Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts
Abstract
1. Introduction
2. Challenges of Crop Cultivation in Sandy Soils
3. Sorghum as a Potential Underutilized Crop
4. Biogas Slurry: Production and Properties
4.1. Sustainable Soil Amendment
4.2. Agronomic Impacts of Biogas Slurry
4.3. Effect of Biogas Slurry on Soil Nutrient Dynamics
4.4. Effect of Biogas Slurry on Crop Productivity
4.5. Biogas Slurry Application Methods
4.6. Sources of Biogas Slurry
4.6.1. Crop Residues
4.6.2. Food Waste
4.6.3. Sewage Sludge
4.6.4. Livestock Manure
4.7. Forms of Biogas Slurry
4.7.1. Liquid Biogas Slurry
4.7.2. Solid/Dry Biogas Slurry
4.8. Techniques for Drying Biogas Slurry
4.8.1. Natural Drying
4.8.2. Mechanical Dewatering
4.8.3. Solar Drying
4.8.4. Thermal Treatment
5. Synthesis of Literature Findings
6. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BGS | Biogas slurry |
N | Nitrogen |
P | Phosphorus |
K | Potassium |
NH4+ | Ammonium |
C | Carbon |
CEC | Cation exchange capacity |
VSs | Volatile solids |
TSs | Total solids |
SOC | Soil organic carbon |
References
- Musei, S.K.; Kuyah, S.; Nyawira, S.; Ng’ang’a, S.K.; Karugu, W.N.; Smucker, A.; Nkurunziza, L. Sandy soil reclamation technologies to improve crop productivity and soil health: A review. Front. Soil Sci. 2024, 4, 1345895. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.; Liu, T.; Chen, Y.; Liu, B.; Xiao, J.; Luo, Y.; Chen, L. Effects of different organic materials and reduced nitrogen fertilizer application on sorghum yield and soil nutrients. Sci. Rep. 2025, 15, 6914. [Google Scholar] [CrossRef]
- Dusingizimana, P.; Devkota, K.P.; Cherif, M.; Nduwumuremyi, A. Conservation Agriculture for Closing Maize Yield Gap and Enhancing Climate Resilience in Semi-Arid Eastern Rwanda. Farming Syst. 2025, 3, 100151. [Google Scholar] [CrossRef]
- Khan, M.T.; Aleinikovienė, J.; Butkevičienė, L.M. Innovative organic fertilizers and cover crops: Perspectives for sustainable agriculture in the Era of climate change and organic agriculture. Agronomy 2024, 14, 2871. [Google Scholar] [CrossRef]
- Singh, N.K.; Sachan, K.; Bp, M.; Panotra, N.; Katiyar, D. Building soil health and fertility through organic amendments and practices: A review. Asian J. Soil Sci. Plant Nutr. 2024, 10, 175–197. [Google Scholar] [CrossRef]
- Ullah, N.; Ditta, A.; Imtiaz, M.; Li, X.; Jan, A.U.; Mehmood, S.; Rizwan, M.S.; Rizwan, M. Appraisal for organic amendments and plant growth-promoting rhizobacteria to enhance crop productivity under drought stress: A review. J. Agron. Crop Sci. 2021, 207, 783–802. [Google Scholar] [CrossRef]
- Pooja, S.K.; Bagewadi, B.; Biradar, D.P.; Katageri, I.S.; Choudhary, R.S.; Fakrudin, B. Post-flowering drought stress response of advanced breeding lines and cultivars in post-rainy season sorghum [Sorghum bicolor (L.)]. S. Afr. J. Bot. 2025, 178, 266–279. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Abdulbaki, A.S.; Alsamadany, H. Genotypic variability in stress responses of Sorghum bicolor under drought and salinity conditions. Front. Genet. 2025, 15, 1502900. [Google Scholar] [CrossRef]
- Wang, Z.; Nie, T.; Lu, D.; Zhang, P.; Li, J.; Li, F.; Zhang, Z.; Chen, P.; Jiang, L.; Dai, C.; et al. Effects of Different Irrigation Management and Nitrogen Rate on Sorghum (Sorghum bicolor L.) Growth, Yield and Soil Nitrogen Accumulation with Drip Irrigation. Agronomy 2024, 14, 215. [Google Scholar] [CrossRef]
- Samijan, S.; Nurwahyuni, E.; Minarsih, S.; Supriyo, A.; Jauhari, S.; Hindarwati, Y.; Setiapermas, M.N.; Praptana, R.H.; Winarni, E.; Aristya, V.E. Optimizing Sorghum Productivity Using Balanced Fertilizers on Dryland. Phyton 2024, 93, 1403–1420. [Google Scholar] [CrossRef]
- Kebede, T.; Keneni, Y.G.; Senbeta, A.F.; Sime, G. Effect of bioslurry and chemical fertilizer on the agronomic performances of maize. Heliyon 2023, 9, e130000. [Google Scholar] [CrossRef]
- Panday, D.; Bhusal, N.; Das, S.; Ghalehgolabbehbahani, A. Rooted in nature: The rise, challenges, and potential of organic farming and fertilizers in agroecosystems. Sustainability 2024, 16, 1530. [Google Scholar] [CrossRef]
- Sande, T.J.; Tindwa, H.J.; Alovisi, A.M.T.; Shitindi, M.J.; Semoka, J.M. Enhancing sustainable crop production through integrated nutrient management: A focus on vermicompost, bio-enriched rock phosphate, and inorganic fertilisers—a systematic review. Front. Agron. 2024, 6, 1422876. [Google Scholar] [CrossRef]
- Addis, Z.; Amare, T.; Kerebih, B.; Abewa, A.; Feyisa, T.; Awoke, A.; Tenagne, A. Effects of dry bio-slurry and nitrogen fertilizer on potato and wheat yields under rotation cropping system. PLoS ONE 2024, 19, e0306625. [Google Scholar] [CrossRef] [PubMed]
- He, W.Q.; Fan, Y.F.; Zhang, X.F.; Xiang, T.Y. Effects of biogas slurry as the replacement for chemical fertilizers on Chinese cabbage yield and soil quality. Appl. Ecol. Environ. Res. 2024, 22, 2359–2366. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Nie, M.; Yue, G.; Wang, L.; Zhang, Y. Short-term organic fertilizer substitution increases sorghum yield by improving soil physicochemical characteristics and regulating microbial community structure. Front. Plant Sci. 2024, 15, 1492797. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson Education: London, UK, 2016. [Google Scholar]
- Ahmad, W.; Khan, M.Z.; Ali, S.; Shah, S.A. Nitrogen leaching in sandy soils: Implications for sustainable crop production. J. Soil Sci. Environ. Manag. 2015, 6, 125–134. [Google Scholar]
- Mwakidoshi, E.R.; Gitari, H.H.; Muindi, E.M.; Wamukota, A.; Seleiman, M.F.; Maitra, S. Smallholder farmers’ knowledge on the use of bioslurry as a soil fertility amendment input for potato production in Kenya. Land Degrad. Dev. 2023, 34, 2214–2227. [Google Scholar] [CrossRef]
- Mansoor, S.; Khan, T.; Farooq, I.; Shah, L.R.; Sharma, V.; Sonne, C.; Rinklebe, J.; Ahmad, P. Drought and global hunger: Biotechnological interventions in sustainability and management. Planta 2022, 256, 97. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Amjid, M.; Munir, H.; Ahmad, M.; Zulfiqar, U.; Ali, M.F.; Abul Farah, M.; Ahmed, M.A.; Artyszak, A. Comparative analysis of growth and physiological responses of sugarcane elite genotypes to water stress and sandy loam soils. Plants 2023, 12, 2759. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, T.; Gebremedhin, A.; Belayneh, T. Socio-economic constraints in managing sandy soils in smallholder farming systems: A case study from South Africa’s Eastern Cape. Afr. J. Agric. Econ. 2024, 18, 78–92. [Google Scholar]
- El-Akhdar, I.; Shabana, M.M.; El-Khateeb, N.M.; Elhawat, N.; Alshaal, T. Sustainable Wheat Cultivation in Sandy Soils: Impact of Organic and Biofertilizer Use on Soil Health and Crop Yield. Plants 2024, 13, 3156. [Google Scholar] [CrossRef]
- Froio, L.D.L.; Pechoto, E.A.P.; Garruti, M.V.G.; Soares, D.D.A.; Sekiya, B.M.S.; Modesto, V.C.; Souza Júnior, N.C.D.; Girardi, V.A.M.; Ribeiro, N.A.A.; Matos, A.M.S.; et al. Sandy Soil Quality and Soybean Productivity in Medium-Duration Agricultural Production Systems. Agriculture 2025, 15, 589. [Google Scholar] [CrossRef]
- Sarti, O.; El Mansouri, F.; Otal, E.; Morillo, J.; Ouassini, A.; Brigui, J.; Saidi, M. Assessing the effect of intensive agriculture and sandy soil properties on groundwater contamination by nitrate and potential improvement using Olive Pomace Biomass Slag (OPBS). J. Carbon Res. 2022, 9, 1. [Google Scholar] [CrossRef]
- Kumar, A.; Verma, L.M.; Sharma, S.; Singh, N. Overview on agricultural potentials of biogas slurry (BGS): Applications, challenges, and solutions. Biomass Convers. Biorefinery 2022, 13, 13729–13769. [Google Scholar] [CrossRef]
- Smith, C.W.; Frederiksen, R.A. (Eds.) Sorghum: Origin, History, Technology, and Production; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global sorghum production: The case of North America, Asia and Africa’s Sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Elangovan, M.; Sivaraj, N. Origin, Domestication and Diffusion of Sorghum Bicolor. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Sawston, UK, 2019; pp. 15–31. [Google Scholar]
- Singh, A.K. Ancient alien crop introductions integral to Indian agriculture: An overview. Proc. Indian Natn. Sci. Acad. 2017, 83, 549–568. [Google Scholar]
- Akplo, T.M.; Faye, A.; Obour, A.; Stewart, Z.P.; Min, D.; Prasad, P.V. Dual-purpose crops for grain and fodder to improve nutrition security in semi-arid sub-Saharan Africa: A review. Food Energy Secur. 2023, 12, e492. [Google Scholar] [CrossRef]
- Hu, W.; Zhou, L.; Chen, J.H. Conversion sweet sorghum biomass to produce value-added products. Biotechnol. Biofuels Bioprod. 2022, 15, 72. [Google Scholar] [CrossRef]
- Dube, F.; Maphosa, M. Significance of sweet sorghum as a multi-purpose crop for Sub-Saharan Africa. Afr. Crop Sci. J. 2022, 30, 235–243. [Google Scholar] [CrossRef]
- More, A.; Morya, S.; Iyiola, A.O. Sorghum and Millets. In Cereals and Nutraceuticals; Springer Nature: Singapore, 2024; pp. 121–144. [Google Scholar]
- Tasie, M.M.; Gebreyes, B.G. Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. Int. J. Food Sci. 2020, 2020, 8243617. [Google Scholar] [CrossRef]
- Matías, J.; Rodríguez, M.J.; Carrillo-Vico, A.; Casals, J.; Fondevilla, S.; Haros, C.M.; Pedroche, J.; Aparicio, N.; Fernández-García, N.; Aguiló-Aguayo, I.; et al. From ‘farm to fork’: Exploring the potential of nutrient-rich and stress-resilient emergent crops for sustainable and healthy food in the Mediterranean region in the face of climate change challenges. Plants 2024, 13, 1914. [Google Scholar] [CrossRef]
- Bakari, H.; Djomdi, R.Z.F.; Roger, D.D.; Cedric, D.; Guillaume, P.; Pascal, D.; Philippe, M.; Gwendoline, C. Sorghum (Sorghum bicolor L. Moench) and its main parts (by-products) as promising sustainable sources of value-added ingredients. Waste Biomass Valorization 2023, 14, 1023–1044. [Google Scholar] [CrossRef]
- Singh, S.; Habib, M.; McClements, D.J.; Bashir, K.; Jan, S.; Jan, K. Exploring the potential of sorghum with reference to its bioactivities, physicochemical properties and potential health benefits. Food Funct. 2024, 15, 11847–11864. [Google Scholar] [CrossRef]
- Kinaichu, J.G.; Nyaga, C.G.; Njogu, P.; Gatebe, E.G.; Maina, E.G. Comparative Study of Selected Macro and Micronutrients in Bio Slurry Samples from DifferentFeed Stocks and Inorganic Fertilizers. Asian J. Appl. Chem. Res. 2021, 2, 1–7. [Google Scholar]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Fiallos, C.G.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Shao, J.; Di, R.; Zhu, F.; Yang, Z.; Sun, J.; Zhang, X.; Zheng, C. Changes in soil bacterial community and functions by substituting chemical fertilizer with biogas slurry in an apple orchard. Front. Plant Sci. 2022, 13, 1013184. [Google Scholar] [CrossRef]
- Mukhtiar, A.; Mahmood, A.; Zia, M.A.; Ameen, M.; Dong, R.; Shoujun, Y.; Javaid, M.M.; Khan, B.A.; Nadeem, M.A. Role of biogas slurry to reclaim soil properties providing an eco-friendly approach for crop productivity. Bioresour. Technol. Rep. 2024, 25, 101716. [Google Scholar] [CrossRef]
- Sobhi, M.; Guo, J.; Gaballah, M.S.; Li, B.; Zheng, J.; Cui, X.; Sun, H.; Dong, R. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review. Sci. Total Environ. 2022, 814, 152700. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fu, L.; Yao, L.; Wang, Y.; Li, Y. Replacing Chemical Fertilizer with Separated Biogas Slurry to Reduce Soil Nitrogen Loss and Increase Crop Yield—A Two-Year Field Study. Agronomy 2024, 14, 1173. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of Biogas Slurry Application on Soil Properties. Agric. Ecosyst. Environ. 2012, 150, 1–10. [Google Scholar]
- Ghosh, S.; Das, T.K.; Raj, R.; Sudhishri, S.; Mishra, A.K.; Biswas, D.R.; Bandyopadhyay, K.K.; Ghosh, S.; Susha, V.S.; Roy, A.; et al. Long-term conservation agriculture improves water-nutrient-energy nexus in maize-wheat-greengram system of South Asia. Front. Sustain. Food Syst. 2025, 9, 1470188. [Google Scholar] [CrossRef]
- Mdlambuzi, T.; Muchaonyerwa, P.; Tsubo, M.; Moshia, M.E. Nitrogen fertiliser value of biogas slurry and cattle manure for maize (Zea mays L.) production. Heliyon 2021, 7, e07077. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xiao, Q.; Wu, S.; Yuan, H.; Gao, T.; Cai, T.; Wu, X.; Ma, Y.; Liao, X. Partial Substitution of Nitrogen Fertilizer with Biogas Slurry Increases Rice Yield and Fertilizer Utilization Efficiency, Enhancing Soil Fertility in the Chaohu Lake Basin. Plants 2024, 13, 2024. [Google Scholar] [CrossRef]
- Uddin, M.; Rahman, A.K.M.M.; Islam, S.M.S.; Alamgir, M.D.H. Enhancing maize yield through partial substitution of synthetic nitrogen fertilizers with cattle-based biogas slurry: A case study in monoculture systems. Agric. Res. 2022, 14, 22–28. [Google Scholar]
- Li, X.; Su, Y.; Ahmed, T.; Ren, H.; Javed, M.R.; Yao, Y.; An, Q.; Yan, J.; Li, B. Effects of different organic fertilizers on improving soil from newly reclaimed land to crop soil. Agriculture 2021, 11, 560. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, L.; Zhao, X. Effects of Polyploidization on Morphology, Photosynthetic Parameters and Sucrose Metabolism in Lily. Plants 2022, 14, 2142. [Google Scholar]
- Ferdous, Z.; Ullah, H.; Datta, A.; Anwar, M.; Ali, A. Yield and Profitability of Tomato as Influenced by Integrated Application of Synthetic Fertilizer and Biogas Slurry. Int. J. Veg. Sci. 2018, 24, 445–455. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Y.; Zhang, H.; Wang, J.; Zhao, L. Maize yield improvement through biogas slurry-treated legumes in crop rotation systems. J. Sustain. Agric. 2025, 15, 45–55. [Google Scholar]
- Gupta, R.K.; Bhatt, R.; Sidhu, M.S.; Dhingra, N.; Alataway, A.; Dewidar, A.Z.; Mattar, M.A. Evaluating Biogas Slurry for Phosphorus to Wheat in a Rice–Wheat Cropping Sequence. J. Soil Sci. Plant Nutr. 2023, 23, 3726–3734. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, P.K.; Gupta, N.K.; Mehta, S.K. Effect of bioslurry and chemical fertilizer on agronomic performance in sequential cropping systems: Okra-mustard sequences under BGS-treated soils. Environ. Sci. Agron. 2020, 12, 78–85. [Google Scholar]
- Sime, T.; Abebe, G.; Kebede, D.; Tesfaye, B. Poultry-based biogas slurry application in rice-lentil relay cropping systems: Yield and decomposition benefits under low-input conditions. Int. J. Agric. Sustain. 2023, 18, 34–42. [Google Scholar]
- Nasir, M.; Jiang, Y.; Hou, H.; Wang, Y.; Zhang, J.; Li, X. Optimal application of biogas slurry in paddy fields under the dual constraints of agronomy and environment in the Yangtze River Delta region. Agronomy 2023, 14, 2142–2150. [Google Scholar]
- Liang, X.; Wang, H.; Wang, C.; Wang, H.; Yao, Z.; Qiu, X.; Ju, H.; Wang, J. Unraveling the relationship between soil carbon-degrading enzyme activity and carbon fraction under biogas slurry topdressing. J. Environ. Manag. 2024, 356, 120641. [Google Scholar] [CrossRef]
- Jaufmann, E.; Schmid, H.; Hülsbergen, K.J. Effects of biochar in combination with cattle slurry and mineral nitrogen on crop yield and nitrogen use efficiency in a three-year field experiment. Eur. J. Agron. 2024, 156, 127168. [Google Scholar] [CrossRef]
- Li, C.; Hua, C.; Chen, L.; Miao, Z.; Xu, R.; Peng, S.; Ge, Z.; Mao, L. Preparation of bacterial fertilizer from biogas residue after anaerobic co-digestion of kitchen waste and residual sludge. Environ. Sci. Pollut. Res. 2024, 31, 44005–44022. [Google Scholar] [CrossRef]
- Arora, K.; Sharma, S. Review on dehydration and various applications of biogas slurry for environmental and soil health. J. Rural. Dev. 2016, 35, 131–152. [Google Scholar]
- de França, A.A.; von Tucher, S.; Schmidhalter, U. Effects of combined application of acidified biogas slurry and chemical fertilizer on crop production and N soil fertility. Eur. J. Agron. 2021, 123, 126224. [Google Scholar] [CrossRef]
- Barzee, T.J.; Edalati, A.; El-Mashad, H.; Wang, D.; Scow, K.; Zhang, R. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Front. Sustain. Food Syst. 2019, 3, 58. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, T.; Xing, Z.; Ma, Y.; Nan, F.; Pan, L.; Chen, J. Anaerobic co-digestion of Chinese cabbage waste and cow manure at mesophilic and thermophilic temperatures: Digestion performance, microbial community, and biogas slurry fertility. Bioresour. Technol. 2022, 363, 127976. [Google Scholar] [CrossRef]
- Semiyaga, S.; Nakagiri, A.; Niwagaba, C.B.; Manga, M. Application of anaerobic digestion in decentralized faecal sludge treatment plants. In Anaerobic Biodigesters for Human Waste Treatment; Springer Nature: Singapore, 2022; pp. 263–281. [Google Scholar]
- Yamika, W.S.D.; Herlina, N.; Amriyanti, S. The effect of biogas slurry and inorganic fertilizer on soil organic material and yield of cucumber (Cucumis sativus L.). J. Degrad. Min. Lands Manag. 2019, 6, 1829–1835. [Google Scholar] [CrossRef]
- Sekar, S.; Hottle, R.D.; Lal, R. Effects of Biochar and Anaerobic Digester Effluent on Soil Quality and Crop Growth in Karnataka, India. Agric. Res. 2014, 3, 137–147. [Google Scholar] [CrossRef]
- Brod, E.; Oppen, J.; Kristoffersen, A.Ø.; Haraldsen, T.K.; Krogstad, T. Drying or anaerobic digestion of fish sludge: Nitrogen fertilisation effects and logistics. Ambio 2017, 46, 852–864. [Google Scholar] [CrossRef]
- Arifan, F.; Abdullah, A.; Sumardiono, S. Effect of Organic Waste Addition into Animal Manure on Biogas Production Using Anaerobic Digestion Method. Int. J. Renew. Energy Dev. 2021, 10, 623–633. [Google Scholar] [CrossRef]
- Álvarez-Montero, X.; Mercado-Reyes, I.; Valdez-Solórzano, D.; Santos-Ordoñez, E.; Delgado-Plaza, E.; Peralta-Jaramillo, J. Effect of temperature and the Carbon-Nitrogen (C/N) ratio on methane production through anaerobic co-digestion of cattle manure and Jatropha seed cake. In Proceedings of the 20th International Conference on Renewable Energies and Power Quality (ICREPQ’22), Vigo, Spain, 27–30 July 2022; pp. 27–29. [Google Scholar]
- Onwosi, C.O.; Ozoegwu, C.G.; Nwagu, T.N.; Nwobodo, T.N.; Eke, I.E.; Igbokwe, V.C.; Ugwuoji, E.T.; Ugwuodo, C.J. Cattle manure as a sustainable bioenergy source: Prospects and environmental impacts of its utilization as a major feedstock in Nigeria. Bioresour. Technol. Rep. 2022, 19, 101151. [Google Scholar] [CrossRef]
- Herrmann, A.; Kage, H.; Taube, F.; Sieling, K. Effect of biogas digestate, animal manure and mineral fertilizer application on nitrogen flows in biogas feedstock production. Eur. J. Agron. 2017, 91, 63–73. [Google Scholar] [CrossRef]
- Haque, M.E.; Ryndin, R.; Mang, H.P.; Kabir, H.; Islam, M.A. Evaluation of biogas production and bacterial load from co-digestion of chicken manure with different types of household waste. JSFA Rep. 2024, 4, 235–242. [Google Scholar] [CrossRef]
- Wang, M.; Wu, C.; Li, C. Anaerobic Co-digestion of Chicken Manure and Corn Straw: Gas Production, Biogas Fertilizer Effectiveness, and Microbial Diversity. Water Air Soil Pollut. 2024, 235, 365. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Luo, L.; Ying, S.; Jiang, P. Effects of different biogas slurry application patterns on nitrogen and phosphorus losses in a paddy field. Paddy Water Environ. 2024, 22, 521–533. [Google Scholar] [CrossRef]
- Song, S.; Jiang, M.; Liu, H.; Dai, X.; Wang, P. Application of the biogas residue of anaerobic co-digestion of gentamicin mycelial residues and wheat straw as soil amendment: Focus on nutrients supply, soil enzyme activities and antibiotic resistance genes. J. Environ. Manag. 2023, 335, 117512. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.; Zhang, J.; Wang, X.; Wang, G. Application of Biogas Residues in Circular Agricultural Ecological Parks: Food Security and Soil Health. Agronomy 2024, 14, 2332. [Google Scholar] [CrossRef]
- Chen, L.; Chen, S.; Xing, T.; Long, Y.; Wang, Z.; Kong, X.; Xu, A.; Wu, Q.; Sun, Y. Phytoremediation with the application of anaerobic fermentation residues regulates the assembly of ecological clusters within co-occurrence networks in ionic rare earth tailings soil: A pot experiment. Environ. Pollut. 2024, 340, 122790. [Google Scholar] [CrossRef]
- Cong, P.; Zheng, X.; Han, L.; Chen, L.; Zhang, J.; Song, W.; Dong, J.; Ma, X. Biogas residue biochar still had ecological risks to the ultisol: Evidenced from soil bacterial communities, organic carbon structures, and mineralization. J. Soils Sediments 2023, 23, 49–63. [Google Scholar] [CrossRef]
- New, E.K.; Tnah, S.K.; Voon, K.S.; Yong, K.J.; Procentese, A.; Shak, K.P.Y.; Subramonian, W.; Cheng, C.K.; Wu, T.Y. The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. J. Environ. Manag. 2022, 307, 114385. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Pei, X.; Woon, K.S.; Liu, M.; Lin, X.; Hu, Z.; Li, Y.; Zhang, Z. A potential slow-release fertilizer based on biogas residue biochar: Nutrient release patterns and synergistic mechanism for improving soil fertility. Environ. Res. 2024, 252, 119076. [Google Scholar] [CrossRef]
- Montemurro, F.; Fiore, A.; Campanelli, G.; Ciaccia, C.; Ferri, D.; Maiorana, M.; Diacono, M. Yield and performance and soil properties of organically fertilized fodder crops. J. Plant Nutr. 2023, 38, 1558–1572. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Barcauskaite, K.; Buneviciene, K.; Venslauskas, K.; Navickas, K.; Rubezius, M.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Manag. Res. 2023, 41, 701–712. [Google Scholar] [CrossRef]
- Krause, A.; Nehls, T.; George, E.; Kaupenjohann, M. Organic wastes from bioenergy and ecological sanitation as a soil fertility improver: A field experiment in a tropical Andosol. Soil 2016, 2, 147–162. [Google Scholar] [CrossRef]
- Meng, X.; Zeng, B.; Wang, P.; Li, J.; Cui, R.; Ren, L. Food waste anaerobic biogas slurry as fertilizer: Potential salinization on different soil layer and effect on rhizobacteria community. Waste Manag. 2022, 144, 490–501. [Google Scholar] [CrossRef]
- Svensson, K.; Odlare, M.; Pell, M. The fertilizing effect of compost and biogas residues from source separated household waste. J. Agric. Sci. 2004, 142, 461–467. [Google Scholar] [CrossRef]
- Vijayakumar, P.; Ayyadurai, S.; Arunachalam, K.D.; Mishra, G.; Chen, W.H.; Juan, J.C.; Naqvi, S.R. Current technologies of biochemical conversion of food waste into biogas production: A review. Fuel 2022, 323, 124321. [Google Scholar] [CrossRef]
- Marañón, E.; Castrillón, L.; Quiroga, G.; Fernández-Nava, Y.; Gómez, L.; García, M.M. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012, 32, 1821–1825. [Google Scholar] [CrossRef]
- Latha, K.; Velraj, R.; Shanmugam, P.; Sivanesan, S. Mixing strategies of high solids anaerobic co-digestion using food waste with sewage sludge for enhanced biogas production. J. Clean. Prod. 2019, 210, 388–400. [Google Scholar] [CrossRef]
- Mu, L.; Zhang, L.; Zhu, K.; Ma, J.; Ifran, M.; Li, A. Anaerobic co-digestion of sewage sludge, food waste and yard waste: Synergistic enhancement on process stability and biogas production. Sci. Total Environ. 2020, 704, 135429. [Google Scholar] [CrossRef]
- Ferdous, Z.; Ullah, H.; Datta, A.; Attia, A.; Rakshit, A.; Molla, S.H. Application of Biogas Slurry in Combination with Chemical Fertilizer Enhances Grain Yield and Profitability of Maize (Zea Mays L.). Commun. Soil Sci. Plant Anal. 2020, 51, 2501–2510. [Google Scholar] [CrossRef]
- Walsh, J.J.; Rousk, J.; Edwards-Jones, G.; Jones, D.L.; Williams, A.P. Fungal and bacterial growth following the application of slurry and anaerobic digestate of livestock manure to temperate pasture soils. Biol. Fertil. Soils 2012, 48, 889–897. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad Zahir, Z.; Jamil, M.; Nazli, F.; Latif, M.; Fakhar-U-Zaman, A.M. Integrated use of plant growth promoting rhizobacteria, biogas slurry and chemical nitrogen for sustainable production of maize under salt-affected conditions. Pak. J. Bot. 2014, 46, 375–382. [Google Scholar]
- Kumar, A.; Sharma, S.; Dindhoria, K.; Thakur, A.; Kumar, R. Insight into physico-chemical properties and microbial community structure of biogas slurry from household biogas plants of sub-Himalaya for its implications in improved biogas production. Int. Microbiol. 2025, 28, 187–200. [Google Scholar] [CrossRef]
- Nagdev, R.; Khan, S.A.; Dhupper, R. Assessment of physico-chemical properties of biogas slurry as an organic fertilizer for sustainable agriculture. J. Exp. Biol. Agric. Sci. 2024, 12, 634–644. [Google Scholar] [CrossRef]
- Nyang’au, J.O.; Sørensen, P.; Møller, H.B. Nitrogen availability in digestates from full-scale biogas plants following soil application as affected by operation parameters and input feedstocks. Bioresour. Technol. Rep. 2023, 24, 101675. [Google Scholar] [CrossRef]
- Karim, A.A.; Kumar, M.; Singh, E.; Kumar, A.; Kumar, S.; Ray, A.; Dhal, N.K. Enrichment of primary macronutrients in biochar for sustainable agriculture: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1449–1490. [Google Scholar] [CrossRef]
- Selvaraj, P.S.; Periasamy, K.; Suganya, K.; Ramadass, K.; Muthusamy, S.; Ramesh, P.; Bush, R.; Vincent, S.G.T.; Palanisami, T. Novel resources recovery from anaerobic digestates: Current trends and future perspectives. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1915–1999. [Google Scholar] [CrossRef]
- Popović, V.; Vasileva, V.; Ljubičić, N.; Rakašćan, N.; Ikanović, J. Environment, Soil, and Digestate Interaction of Maize Silage and Biogas Production. Agronomy 2024, 14, 2612. [Google Scholar] [CrossRef]
- Wang, N.; Huang, D.; Zhang, C.; Shao, M.; Chen, Q.; Liu, J.; Deng, Z.; Xu, Q. Long-term characterization and resource potential evaluation of the digestate from food waste anaerobic digestion plants. Sci. Total Environ. 2021, 794, 148785. [Google Scholar] [CrossRef] [PubMed]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.; Pinheiro de Carvalho, M.Â. Review of sewage sludge as a soil amendment in relation to current international guidelines: A heavy metal perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Kirawa, L.S.; Gitau, A.N.; Gatari, M.J. Comparative evaluation of the chemical composition of biogas digestate slurries under varying feedstocks. J. Eng. Agric. Environ. 2020, 6, 83–97. [Google Scholar]
- Samar, K.K.; Panwar, N.L. Advancing Renewable Energy in Rural India: An techno-economic Evaluation of the Deenbandhu Biogas Model in Rajasthan. Ann. Arid. Zone 2024, 63, 1–8. [Google Scholar] [CrossRef]
- Kumar, S.; Malav, L.C.; Malav, M.K.; Khan, S.A. Biogas slurry: Source of nutrients for eco-friendly agriculture. Int. J. Extensive Res. 2015, 2, 4246. [Google Scholar]
- Mohanty, S.; Saha, S.; Saha, B.; Asif, S.M.; Poddar, R.; Ray, M.; Mukhopadhyay, S.K.; Hazra, G. Substitution of fertilizer-N with biogas slurry in diversified rice-based cropping systems: Effect on productivity, carbon footprints, nutrients and energy balance. Field Crops Res. 2024, 307, 109242. [Google Scholar] [CrossRef]
- You, L.; Yu, S.; Liu, H.; Wang, C.; Zhou, Z.; Zhang, L.; Hu, D. Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel. PLoS ONE 2019, 14, e0208289. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, J.; Tong, X.; Huan, C.; Ji, G.; Zeng, Y.; Xu, L.; Yan, Z. Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresour. Technol. 2019, 293, 122066. [Google Scholar] [CrossRef] [PubMed]
- Mellmann, J.; Salamat, R.; Kharaghani, A. Drying behavior of solid digestate and reaction kinetics of ammonium degradation during laboratory-scale drying. Waste Manag. 2024, 173, 75–86. [Google Scholar] [CrossRef]
- Salamat, R.; Scaar, H.; Weigler, F.; Berg, W.; Mellmann, J. Drying of biogas digestate: A review with a focus on available drying techniques, drying kinetics, and gaseous emission behavior. Dry. Technol. 2022, 40, 5–29. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K. Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies 2024, 17, 3705. [Google Scholar] [CrossRef]
- Deng, F.; Jiang, H.; Xie, Z.; Chen, Y.; Zhou, P.; Liu, X.; Li, D. Nutrient recovery from biogas slurry via hydrothermal carbonization with different agricultural and forestry residue. Ind. Crops Prod. 2022, 189, 115891. [Google Scholar] [CrossRef]
- Liang, F.; Shi, Z.; Wei, S.; Yan, S. Biogas slurry purification-lettuce growth nexus: Nutrients absorption and pollutants removal. Sci. Total Environ. 2023, 890, 164383. [Google Scholar] [CrossRef] [PubMed]
- Tiong, Y.W.; Sharma, P.; Xu, S.; Bu, J.; An, S.; Foo, J.B.L.; Wee, B.K.; Wang, Y.; Lee, J.T.E.; Zhang, J.; et al. Enhancing sustainable crop cultivation: The impact of renewable soil amendments and digestate fertilizer on crop growth and nutrient composition. Environ. Pollut. 2024, 342, 123132. [Google Scholar] [CrossRef]
- Anagha, R.; Joseph, B.; Gladis, R. Organic Manure Seed Pelleting for Enhancing Soil Properties, Nutrient Uptake and Yield of Rice. Indian J. Agric. Res. 2021, 55, 584–590. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Temperton, V.M.; Jablonowski, N.D. Maize silage digestate application affecting germination and early growth of maize modulated by soil type. Agronomy 2019, 9, 473. [Google Scholar] [CrossRef]
- More, M.; Agrawal, C.; Sharma, D. Development of Screw Press-Dewatering Unit for Biogas Slurry. In Smart Sensors Measurement and Instrumentation: Select Proceedings of CISCON; Springer Nature: Singapore, 2021; pp. 303–322. [Google Scholar]
- Awiszus, S.; Meissner, K.; Reyer, S.; Müller, J. Utilization of digestate in a convective hot air dryer with integrated nitrogen recovery. Landtechnik 2018, 73, 106–114. [Google Scholar]
- Maurer, C.; Müller, J. Drying characteristics of biogas digestate in a hybrid waste-heat/solar dryer. Energies 2019, 12, 1294. [Google Scholar] [CrossRef]
- Hallat-Sanchez, J.; Smith, J.; Norton, G.J. Impact of Adding Anaerobic Digestate to Soil and Consequences on Crop Performance. Agronomy 2023, 13, 2889. [Google Scholar] [CrossRef]
- Gebremikael, M.T.; Wickeren, N. van Hosseini, P.S.; De Neve, S. The Impacts of Black Soldier Fly Frass on Nitrogen Availability, Microbial Activities, C Sequestration, and Plant Growth. Front. Sustain. Food Syst. 2022, 6, 795950. [Google Scholar] [CrossRef]
Issue | New Findings | Challenges | References |
---|---|---|---|
Poor water and nutrient retention in sandy soils | Compost + biofertilizers improve soil structure and nutrient availability. BGS enhances soil fertility, biological activity, and water retention. | Rapid organic matter depletion. Compost is costly and labor-intensive; BGS is affordable and renewable. | [25] |
Soil salinity and nutrient imbalances affecting productivity | BGS buffers soil pH and improves nutrient availability. Stimulates beneficial microbial activity to mitigate salt stress. | Chemical fertilizers aggravate salinity. Organic alternatives often unavailable or unaffordable. | [5] |
Low amount of soil organic matter and poor nutrient cycling | Tropical cover crops improve soil C content and nutrient cycling. BGS rapidly boosts amount of organic matter and essential nutrients. | Cover cropping takes years to improve soils. BGS offers immediate but complementary benefits. | [26] |
Groundwater contamination from nitrate leaching in sandy soils | Olive pomace biomass slag reduces nitrate leaching. BGS provides slow-release N, reducing leaching risks and protecting water quality. | Sandy soils prone to nutrient leaching. Chemical fertilizers cause rapid nitrate loss. | [27] |
Sorghum Type | Grain Contribution | Forage Contribution | Biofuel Contribution | References |
---|---|---|---|---|
Grain Sorghum | Staple food in semi-arid regions. Dual-purpose breeding for grain and nutrition. | Residues (stover) serve as livestock feed. | Limited role in biofuel production. | [33] |
Sweet Sorghum | Nutrient-rich grains for food. Suitable for various foods. | Stalks used as animal fodder. | High potential for use in bioethanol production due to its fermentable sugars. Grown on marginal lands. | [34,35] |
Forage Sorghum | Not primarily used for grain production. | Cultivated mainly for livestock feed. Resilient during feed shortages. | Not commonly used for biofuel production. | [33] |
Biomass Sorghum | Not typically used for grain. | Stover may be used as livestock feed. | High biomass yield makes it suitable for production of bioenergy, including bioethanol and electricity. | [34] |
Issues | Soil Fertility | Crop Productivity | References |
---|---|---|---|
Overuse of chemical nitrogen fertilizers causing nutrient imbalance | Improved soil availability of N, P, K, and organic C; enhanced microbial diversity and activity | Increased maize biomass and plant height with partial substitution of chemical N with BGS | [46,49] |
Low nutrient use efficiency in rice systems | Increased soil NH4+-N, NO3−-N, available P, and organic carbon; improved NPK uptake | Higher rice grain and straw yields, optimal at 30% substitution of N with BGS | [50] |
Decline in soil fertility due to intensive fertilization | Increased dissolved organic C, SOC, and available N and P; improved bacterial diversity | Maintained or increased paddy yield with long-term BGS + NPK application | [15] |
High nitrogen losses in dryland cropping systems | Increased N use efficiency and reduced N leaching in dry conditions | Sustained wheat and maize yields under partial or full BGS substitution | [51,52] |
Soil nutrient depletion in potato–wheat systems | Increased soil pH, organic C, total N, available P, and micronutrients | Higher tuber yield in potatoes and increased wheat biomass under 75–100% BGS substitution | [14] |
High fertilizer dependency in leafy vegetables | Enhanced nutrient uptake with fertigation of BGS | Comparable lettuce yields to those with 100% chemical fertilizer when using BGS + NPK fertigation | [53,54] |
Method | Description | Pros | Cons | Suitability | References |
---|---|---|---|---|---|
Broadcasting (surface) | Spread slurry across soil surface using splash plate or hose. | Simple; low equipment needs; fast application. | High N losses (NH3 volatilization), odor, and runoff; non-uniform placement. | Smallholders; when no other means. | [14,43,64] |
Shallow incorporation | Shallowly mix slurry into soil (2–5 cm deep) immediately after broadcasting. | Reduces NH3 loss (≈70% reduction vs. broadcasting); reduces odor; better N utilization. | Requires additional pass or specialized implement (higher labor/fuel requirements). | Mechanized fields; grassland and arable land. | [43,52,60,65,66] |
Subsurface injection | Inject slurry 5–20 cm deep using tine/coulter rigs; slurry ends up buried below surface. | Max NH3 loss reduction (≈90% vs. broadcasting); minimal odor/runoff; retains more N in soil. | High capital cost; soil disturbances and compaction; risk of deep nutrient leaching. | Large, tilled fields; pre-planting. | [43,45,54,66] |
Trailing hose/shoe | Hoses or shoes deposit slurry in narrow bands at ground level (20–30 cm apart). | Low emissions: substantial NH3 loss reduction (hose: ~30%; shoe: ~60%); works with standing crops; reduces odor. | Equipment and tractor needed; slurry still on surface (higher NH3 emissions than with injection); shoe systems slower to empty. | Arable land (hose) and grassland (shoe). | [44,54,66,67] |
Fertigation | Apply filtered slurry via irrigation (e.g., drip lines) to root zone. | High efficiency: synchronizes N supply, cutting NH3, N2O, and leaching loss by ~40–70% vs. broadcasting; precise delivery. | Requires filtration to avoid clogging; costly irrigation infrastructure; mainly for high-value or irrigated crops. | Drip-irrigated fields; horticulture. | [28,44,53] |
Foliar spray | Spray highly diluted slurry on crop foliage (commonly ~1:5 dilution ratio). | Can quickly address nutrient deficiencies; usable on growing plants; low technology requirements (use of hand-held sprayer possible). | Risk of leaf burn, disease, and equipment corrosion; low N supply capacity; benefits not well-quantified. | Small-scale/horticulture trials. | [63,67] |
Dewatered/pelletized | Separate slurry solids and dry/press into granules. | Reduced volume for transport; stable (reduced odor); can be applied with fertilizer spreaders; shelf-stable. | High processing cost and energy required; nutrient losses (NH3) during drying; may need binding additives; less equal N:K balance (solids rich in P). | Large farms or co-ops; all crop types. | [55,68] |
Feedstock Type | Total N (g/kg) | P (g/kg) | K (g/kg) | Organic Matter (%) | Special Characteristics | Full Reference Citation |
---|---|---|---|---|---|---|
Cattle manure (biogas slurry digestate) | 21.4 | 13.7 | 7.0 | – | Neutral pH (~7–8); low heavy metal content. N in digestate usually mostly NH4+. | [97] |
Poultry manure (liquid digestate fraction) | 50 | 20 | 30 | – | Very high in ammonium N; liquid fraction contains N–P–K at ~5–2–3% (i.e., 50–20–30 g/kg). Phosphorus mostly in solids; moderate Cu/Zn content. | [98,99] |
Crop residues (maize silage digestate) | 5.3 | 0.8 | 5.8 | 6.9 | pH ~7.8; high organic C (VSs ~90% of TSs); low N:P ratio (~6.6:1); N mainly NH4+ after digestion. | [100] |
Food waste digestate | 8.0 | 2 (est.) | 6 (est.) | ~15 (est.) | High NH4+ fraction; nutrient contents vary widely with waste composition. Typically contains moderate K and C content and low heavy metal content. | [101] |
Sewage sludge digestate (municipal) | 13 | 5 (est.) | 3 (est.) | 30 (est.) | High in nutrients (esp. P and N) and organic solids; often elevated levels of heavy metals (Cd, Pb, etc.) and pathogens. | [102] |
Mixed crop-livestock residue digestate | 8 (est.) | 2 (est.) | 6 (est.) | 35 (est.) | Combines manure and plant feedstock traits: moderate N content (lower than that of pure manure), moderate C:N ratio (~12–15), neutral pH. Often co-digestion improves nutrient balance. | [102] |
Form | Moisture Content | Nutrient Availability | Application Methods | Transportation and Storage | Environmental Risks | Cost | Best Suited for | Full Reference Citation |
---|---|---|---|---|---|---|---|---|
Liquid | Very high (>85–90% water; typically <15% dry matter) | High immediate nutrient availability; N mainly present as ammonium (NH4+); good levels of P and K | Applied via tankers using splash plate, dribble bar, or injection systems | Requires large storage tanks/lagoons; high transport cost due to bulk volume | Higher ammonia volatilization and nitrate leaching if not well managed | Lower processing cost but higher logistics cost | Ideal for nearby fields, short-distance hauling, and high-N-demand crops | [47] |
Dry | Low moisture content (>15–20% dry matter); often pelletized | Lower immediate N availability (mostly organic N); higher organic matter and P content; slower release | Applied using solid manure spreaders or incorporated with tillage | Easier to store and transport; stackable; reduced volume | Lower risk of leaching/runoff; possible dust emissions | Higher processing cost (drying/separation), lower transport cost | Suitable for long-distance transport, organic systems, or long-term soil improvement | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mgxaji, Y.; Mutengwa, C.S.; Mukumba, P.; Dzvene, A.R. Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts. Agronomy 2025, 15, 1683. https://doi.org/10.3390/agronomy15071683
Mgxaji Y, Mutengwa CS, Mukumba P, Dzvene AR. Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts. Agronomy. 2025; 15(7):1683. https://doi.org/10.3390/agronomy15071683
Chicago/Turabian StyleMgxaji, Yanga, Charles S. Mutengwa, Patrick Mukumba, and Admire R. Dzvene. 2025. "Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts" Agronomy 15, no. 7: 1683. https://doi.org/10.3390/agronomy15071683
APA StyleMgxaji, Y., Mutengwa, C. S., Mukumba, P., & Dzvene, A. R. (2025). Biogas Slurry as a Sustainable Organic Fertilizer for Sorghum Production in Sandy Soils: A Review of Feedstock Sources, Application Methods, and Agronomic Impacts. Agronomy, 15(7), 1683. https://doi.org/10.3390/agronomy15071683