | |
4 | FvCB, FvCBePAR, and FvCBWd | Vcmax, Jmax, CO2, and Q | Python | R2 = 0.886 R2 = 0.928 R2 = 0.924 | Bittersweet lettuce and common bean | [126] | |
5 | FvCB | Ac, Ar, and Vcmax | R 4.0.3 | R2 = 0.85 | Rice and wheat | [114] | |
6 | FvCB | Vcmax, Jmax, CO2, and T | Ms Excel, R | N/A | Soybean sunflower | [127] | |
7 | C3 Pn | gs, CO2, and PPFD | R | R2 = 0.79 | Strawberry | [113] | |
8 | Non-Rectangular Hyperbolic | gs, E, PPFD, and WUE | GraphPad 5.0 and Sigma plot 14.0 | N/A | Maize | [128] | |
9 | ML and AI models | Sugeno | T, RH, and SM | MATLAB | R2 = 0.95 | Jalapeno pepper | [129] |
10 | SVR and BPNN | T, CO2, Li, and T | MATLAB R2016a | R2 = 0.998 R2 = 0.996 | Cucumber | [120] | |
11 | SVR and RF | T, CO2, Li, LQ | N/A | R2 = 0.990 R2 = 0.998 | [130] | ||
12 | PB and PSO-BP | T, CO2, Li, ETR, NPQ, qP, PhiPS2, and Fv/Fm | MATLAB 2015b | R2 = 0.96 R2 = 0.98 | [131] | ||
13 | ANN | T, RH, CO2, and PPFD | Python 3.7 | R2 > 90 | Spinach | [121] | |
14 | WDNN | T, RH, CO2, and PAR | TensorFlow 2.4 | R2 = 0.97 | Tomato | [132] | |
15 | BP, SVM, and PSO-LSSVM | T, CO2, and PPFD | N/A | MRE = 0.04 MRE = 0.03 MRE = 0.02 | [133] | ||
16 | SVR | T, RH, CO2, Li, and La | R = 0.94 | [134] | |||
17 | BPNN | T, RH, CO2, SM, and Chl | MATLAB | R = 0.99 | [135] | ||
18 | PSO-SVM | T, RH, CO2, and Li | R2 = 0.96 | [136] | |||
19 | SVR and MLSTM | T, RH, and CWSI | N/A | R2 = 0.81 R2 = 0.81 | Chinese Brassica | [137] |
4. Proposed IoT- and ML-Based Aeroponics
5. Challenges and Solutions in Adopting IoT and ML in Aeroponics
5.1. Technological and Operational Challenges
5.2. Current Solutions and Future Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Ac | Rubisco Carboxylation Capacity |
AI | Artificial Intelligence |
Ar | Electron Transport |
AC | Air Conditioning |
BPNN | Back Propagation Neural Network |
Chl | Chlorophyll Content |
CO2 | Carbon Dioxide Concentration |
CWSI | Crop Water Stress Index |
E | Transpiration Rate |
EC | Electrical Conductivity |
ETR | Electron Transport Rate |
Fm | Maximum Fluorescence Yield |
Fv | Variable Fluorescence |
Fv/Fm | Maximum Efficiency of PSII |
FvCB | Farquhar, von Caemmerer and Berry |
FvCBePAR | FvCB Model with an Electron Transport Rate |
FvCBWd | FvCB Model with Water Demand Parameter |
gs | Stomatal Conductance |
IoT | Internet of Things |
Jmax | Maximum Electron Transport Rate |
La | Leaf Area |
Li | Light Intensity |
LQ | Light Quality |
ML | Machine Learning |
min | Minutes |
MLSTM | Machine Learning Long Short-Term Memory |
MRE | Mean Relative Error |
Nsl | Nutrient solution level |
NPQ | Non-Photochemical Quenching |
PAR | Photosynthetically Active Radiation |
PB | Based Back Propagation |
PhiPS2 | Quantum Yield of Photosystem II |
Pn | Photosynthesis Rate |
PPFD | Photosynthetic Photon Flux Density |
PSO | Particle Swarm Optimization |
Q | Airflow Rate |
qP | Photochemical Quenching Coefficient |
R2 | Coefficient of Determination |
RF | Random Forest |
RH | Relative Humidity |
s | Seconds |
SM | Soil Moisture |
Sugeno | Sugeno Fuzzy Inference System |
SVM | Support Vector Machine |
SVR | Support Vector Regression |
T | Temperature |
t | Time |
Tds | Total Dissolved Solids |
Vcmax | Maximum Carboxylation Capacity |
WDNN | Wide Deep Neural Network |
WL | Water Level |
WUE | Water-Use Efficiency |
References
- Sadigov, R. Rapid growth of the world population and its socioeconomic results. Sci. World J. 2022, 2022, 8110229. [Google Scholar] [CrossRef] [PubMed]
- Udofa, E.S.; Ali, M.S.M.; Jack, K.E.; Innocent, C.; Abdulbaki, A.O.; Ekanem, U.E. Recent Advancements in Pest-Repellent Monitoring Technologies in Precision Agriculture: A Comprehensive Review. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2–4 April 2024; pp. 1–7. [Google Scholar]
- Khan, M.K.; Pandey, A.; Hamurcu, M.; Gupta, O.P.; Hossain, A. Crop wild relatives: The road to climate change adaptation. Crop Pasture Sci. 2023, 74, i. [Google Scholar] [CrossRef]
- Kilemo, D.B. The review of water use efficiency and water productivity metrics and their role in sustainable water resources management. Open Access Libr. J. 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Argente García, J.E.; Skarmeta Gomez, A.F. A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrig. Drain. 2022, 71, 1396–1416. [Google Scholar] [CrossRef]
- Sharma, M.; Kumar, V.; Kumar, S. A systematic review of urban sprawl and land use/land cover change studies in India. Sustain. Environ. 2024, 10, 2331269. [Google Scholar] [CrossRef]
- Bondesan, L.; Ortiz, B.V.; Morlin, F.; Morata, G.; Duzy, L.; Van Santen, E.; Lena, B.P.; Vellidis, G. A comparison of precision and conventional irrigation in corn production in Southeast Alabama. Precis. Agric. 2023, 24, 40–67. [Google Scholar] [CrossRef]
- Oweis, T.Y.; Hachum, A.Y. Improving water productivity in the dry areas of West Asia and North Africa. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2003; pp. 179–198. [Google Scholar]
- Jury, W.A.; Vaux, H.J., Jr. The emerging global water crisis: Managing scarcity and conflict between water users. Adv. Agron. 2007, 95, 1–76. [Google Scholar]
- Rosa, L. Regional Irrigation Expansion Can Support Climate-Resilient Crop Production. In Proceedings of the AGU Fall Meeting Abstracts, Washington, DC, USA, 9–13 December 2024; p. H21W-0960. [Google Scholar]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Khalid, M.F.; Zakir, I.; Khan, R.I.; Irum, S.; Sabir, S.; Zafar, N.; Ahmad, S.; Abbas, M.; Ahmed, T.; Hussain, S. Effect of water stress (drought and waterlogging) on medicinal plants. In Medicinal Plants: Their Response to Abiotic Stress; Springer: Berlin/Heidelberg, Germany, 2023; pp. 169–182. [Google Scholar]
- Gilardi, G.L.C.; Mayer, A.; Rienzner, M.; Romani, M.; Facchi, A. Effect of Alternate Wetting and Drying (AWD) and other irrigation management strategies on water resources in rice-producing areas of Northern Italy. Water 2023, 15, 2150. [Google Scholar] [CrossRef]
- Zeng, H.; Dhiman, G.; Sharma, A.; Sharma, A.; Tselykh, A. An IoT and Blockchain-based approach for the smart water management system in agriculture. Expert Syst. 2023, 40, e12892. [Google Scholar] [CrossRef]
- Garzón, J.; Montes, L.; Garzón, J.; Lampropoulos, G. Systematic review of technology in aeroponics: Introducing the technology adoption and integration in sustainable agriculture model. Agronomy 2023, 13, 2517. [Google Scholar] [CrossRef]
- Mir, Y.H.; Mir, S.; Ganie, M.A.; Shah, A.M.; Majeed, U.; Chesti, M.; Mansoor, M.; Irshad, I.; Javed, A.; Sadiq, S. Soilless farming: An innovative sustainable approach in agriculture. Pharma Innov. J. 2022, 11, 2663–2675. [Google Scholar]
- Bihari, C.; Ahamad, S.; Kumar, M.; Kumar, A.; Kamboj, A.D.; Singh, S.; Srivastava, V.; Gautam, P. Innovative soilless culture techniques for horticultural crops: A comprehensive review. Int. J. Environ. Clim. Change 2023, 13, 4071–4084. [Google Scholar] [CrossRef]
- Kishorekumar, R. Zero Acreage Farming: Modular Aeroponics System to Grow Globe Tomatoes in Household Rooftops of Stockholm; Uppsala University: Uppsala, Sweden, 2021. [Google Scholar]
- Fussy, A.; Papenbrock, J. An overview of soil and soilless cultivation techniques—Chances, challenges and the neglected question of sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef]
- Nabi, F. Evaluation of Natural and Synthetic Substrates for Use in Aeroponic Systems. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 2023. [Google Scholar]
- Gurley, T.W. Aeroponics: Growing Vertical; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Kumar, P.; Jaisuriyan, K.; Gopika, B.; Subhash, B. Aeroponics: A Modern Agriculture Technology Under Controlled Environment. In Hydroponics: The Future of Sustainable Farming; Springer: Berlin/Heidelberg, Germany, 2024; pp. 263–294. [Google Scholar]
- Grasso, N.; Fasciolo, B.; Awouda, A.M.M.; Bruno, G. A Smart Aeroponic Chamber: Structure and Architecture for an Efficient Production and Resource Management. In Hydroponics: The Future of Sustainable Farming; Springer: Berlin/Heidelberg, Germany, 2024; pp. 353–380. [Google Scholar]
- Kim, J.; Park, H.; Seo, C.; Kim, H.; Choi, G.; Kim, M.; Kim, B.; Lee, W. Sustainable and Inflatable Aeroponics Smart Farm System for Water Efficiency and High-Value Crop Production. Appl. Sci. 2024, 14, 4931. [Google Scholar] [CrossRef]
- Chandana, J.L.; Vaishnavi, K.; Sudheer, P.; Reddy, K.; Gladis, B.; Sagar, K.R.; Supriya, N. Aeroponics-Modern Concept Of Soilless Farming. Agric. Allied Sci. 2023, 2. [Google Scholar]
- Singh, B. New systems of vegetable production: Protected cultivation, hydroponics, aeroponics, vertical, organic, microgreens. In Vegetables for Nutrition and Entrepreneurship; Springer: Berlin/Heidelberg, Germany, 2023; pp. 31–56. [Google Scholar]
- He, J.; Tan, C.; Qin, L. Root-zone heat priming effects on maximum quantum efficiency of PSII, productivity, root morphology and nutritional quality of two aeroponically grown leafy greens in a tropical greenhouse. Plants 2022, 11, 1684. [Google Scholar] [CrossRef]
- Murphy, J.T. Design Guidelines for Aeroponic Plant Growth Systems with Varying Degrees of Complexity, Autonomy, and Performance Capability. Master’s Thesis, Auburn University, Auburn, AL, USA, 2020. [Google Scholar]
- Nicola, S.; Pignata, G.; Ferrante, A.; Bulgari, R.; Cocetta, G.; Ertani, A. Water use efficiency in greenhouse systems and its application in horticulture. AgroLife Sci. J. 2020, 9, 248–262. [Google Scholar]
- Klarin, B.; Garafulić, E.; Vučetić, N.; Jakšić, T. New and smart approach to aeroponic and seafood production. J. Clean. Prod. 2019, 239, 117665. [Google Scholar] [CrossRef]
- Min, A.; Nguyen, N.; Howatt, L.; Tavares, M.; Seo, J. Aeroponic systems design: Considerations and challenges. J. Agric. Eng. 2023, 54, 1387. [Google Scholar] [CrossRef]
- Roffi, T.M.; Jamhari, C.A. Internet of things based automated monitoring for indoor aeroponic system. Int. J. Electr. Comput. Eng. 2023, 13, 270–277. [Google Scholar] [CrossRef]
- Khan, Z.A.; Imran, M.; Umer, J.; Ahmed, S.; Diemuodeke, O.E.; Abdelatif, A.O. Assessing Crop Water Requirements and a Case for Renewable-Energy-Powered Pumping System for Wheat, Cotton, and Sorghum Crops in Sudan. Energies 2021, 14, 8133. [Google Scholar] [CrossRef]
- Montoya, A.; Obando, F.A.; Morales, J.; Vargas, G. Automatic aeroponic irrigation system based on Arduino’s platform. J. Phys. Conf. Ser. 2017, 850, 012003. [Google Scholar] [CrossRef]
- Balliu, A.; Zheng, Y.; Sallaku, G.; Fernández, J.A.; Gruda, N.S.; Tuzel, Y. Environmental and cultivation factors affect the morphology, architecture and performance of root systems in soilless grown plants. Horticulturae 2021, 7, 243. [Google Scholar] [CrossRef]
- Ghareeb, A.Y.; Gharghan, S.K.; Mutlag, A.H.; Nordin, R. Wireless sensor network-based artificial intelligent irrigation system: Challenges and limitations. J. Tech. 2023, 5, 26–41. [Google Scholar] [CrossRef]
- Najjar, R. Redefining radiology: A review of artificial intelligence integration in medical imaging. Diagnostics 2023, 13, 2760. [Google Scholar] [CrossRef]
- Buckseth, T.; Sharma, A.; Pandey, K.; Singh, B.; Muthuraj, R. Methods of pre-basic seed potato production with special reference to aeroponics—A review. Sci. Hortic. 2016, 204, 79–87. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R. Aeroponics: A review on modern agriculture technology. Indian Farmer 2019, 6, 286–292. [Google Scholar]
- Salma, S.B. Aeroponics: An emerging food growing system in sustainable agriculture for food security. Int. J. Res. Agron. 2024, 7, 93–97. [Google Scholar] [CrossRef]
- Halgamuge, M.N.; Bojovschi, A.; Fisher, P.M.; Le, T.C.; Adeloju, S.; Murphy, S. Internet of Things and autonomous control for vertical cultivation walls towards smart food growing: A review. Urban For. Urban Green. 2021, 61, 127094. [Google Scholar] [CrossRef]
- Kabir, M.S.; Islam, S.; Ali, M.; Chowdhury, M.; Chung, S.-O.; Noh, D.-H. Environmental sensing and remote communication for smart farming: A review. Precis Agric 2022, 4, 10.12972. [Google Scholar]
- Qazi, S.; Khawaja, B.A.; Farooq, Q.U. IoT-equipped and AI-enabled next generation smart agriculture: A critical review, current challenges and future trends. IEEE Access 2022, 10, 21219–21235. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and control systems in agriculture using intelligent sensor techniques: A review of the aeroponic system. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Sharma, U.; Barupal, M.; Shekhawat, N.; Kataria, V. Aeroponics for propagation of horticultural plants: An approach for vertical farming. Hortic. Int. J. 2018, 2, 443–444. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Complete Guide for Growing Plants Hydroponically; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sadek, N.; Shehata, D. Internet of Things based smart automated indoor hydroponics and aeroponics greenhouse in Egypt. Ain Shams Eng. J. 2024, 15, 102341. [Google Scholar] [CrossRef]
- Rajendiran, G.; Rethnaraj, J. Future of smart farming techniques: Significance of urban vertical farming systems integrated with IoT and Machine Learning. Open Access J. Agric. Res. 2023, 8. [Google Scholar] [CrossRef]
- Ribeiro, R.A.S.A. Hydroponic IoT Monitoring System for Decision-Support in Small Farms. Master’s Thesis, Universidade NOVA de Lisboa, Lisboa, Portugal, 2024. [Google Scholar]
- Islam, N.; Rashid, M.M.; Pasandideh, F.; Ray, B.; Moore, S.; Kadel, R. A review of applications and communication technologies for internet of things (Iot) and unmanned aerial vehicle (uav) based sustainable smart farming. Sustainability 2021, 13, 1821. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Shafik, W.; Tufail, A.; Apong, R.A.A.H.M.; De Silva, L.C. Internet of Things for Smart Agricultural Practices. In Internet of Things Applications and Technology; Auerbach Publications: Boca Raton, FL, USA, 2024; pp. 190–217. [Google Scholar]
- Company, T.B.R. Internet of Things (IoT) in Agriculture Global Market Report; The Business Research Company: London, UK, 2023. [Google Scholar]
- Pratyush Kumar Prabhat, K.K.S. Advancing Smart Agriculture: A Study on IoT-Enabled Precision Irrigation Systems for Sustainable Water Management. Int. J. Sci. Res. Sci. Technol. 2024, 11, 524–527. [Google Scholar]
- Basnet, B.; Bang, J. The State-of-the-Art of Knowledge-Intensive Agriculture: A Review on Applied Sensing Systems and Data Analytics. J. Sens. 2018, 2018, 3528296. [Google Scholar]
- Haldar, A.; Mandal, S.N.; Deb, S.; Roy, R.; Laishram, M. Application of information and electronic technology for best practice management in livestock production system. In Agriculture, Livestock Production and Aquaculture: Advances for Smallholder Farming Systems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 2, pp. 173–218. [Google Scholar]
- Das Nair, R.; Landani, N. Making Agricultural Value Chains more Inclusive Through Technology and Innovation; WIDER Working Paper: Helsinki, Finland, 2020. [Google Scholar]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Guzmán, H.A.; Padilla-Medina, J.A.; Martínez-Nolasco, C.; Martinez-Nolasco, J.J.; Barranco-Gutiérrez, A.I.; Contreras-Medina, L.M.; Leon-Rodriguez, M. IoT-based monitoring system applied to aeroponics greenhouse. Sensors 2022, 22, 5646. [Google Scholar] [CrossRef]
- Rayes, A.; Salam, S. Internet of Things from Hype to Reality; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ziemann, V. A hands-on Course in Sensors Using the Arduino and Raspberry Pi; Crc Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Mowla, M.N.; Mowla, N.; Shah, A.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Abd Rahman, M.K.I.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- Hercog, D.; Gergič, B. A flexible microcontroller-based data acquisition device. Sensors 2014, 14, 9755–9775. [Google Scholar] [CrossRef]
- Huynh, H.X.; Tran, L.N.; Duong-Trung, N. Smart greenhouse construction and irrigation control system for optimal Brassica Juncea development. PLoS ONE 2023, 18, e0292971. [Google Scholar] [CrossRef]
- Bedjoirawan, N.A.; Izdaharra, A.M.; Sintia, S.; Widianto, M.H. Aeroponics cultivation of Bok Choy with IoT-based monitoring and automation system. In Proceedings of the 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), South Jakarta, Indonesia, 7–8 November 2023; pp. 155–160. [Google Scholar]
- Hull, K.; van Schalkwyk, P.; Mabitsela, M.; Phiri, E.; Booysen, M. Thermal Modelling and Statistical Analysis of a Greenhouse and Aeroponics System. SSRN 2023, 4576193. [Google Scholar] [CrossRef]
- Shuhaimi, F.N.; Jamil, N.; Hamzah, R. Evaluations of Internet of Things-based personal smart farming system for residential apartments. Bull. Electr. Eng. Inform. 2020, 9, 2477–2483. [Google Scholar] [CrossRef]
- Bolivar, P.B.N.; Clar, J.L.G.; Constantino, M.J.L.; Roguin, E.A.; Beaño, M.G.P.; Capuno, M.E.A.D.; Agustin, E.V.; Soriano, A.J.; Sigue, A.-l.F. IoT—Based Aeroponic System for Seasonal Plants Using Fuzzy Logic. In Proceedings of the TENCON 2022-2022 IEEE Region 10 Conference (TENCON), Hong Kong, China, 1–4 November 2022; pp. 1–6. [Google Scholar]
- Almadani, B.; Mostafa, S.M. IIoT based multimodal communication model for agriculture and agro-industries. IEEE Access 2021, 9, 10070–10088. [Google Scholar] [CrossRef]
- Amrutha, K.; Jinu, A. Development of an IoT Based Automated Aeroponic System. 2 July 2025. Available online: http://14.139.181.140:8080/xmlui/handle/123456789/2063 (accessed on 29 May 2025).
- Almihyawi, A.Y.T. A secure smart monitoring network for hybrid energy systems using IoT, AI. Discov. Comput. 2025, 28, 1–19. [Google Scholar] [CrossRef]
- Glaroudis, D.; Iossifides, A.; Chatzimisios, P. Survey, comparison and research challenges of IoT application protocols for smart farming. Comput. Netw. 2020, 168, 107037. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X. Edge computing driven data sensing strategy in the entire crop lifecycle for smart agriculture. Sensors 2021, 21, 7502. [Google Scholar] [CrossRef] [PubMed]
- Rammes, K.; Abd Shukur Ja’afar, M.A.; Othman, M.H.M.; Abd Manap, R.; Ali, N.A. Efficient Management of Wireless Iot Hydroponic Systems Using Multi-Node and Hybrid Wi-Lo Communication. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 4154–4165. [Google Scholar] [CrossRef]
- Hostalrich, D.; Pelegri-Sebastia, J.; Sogorb, T.; Pellicer, V. Intelligent management of hydroponic systems based on IoT for agrifood processes. J. Sens. 2022, 2022, 9247965. [Google Scholar] [CrossRef]
- Khadijah Febriana, R.; Thakur, R.; Roy, S. Enhancing Hydroponic Farming Productivity Through IoT-Based Multi-Sensor Monitoring System. In Proceedings of the IoTBDS, Angers, France, 28–30 April 2024; pp. 351–357. [Google Scholar]
- Saravanan, J.; Rosmiati, M.; Selvan, S.; Ramesh, B.K.; Prabhu, S.M.; Raju, S.K. Integrating Internet of Things for Smart Hydroponics to Increase Productivity. Instrum. Mes. Metrol. 2025, 24, 177. [Google Scholar] [CrossRef]
- Ibayashi, H.; Kaneda, Y.; Imahara, J.; Oishi, N.; Kuroda, M.; Mineno, H. A reliable wireless control system for tomato hydroponics. Sensors 2016, 16, 644. [Google Scholar] [CrossRef]
- Jeyabharath, R.; Tamilvani, P.; Karthikeyan, G.; Vijayakumar, P.; Rohini, J.; Mohammadha Hussaini, M.; Kavin Kumar, K. Smart Aeroponic Farms with IoT-Enabled Efficient Automation and Monitoring. In Proceedings of the 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA), Namakkal, India, 15–16 March 2024; pp. 1–7. [Google Scholar]
- Jamhari, C.A.; Wibowo, W.K.; Annisa, A.R.; Roffi, T.M. Design and implementation of IoT system for aeroponic chamber temperature monitoring. In Proceedings of the 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), Surabaya, Indonesia, 3–4 October 2020; pp. 1–4. [Google Scholar]
- Chandranata, A.; Kurniadi, D.; Aryananda, F. Design and Development of a PPM Control System for Aeroponic Lettuce Plant Nutrient Based on Microcontrollers and Internet of Things. J. Soc. Res. 2024, 3, 368–381. [Google Scholar] [CrossRef]
- Salazar, J.D.R.; Candelo-Becerra, J.E.; Velasco, F.E.H. Growing arugula plants using aeroponic culture with an automated irrigation system. Int. J. Agric. Biol. Eng. 2020, 13, 52–56. [Google Scholar]
- Niswar, M.; Tahir, Z.; Wey, C.Y. Design and implementation of IoT-based aeroponic farming system. In Proceedings of the 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), Malang, Indonesia, 16–18 June 2022; pp. 308–311. [Google Scholar]
- Lucero, L.; Lucero, D.; Ormeno-Mejia, E.; Collaguazo, G. Automated aeroponics vegetable growing system. Case study Lettuce. In Proceedings of the 2020 IEEE ANDESCON, Quito, Ecuador, 13–16 October 2020; pp. 1–6. [Google Scholar]
- Rahman, F.; Ritun, I.J.; Biplob, M.R.A.; Farhin, N.; Uddin, J. Automated aeroponics system for indoor farming using Arduino. In Proceedings of the 2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Kitakyushu, Japan, 25–29 June 2018; pp. 137–141. [Google Scholar]
- Uddin, M.R.; Suliaman, M. Energy efficient smart indoor fogponics farming system. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bristol, UK, 24–26 September 2021; p. 012012. [Google Scholar]
- Rahmad, I.F.; Tanti, L.; Puspasari, R.; Ekadiansyah, E.; Fragastia, V.A. Automatic monitoring and control system in aeroponic plant agriculture. In Proceedings of the 2020 8th International Conference on Cyber and IT Service Management (CITSM), Pangkal, Indonesia, 23–24 October 2020; pp. 1–5. [Google Scholar]
- Chakravarthi, V.S. Internet of Things and M2M Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Kumar, M.; Kumar, S. Communication technologies for m2m and iot domain. In Internet of Things; CRC Press: Boca Raton, FL, USA, 2022; pp. 132–160. [Google Scholar]
- Kamanga, I.A.; Lyimo, J.M. Review of lorawan and the protocol suitability for low bandwidth wireless sensor networks over 5g. Int. J. Sci. Res. Arch. 2022, 7, 291–305. [Google Scholar] [CrossRef]
- Cilfone, A.; Davoli, L.; Belli, L.; Ferrari, G. Wireless mesh networking: An IoT-oriented perspective survey on relevant technologies. Future Internet 2019, 11, 99. [Google Scholar] [CrossRef]
- Ugwuanyi, S.; Paul, G.; Irvine, J. Survey of IoT for developing countries: Performance analysis of LoRaWAN and cellular NB-IoT networks. Electronics 2021, 10, 2224. [Google Scholar] [CrossRef]
- Mansour, M.; Gamal, A.; Ahmed, A.I.; Said, L.A.; Elbaz, A.; Herencsar, N.; Soltan, A. Internet of things: A comprehensive overview on protocols, architectures, technologies, simulation tools, and future directions. Energies 2023, 16, 3465. [Google Scholar] [CrossRef]
- Tozlu, S.; Senel, M.; Mao, W.; Keshavarzian, A. Wi-Fi enabled sensors for internet of things: A practical approach. IEEE Commun. Mag. 2012, 50, 134–143. [Google Scholar] [CrossRef]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Today Proc. 2022, 51, 161–165. [Google Scholar] [CrossRef]
- Paul, M.J.; Foyer, C.H. Sink regulation of photosynthesis. J. Exp. Bot. 2001, 52, 1383–1400. [Google Scholar] [CrossRef]
- Long, S.P.; ZHU, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photosynthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Furbank, R.T.; Quick, W.P.; Sirault, X.R. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Research 2015, 182, 19–29. [Google Scholar] [CrossRef]
- Whitmarsh, J.; Govindjee, G. The photosynthetic process. In Concepts in Photobiology: Photosynthesis and Photomorphogenesis; Springer: Berlin/Heidelberg, Germany, 1999; pp. 11–51. [Google Scholar]
- Sreeharsha, R.V.; Venkata Mohan, S. Photosynthetic Microbes: Evolution, Classification, and Structural Physiology. In Microbial Photosynthesis: From Basic Biology to Artificial Cell Factories and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 3–22. [Google Scholar]
- Schurr, U.; Walter, A.; Rascher, U. Functional dynamics of plant growth and photosynthesis–from steady-state to dynamics–from homogeneity to heterogeneity. Plant Cell Environ. 2006, 29, 340–352. [Google Scholar] [CrossRef]
- Holz, M.; Zarebanadkouki, M.; Benard, P.; Hoffmann, M.; Dubbert, M. Root and rhizosphere traits for enhanced water and nutrients uptake efficiency in dynamic environments. Front. Plant Sci. 2024, 15, 1383373. [Google Scholar] [CrossRef]
- Zhai, B.; Hu, Z.; Sun, S.; Tang, Z.; Wang, G. Characteristics of photosynthetic rates in different vegetation types at high-altitude in mountainous regions. Sci. Total Environ. 2024, 907, 168071. [Google Scholar] [CrossRef] [PubMed]
- Sukhova, E.; Vodeneev, V.; Sukhov, V. Mathematical modeling of photosynthesis and analysis of plant productivity. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2021, 15, 52–72. [Google Scholar] [CrossRef]
- García-Rodríguez, L.d.C.; Prado-Olivarez, J.; Guzmán-Cruz, R.; Rodríguez-Licea, M.A.; Barranco-Gutiérrez, A.I.; Perez-Pinal, F.J.; Espinosa-Calderon, A. Mathematical modeling to estimate photosynthesis: A state of the art. Appl. Sci. 2022, 12, 5537. [Google Scholar] [CrossRef]
- ZHOU, J.; Wang, J.; Hang, T.; Li, P. Photosynthetic characteristics and growth performance of lettuce (Lactuca sativa L.) under different light/dark cycles in mini plant factories. Photosynthetica 2020, 58, 740–747. [Google Scholar] [CrossRef]
- Nomura, K.; Takada, A.; Kunishige, H.; Ozaki, Y.; Okayasu, T.; Yasutake, D.; Kitano, M. Long-term and continuous measurement of canopy photosynthesis and growth of spinach. Environ. Control. Biol. 2020, 58, 21–29. [Google Scholar] [CrossRef]
- Millan-Almaraz, J.R.; Guevara-Gonzalez, R.G.; Romero-Troncoso, R.; Osornio-Rios, R.A.; Torres-Pacheco, I. Advantages and disadvantages on photosynthesis measurement techniques: A review. Afr. J. Biotechnol. 2009, 8, 7340–7349. [Google Scholar]
- Busch, F.A.; Ainsworth, E.A.; Amtmann, A.; Cavanagh, A.P.; Driever, S.M.; Ferguson, J.N.; Kromdijk, J.; Lawson, T.; Leakey, A.D.; Matthews, J.S. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ. 2024, 47, 3344–3364. [Google Scholar] [CrossRef]
- Song, Q.; Zhu, X.-G. Techniques for photosynthesis phenomics: Gas exchange, fluorescence, and reflectance spectrums. Crop Environ. 2024, 3, 147–158. [Google Scholar] [CrossRef]
- Kanno, K.; Sugiyama, T.; Eguchi, M.; Iwasaki, Y.; Higashide, T. Leaf photosynthesis characteristics of seven Japanese strawberry cultivars grown in a greenhouse. Hortic. J. 2022, 91, 8–15. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Posch, B.C.; Evans, J.R.; Farquhar, G.D.; Atkin, O.K. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat. Commun. 2023, 14, 2820. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Huang, Z.; Su, X.; Siu, A.; Song, Y.; Zhang, D.; Fang, Q. Machine learning models for net photosynthetic rate prediction using poplar leaf phenotype data. PLoS ONE 2020, 15, e0228645. [Google Scholar] [CrossRef] [PubMed]
- Varghese, R.; Cherukuri, A.K.; Doddrell, N.H.; Doss, C.G.P.; Simkin, A.J.; Ramamoorthy, S. Machine learning in photosynthesis: Prospects on sustainable crop development. Plant Sci. 2023, 335, 111795. [Google Scholar] [CrossRef] [PubMed]
- Khruschev, S.; Plyusnina, T.Y.; Antal, T.; Pogosyan, S.; Riznichenko, G.Y.; Rubin, A. Machine learning methods for assessing photosynthetic activity: Environmental monitoring applications. Biophys. Rev. 2022, 14, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Pu, L.; Li, Y.; Gao, P.; Zhang, H.; Hu, J. A photosynthetic rate prediction model using improved RBF neural network. Sci. Rep. 2022, 12, 9563. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Wang, Z.; Feng, K. Monitoring the photosynthetic performance of grape leaves using a hyperspectral-based machine learning model. Eur. J. Agron. 2022, 140, 126589. [Google Scholar] [CrossRef]
- Wei, Z.; Wan, X.; Lei, W.; Yuan, K.; Lu, M.; Li, B.; Gao, P.; Wu, H.; Hu, J. A cucumber photosynthetic rate prediction model in whole growth period with time parameters. Agriculture 2023, 13, 204. [Google Scholar] [CrossRef]
- Kaneko, T.; Nomura, K.; Yasutake, D.; Iwao, T.; Okayasu, T.; Ozaki, Y.; Mori, M.; Hirota, T.; Kitano, M. A canopy photosynthesis model based on a highly generalizable artificial neural network incorporated with a mechanistic understanding of single-leaf photosynthesis. Agric. For. Meteorol. 2022, 323, 109036. [Google Scholar] [CrossRef]
- Wang, H.; Seaborn, T.; Wang, Z.; Caudill, C.C.; Link, T.E. Modeling tree canopy height using machine learning over mixed vegetation landscapes. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102353. [Google Scholar] [CrossRef]
- Jin, Z.; Liu, H.; Cao, H.; Li, S.; Yu, F.; Xu, T. Hyperspectral Remote Sensing Estimation of Rice Canopy LAI and LCC by UAV Coupled RTM and Machine Learning. Agriculture 2024, 15, 11. [Google Scholar] [CrossRef]
- Rajendiran, G.; Rethnaraj, J. Optimizing Lettuce Crop Yield Prediction in an Indoor Aeroponic Vertical Farming System Using IoT-Integrated Machine Learning Regression Models. Rev. D’intelligence Artif. 2024, 38, 825–836. [Google Scholar] [CrossRef]
- Jung, D.H.; Lee, J.W.; Kang, W.H.; Hwang, I.H.; Son, J.E. Estimation of whole plant photosynthetic rate of irwin mango under artificial and natural lights using a three-dimensional plant model and ray-tracing. Int. J. Mol. Sci. 2018, 19, 152. [Google Scholar] [CrossRef] [PubMed]
- Jans, T.B.; Mossink, L.; Wassenaar, M.; Wientjes, E.; Driever, S.; Huber, M.; Pierik, R.; de Boer, H.J. Coupling Modelling and Experiments to Analyse Leaf Photosynthesis Under Far-Red Light. Plant Cell Environ. 2025, 48, 3171–3184. [Google Scholar] [CrossRef] [PubMed]
- Saathoff, A.J.; Welles, J. Gas exchange measurements in the unsteady state. Plant Cell Environ. 2021, 44, 3509–3523. [Google Scholar] [CrossRef]
- Ramazan, S.; Bhat, H.A.; Zargar, M.A.; Ahmad, P.; John, R. Combined gas exchange characteristics, chlorophyll fluorescence and response curves as selection traits for temperature tolerance in maize genotypes. Photosynth. Res. 2021, 150, 213–225. [Google Scholar] [CrossRef]
- García-Rodríguez, L.d.C.; Morales-Viscaya, J.A.; Prado-Olivarez, J.; Barranco-Gutiérrez, A.I.; Padilla-Medina, J.A.; Espinosa-Calderón, A. Fuzzy Mathematical Model of Photosynthesis in Jalapeño Pepper. Agriculture 2024, 14, 909. [Google Scholar] [CrossRef]
- Gao, P.; Hu, J. A predictive model of photosynthesis for cucumber. In Proceedings of the International Conference on Computer Application and Information Security (ICCAIS 2021), Wuhan, China; 2022; pp. 286–291. [Google Scholar]
- Zhang, P.; Zhang, Z.; Li, B.; Zhang, H.; Hu, J.; Zhao, J. Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters. Sci. Rep. 2020, 10, 3013. [Google Scholar] [CrossRef]
- Hu, P.; Sun, Y.; Zhang, Y.; Dong, J.; Zhang, X. Application of WDNN for Photosynthetic Rate Prediction in Greenhouse. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 331–336. [Google Scholar]
- Yuan, Q.; Liu, T.; Wang, Y.; Chen, C. Photosynthetic rate prediction model based on PSO-LSSVM for optimization and control of greenhouse environment. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 3028–3032. [Google Scholar]
- Yin, J.; Liu, X.; Miao, Y.; Gao, Y.; Qiu, R.; Zhang, M.; Li, H.; Li, M. Measurement and prediction of tomato canopy apparent. Int. J. Agric. Biol. Eng. 2019, 12, 156–161. [Google Scholar]
- Ji YuHan, J.Y.; Jiang YiQiong, J.Y.; Li Ting, L.T.; Zhang Man, Z.M.; Sha Sha, S.S.; Li MinZan, L.M. An improved method for prediction of tomato photosynthetic rate based on WSN in greenhouse. Int. J. Agric. Biol. Eng 2016, 9, 146–152. [Google Scholar]
- Ting, L.; Yuhan, J.; Man, Z.; Sha, S.; Minzan, L. Universality of an improved photosynthesis prediction model based on PSO-SVM at all growth stages of tomato. Int. J. Agric. Biol. Eng. 2017, 10, 63–73. [Google Scholar]
- Gao, P.; Xie, J.; Yang, M.; Zhou, P.; Liang, G.; Chen, Y.; Sun, D.; Han, X.; Wang, W. Predicting the photosynthetic rate of chinese brassica using deep learning methods. Agronomy 2021, 11, 2145. [Google Scholar] [CrossRef]
- Bente, R. Design and Testing of a Novel Aeroponic Root Chamber. Master’s Thesis, University of Arizona, Tucson, Arizona, USA, 2023. [Google Scholar]
- Chaudhary, A.; Anand, S. Soilless cultivation: A distinct vision for sustainable agriculture. In Artificial Intelligence and Smart Agriculture: Technology and Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 337–368. [Google Scholar]
- Kumar, A.; Trivedi, A.; Nandeha, N.; Patidar, G.; Choudhary, R.; Singh, D. A comprehensive analysis of technology in aeroponics: Presenting the adoption and integration of technology in sustainable agriculture practices. Int. J. Environ. Clim. Change 2024, 14, 872–882. [Google Scholar] [CrossRef]
- Sato, N. IoT of melon plant continuous diagnostic technique using an open chamber system measurement for photosynthesis and transpiration. In Proceedings of the E3S Web of Conferences, Les Ulis, France, 25–27 October 2023; p. 01001. [Google Scholar]
- Wu, M.; Xiong, J.; Li, R.; Dong, A.; Lv, C.; Sun, D.; Abdelghany, A.E.; Zhang, Q.; Wang, Y.; Niu, W. Predicting fertilizer concentration for precision irrigation under mixed variable-rate fertigation using machine learning: A case study of combined fertilization with dipotassium hydrogen phosphate and potassium chloride. Agric. Water Manag. 2023. [Google Scholar] [CrossRef]
- Del-Coco, M.; Leo, M.; Carcagnì, P. Machine learning for smart irrigation in agriculture: How far along are we? Information 2024, 15, 306. [Google Scholar] [CrossRef]
- Wei, S. Towards Sustainable Irrigation Management: A Machine Learning Approach to Monitoring and Optimization. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2024. [Google Scholar]
- Wan, X.; Li, B.; Chen, D.; Long, X.; Deng, Y.; Wu, H.; Hu, J. Irrigation decision model for tomato seedlings based on optimal photosynthetic rate. Int. J. Agric. Biol. Eng. 2021, 14, 115–122. [Google Scholar] [CrossRef]
- Ge, J.; Zhao, L.; Yu, Z.; Liu, H.; Zhang, L.; Gong, X.; Sun, H. Prediction of greenhouse tomato crop evapotranspiration using XGBoost machine learning model. Plants 2022, 11, 1923. [Google Scholar] [CrossRef]
- Sasmal, B.; Das, G.; Mallick, P.; Dey, S.; Ghorai, S.; Jana, S.; Jana, C. Advancements and challenges in agriculture: A comprehensive review of machine learning and IoT applications in vertical farming and controlled environment agriculture. Big Data Comput. Vis. 2024, 4, 67–94. [Google Scholar]
- Shahab, H.; Iqbal, M.; Sohaib, A.; Khan, F.U.; Waqas, M. IoT-based agriculture management techniques for sustainable farming: A comprehensive review. Comput. Electron. Agric. 2024, 220, 108851. [Google Scholar] [CrossRef]
- Sowmya, C.; Anand, M.; Indu Rani, C.; Amuthaselvi, G.; Janaki, P. Recent developments and inventive approaches in vertical farming. Front. Sustain. Food Syst. 2024, 8, 1400787. [Google Scholar] [CrossRef]
- Ur Rehman, A.; Lu, S.; Ashraf, M.A.; Iqbal, M.S.; Khan Nawabi, A.; Amin, F.; Abbasi, R.; de la Torre, I.; Villar, S.G.; Lopez, L.A.D. The role of Internet of Things (IoT) technology in modern cultivation for the implementation of greenhouses. PeerJ Comput. Sci. 2024, 10, e2309. [Google Scholar] [CrossRef]
- McCarroll, D. Securing the Internet of Things: An Experimental Study Focusing on an Indoor Aeroponic IoT System. Ph.D. Thesis, Marymount University, Arlington, VA, USA, 2024. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Tunio, M.H.; Ahmad, F.; Solangi, K.A. Overview of the aeroponic agriculture–An emerging technology for global food security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Ramadas, A.; Domingues, G.; Dias, J.P.; Aguiar, A.; Ferreira, H.S. Patterns for things that fail. In Proceedings of the 24th Conference on Pattern Languages of Programs, Vancouver, BC, Canada, 22–25 October 2017; pp. 1–10. [Google Scholar]
- Zhang, Y.; Chen, T.; Gasparri, E.; Lucchi, E. A Modular Agrivoltaics Building Envelope Integrating Thin-Film Photovoltaics and Hydroponic Urban Farming Systems: A Circular Design Approach with the Multi-Objective Optimization of Energy, Light, Water and Structure. Sustainability 2025, 17, 666. [Google Scholar] [CrossRef]
- Stanco, G.; Navarro, A.; Frattini, F.; Ventre, G.; Botta, A. A comprehensive survey on the security of low power wide area networks for the Internet of Things. ICT Express 2024, 10, 519–552. [Google Scholar] [CrossRef]
- Munim, K.M.; Islam, M.N. An IoT and Blockchain-Based Framework for Sustainable Vertical Farming. In Proceedings of the 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI), Gwalior, India, 14–16 March 2024; pp. 1–6. [Google Scholar]
- Puppala, S.; Sinha, K. Towards Secure and Efficient Farming Using Self-Regulating Heterogeneous Federated Learning in Dynamic Network Conditions. Agriculture 2025, 15, 934. [Google Scholar] [CrossRef]
S. No | Cultivation Method | Collected Variables | Irrigation Strategy | Communication Protocol | Reference |
---|---|---|---|---|---|
1 | Hydroponics | T, RH, EC, pH, Tds | _ | LoRa and MQTT | [76] |
2 | T, RH, CO2, WL | Sensor-based | Zigbee | [77] | |
3 | T, RH, EC, pH, Li, Tds | _ | LoRaWAN and WiFi | [78] | |
4 | Li and WL | Sensor-based | Wi-Fi (ESP8266, HTTP or MQTT to Firebase) | [79] | |
5 | T, RH, Li | Evapotranspiration-based | WSN | [80] | |
6 | Aeroponics | T, RH, Li, pH | Time-based | Wi-Fi | [81] |
7 | T, RH, Li, pH, WL | 6 min ON, 4 min OFF (Cycle) | [67] | ||
8 | T, RH, EC, pH | EC and pH-based | [70] | ||
9 | T and RH | T, RH-based | [69] | ||
10 | T, Nsl, Fr, pH, and EC | 15 s ON, 400 s OFF (Cycle) | [34] | ||
11 | T, RH, and Li, | Every 5 min on/off | [32] | ||
12 | T, RH, and Li, | Every 5 min on/off | [82] | ||
13 | T, RH, and Tds | T- and RH-based | [83] | ||
14 | T, RH, pH, and Nsl | 20 s ON 160 s OFF (Cycle) | [84] | ||
15 | T, RH, Tds, and pH, pH probe, and TDS | T- and RH-based | [85] | ||
16 | T and RH | 15 s ON, 10 min OFF (Cycle) | UART + Wi-Fi | [68] | |
17 | T, RH, EC, pH | T, RH, and pH-based | GPRS | [86] | |
18 | T, RH, Li, and Nsl | Time-based | Wi-Fi + Bluetooth | [87] | |
19 | T, RH, Li, pH | 8 h turn on the pump daily | _ | [88] | |
20 | T, RH, and Li | RH-based | _ | [89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amjad, M.; Arulmozhi, E.; Shin, Y.-H.; Kang, M.-K.; Cho, W.-J. A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics. Agronomy 2025, 15, 1627. https://doi.org/10.3390/agronomy15071627
Amjad M, Arulmozhi E, Shin Y-H, Kang M-K, Cho W-J. A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics. Agronomy. 2025; 15(7):1627. https://doi.org/10.3390/agronomy15071627
Chicago/Turabian StyleAmjad, Muhammad, Elanchezhian Arulmozhi, Yeong-Hyeon Shin, Moon-Kyung Kang, and Woo-Jae Cho. 2025. "A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics" Agronomy 15, no. 7: 1627. https://doi.org/10.3390/agronomy15071627
APA StyleAmjad, M., Arulmozhi, E., Shin, Y.-H., Kang, M.-K., & Cho, W.-J. (2025). A Review of IoT and Machine Learning for Environmental Optimization in Aeroponics. Agronomy, 15(7), 1627. https://doi.org/10.3390/agronomy15071627