Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = soil fauna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4488 KB  
Article
Oribatid Mites (Oribatida) Associated with Nests of Open-Nesting Birds of the Genus Thrush (Turdus) in the Taiga Forests of the European North-East of Russia
by Elena N. Melekhina, Natalia P. Selivanova and Andrey N. Korolev
Diversity 2025, 17(10), 735; https://doi.org/10.3390/d17100735 - 21 Oct 2025
Viewed by 379
Abstract
For the first time, studies have been conducted aiming at the diversity of the oribatid mites (Oribatida) that inhabit the nests of open-nesting birds of the genus thrushes (Turdus), particularly fieldfare (T. pilaris Linnaeus, 1758) and redwing (T. iliacus [...] Read more.
For the first time, studies have been conducted aiming at the diversity of the oribatid mites (Oribatida) that inhabit the nests of open-nesting birds of the genus thrushes (Turdus), particularly fieldfare (T. pilaris Linnaeus, 1758) and redwing (T. iliacus Linnaeus, 1766), in the taiga forests of the European north-east. Long-term observations were carried out in the green belt of the city of Syktyvkar (N 61°40′ E 50°50′) in 2021–2025. Among 168 studied thrush nests (fieldfare—138, redwing—30), 1982 specimens of oribatid mites of 35 species from 33 genera and 26 families were found. The nests of thrushes contain a mixed fauna of oribatid mites, including the following: (a) Soil species that obviously enter the nest with building materials collected by birds from the soil surface. These are epigeic species such as Eupelops plicatus, Neoribates aurantiacus, and Chamobates pusillus; hemi-edaphic species such as Heminothrus peltifer; and euedaphic species such as Oppiella nova and Quadroppia quadricarinata. (b) Tree-dwelling species that have been recorded as inhabiting epiphytic lichens in the European north-east, such as Ameronothrus oblongus, Ceratoppia quadridentata, Oribatula propinqua, Trichoribates berlesei, and Diapterobates oblongus. (c) Eurybiont species such as Tectocepheus velatus, Scheloribates laevigatus, and Oribatula tibialis. An increase in the number and diversity of oribatid mites was noted in nests collected after the end of the nesting period and the flight of chicks compared to nests collected in the spring (overwintered nests). Full article
(This article belongs to the Special Issue Diversity, Ecology, and Conservation of Mites)
Show Figures

Graphical abstract

14 pages, 879 KB  
Article
Earthworm Species from Diverse Ecological Groups Negatively Affect Enchytraeid Density in a Forest Ecosystem
by Kamil Karaban, Anita Kaliszewicz, Krassimira Ilieva-Makulec and Alexei V. Uvarov
Biology 2025, 14(9), 1283; https://doi.org/10.3390/biology14091283 - 17 Sep 2025
Viewed by 418
Abstract
Earthworms and enchytraeids are two very important groups of soil organisms that influence soil biology and ecology, as well as physicochemical processes occurring in the soil. The interactions within and between these major groups of soil fauna are currently among the most pressing [...] Read more.
Earthworms and enchytraeids are two very important groups of soil organisms that influence soil biology and ecology, as well as physicochemical processes occurring in the soil. The interactions within and between these major groups of soil fauna are currently among the most pressing topics in soil ecology and are still insufficiently understood. In a field mesocosm experiment, we examined the effects of the density of the following five key earthworm species in Central Europe: Dendrobaena octaedra, Lumbricus rubellus, L. terrestris, Aporrectodea caliginosa, and Allobophora chlorotica. These species were selected to represent the following three major ecological groups of lumbricids: epigeic, endogeic, and anecic. The mesocosm experiment examined the effect of these species across density gradients and at two soil profile horizons—litter and mineral soil—and at the entire soil profile within the mesocosm. This comprehensive and unique approach was used to compare the effects of earthworm density gradient on enchytraeid abundance under identical conditions in the forest soil. The results indicate that all studied species of earthworm negatively affected enchytraeid density. The strength of this effect depended on the earthworm species, earthworm density, and the level of the analyzed soil profile. Epigeic L. rubellus, endogeic Aporrectodea caliginosa, and anecic L. terrestris appeared to be the most effective. Higher earthworm density had a greater effect on the density of enchytraeids. The most significant results concerned the litter layer, where the density of enchytraeids was highest due to their natural occurrence. Our results provide new insights into the ecological relationships among key groups of soil fauna and can be a starting point for predicting changes caused by earthworms in newly occupied ecosystems. Full article
Show Figures

Figure 1

30 pages, 6143 KB  
Article
Interdisciplinary Approach to Regenerate Contaminated Urban Sites with Novel Ecosystems: The Multi-Layer Analysis of La Goccia Forest, a Case Study in Milan
by Gianluca Rapaccini, Zeno Porro, Laura Passatore, Giovanni Trentanovi, Brenda Maria Zoderer, Paola Pirelli, Lorenzo Guerci, Gabriele Galasso, Lara Assunta Quaglini, Elisa Cardarelli, Silvia Stefanelli, Roberto Comolli, Chiara Ferré, Gabriele Gheza and Massimo Zacchini
Forests 2025, 16(9), 1410; https://doi.org/10.3390/f16091410 - 3 Sep 2025
Viewed by 1557
Abstract
In the face of mounting challenges related to limited availability of urban land and ecological degradation, emerging novel ecosystems offer unique opportunities for ecological regeneration, social redefinition of space, and alternative urban visions. This study presents the multi-layer analysis of the Goccia Forest [...] Read more.
In the face of mounting challenges related to limited availability of urban land and ecological degradation, emerging novel ecosystems offer unique opportunities for ecological regeneration, social redefinition of space, and alternative urban visions. This study presents the multi-layer analysis of the Goccia Forest in Milan (Italy), a wild urban woodland that has developed over sealed and polluted post-industrial land, aiming to investigate the potential of this novel ecosystem to sustain Nature-based Solutions (NbSs). Using an integrated approach (surveys on fauna, vascular flora, lichens, analysis of forest evolution, mapping of sealed surfaces, and soil characterization) the research looks at the novel ecosystem as a whole, highlighting its ecological dynamics and Ecosystem Services (ES). La Goccia Forest serves as a prime example of how the implementation of NbSs is intricately intertwined with the spontaneous regeneration of urban brownfields. The present study offers the opportunity to rethink urban policies, ensuring their alignment with the demands of the population and the latest scientific knowledge. Full article
Show Figures

Figure 1

14 pages, 3047 KB  
Article
Modeling the Seasonal and Spatial Dynamics of Epigeic Fauna in the Context of Vineyard Landscape Use Using Machine Learning
by Vladimír Langraf and Kornélia Petrovičová
Agronomy 2025, 15(9), 2117; https://doi.org/10.3390/agronomy15092117 - 3 Sep 2025
Viewed by 513
Abstract
Epigeic groups play a key ecological role in vineyards, as they represent a significant component of soil and surface communities that directly affect the functioning of the agroecosystem. They act as predators, decomposers of organic matter, and important regulators of pest populations, thereby [...] Read more.
Epigeic groups play a key ecological role in vineyards, as they represent a significant component of soil and surface communities that directly affect the functioning of the agroecosystem. They act as predators, decomposers of organic matter, and important regulators of pest populations, thereby contributing to the natural biological protection of the vineyard. We conducted research between 2021 and 2023, where we monitored the impact of different types of vineyard landscape habitats on the spatial distribution and abundance of epigeic fauna. Over the study period, 57,964 individuals were recorded, with the highest abundance observed in 2023 and the lowest in 2022. Redundancy analysis confirmed a significant impact of habitat type on community composition, especially in semi-intensive and intensive vineyards, meadows, and abandoned sites, with the differences being statistically significant in all monitored habitats. The interannual changes indicated a significant decrease in biodiversity in 2022, followed by a significant increase in 2023, indicating a positive effect of changing management practices and natural succession on restoring ecological stability. The K-nearest neighbor (KNN) prediction model successfully classified individual years based on the number of individuals and taxa with an accuracy of 97%, with 2021 characterized by lower biodiversity, 2022 by a transitional state, and 2023 by a higher taxa and abundance level. The findings highlight the sensitivity of epigeic fauna communities to management and environmental changes and confirm that the application of gentle agri-environmental measures can significantly contribute to the maintenance and restoration of biodiversity in agricultural landscapes. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

16 pages, 1311 KB  
Article
Differences in Diversity of Collembola Communities Between Primary and Secondary Forests and Driving Factors
by Mingxin Zheng, Zhijing Xie, Yueying Li, Zhuoma Wan, Haozhe Shi, Liping Wang, Qiaoqiao Ji, Zhaojun Wang and Donghui Wu
Insects 2025, 16(8), 853; https://doi.org/10.3390/insects16080853 - 17 Aug 2025
Viewed by 997
Abstract
Primary forests harbor extraordinary biodiversity, but conversion from primary forests to secondary forests often leads to biodiversity loss and diminished ecosystem functioning. While much of the existing research has focused on plants and vertebrates, soil fauna—particularly Collembola—remain underexplored in this context. To address [...] Read more.
Primary forests harbor extraordinary biodiversity, but conversion from primary forests to secondary forests often leads to biodiversity loss and diminished ecosystem functioning. While much of the existing research has focused on plants and vertebrates, soil fauna—particularly Collembola—remain underexplored in this context. To address this gap, we conducted a comprehensive assessment of the Collembola diversity and community composition in primary and secondary forests across two regions in northeastern China. Among 5587 Collembola individuals, 69 morphospecies were identified. The Collembola abundance and Shannon–Wiener index were significantly higher in primary forests, although the species richness did not differ significantly between the forest types. In contrast, the community composition differed markedly, with several taxa found exclusively in primary forests. Notably, environmental factors exerted stronger influences on Collembola communities in primary forests, suggesting that these ecosystems may be more vulnerable to climate change and external disturbances. These findings demonstrate that primary forests play a crucial role in protecting soil fauna diversity and emphasize that future conservation efforts should focus on the strict protection of primary forests. Full article
Show Figures

Figure 1

14 pages, 2980 KB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 1206
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

13 pages, 1373 KB  
Article
A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
by Cuyler Borrowman, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon and Antonio F. Patti
Agriculture 2025, 15(15), 1581; https://doi.org/10.3390/agriculture15151581 - 23 Jul 2025
Viewed by 791
Abstract
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for [...] Read more.
The practice in agriculture of spreading polyethylene (PE) film over the soil surface as mulch is a common, global practice that aids in conserving water, increasing crop yields, suppressing weed growth, and decreasing growing time. However, these films are typically only used for a single growing season, and thus, their use and non-biodegradability come with some serious environmental consequences due to their persistence in the soil and potential for microplastic pollution, particularly when retrieval and disposal options are poor. On the microscale, particles < 5 mm from degraded films have been observed to disrupt soil structure, impede water and nutrient cycling, and affect soil organisms and plant health. On the macroscale, there are obvious and serious environmental consequences associated with the burning of plastic film and its leakage from poorly managed landfills. To maintain the crop productivity afforded by mulching with PE film while avoiding the environmental downsides, the development and use of biodegradable polymer technologies is being explored. Here, the efficacy of a newly developed, water-dispersible, sprayable, and biodegradable polyester–urethane–urea (PEUU)-based polymer was compared with two commercial PE mulches, non-degradable polyethylene (NPE) and OPE (ox-degradable polyethylene), in a greenhouse tomato growth trial. Water savings and the effects on plant growth and soil characteristics were studied. It was found that PEUU provided similar water savings to the commercial PE-based mulches, up to 30–35%, while showing no deleterious effects on plant growth. The results should be taken as preliminary indications that the sprayable, biodegradable PEUU shows promise as a replacement for PE mulch, with further studies under outside field conditions warranted to assess its cost effectiveness in improving crop yields and, importantly, its longer-term impacts on soil and terrestrial fauna. Full article
Show Figures

Figure 1

24 pages, 2639 KB  
Review
Cement Industry Pollution and Its Impact on the Environment and Population Health: A Review
by Alina Bărbulescu and Kamal Hosen
Toxics 2025, 13(7), 587; https://doi.org/10.3390/toxics13070587 - 14 Jul 2025
Cited by 6 | Viewed by 7119
Abstract
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to [...] Read more.
The cement industry, a foundation of global infrastructure development, significantly contributes to environmental pollution. Key sources of pollution include dust emissions; greenhouse gases, particularly carbon dioxide; and the release of toxic substances such as heavy metals and particulate matter. These pollutants contribute to air, water, and soil degradation and are linked to severe health conditions in nearby populations, including respiratory disorders, cardiovascular diseases, and increased mortality rates. Noise pollution is also a significant issue, inducing auditory diseases that affect most workers in cement plants, and disturbing the population living in the neighborhoods and fauna behavior. This review explores the pollution paths and the multifaceted impacts of cement production on the environment. It also highlights the social challenges faced by communities, underscoring the urgent need for stricter environmental policies and the adoption of greener technologies to mitigate the adverse effects of cement production on both the environment and human health. Full article
Show Figures

Graphical abstract

10 pages, 1273 KB  
Article
Effects of Bioturbation by Earthworms on Litter Flammability in Young and Mature Afforested Stands
by Aneta Martinovská, Ondřej Mudrák and Jan Frouz
Fire 2025, 8(6), 225; https://doi.org/10.3390/fire8060225 - 6 Jun 2025
Viewed by 845
Abstract
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal [...] Read more.
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal of litter by soil fauna, i.e., bioturbation, depends on both the dominant tree species and the successional stage of the forest stand. This research involved laboratory mesocosm experiments aiming to determine the effects of litter quality and earthworm activity on the flammability of the forest floor material at different successional ages. The mesocosms simulated the planting of four tree species (the broadleaf species Alnus glutinosa (L.) Gaertn. (Black alder) and Quercus robur L. (English oak) and the conifers Picea omorika (Pančić) Purk. (Serbian spruce) and Pinus nigra J.F. Arnold (Austrian pine)) at a reclamation site near Sokolov (NW Czechia). The mesocosms contained litter from these different tree species, placed directly on overburden soil (immature soil) or on well-developed Oe and A layers (mature soil), inoculated or not inoculated with earthworms, and incubated for 4 months. The surface material in the mesocosms was then subjected to simulated burn events, and the fire path and soil temperature changes were recorded. Burn testing showed that litter type (tree species) and soil maturity significantly influenced flammability. Pine had longer burning times and burning paths and higher post-burn temperatures than those of the other tree species. The immature soil with earthworms had significantly shorter burning times, whereas in the mature soil, earthworms had no effect. We conclude that earthworms have a significant, immediate effect on the litter flammability of immature soils. Full article
Show Figures

Figure 1

19 pages, 4662 KB  
Article
Morphological Parameters of Gullies Formed on Sandy Soils and Effects of Check Dams in Central Spain
by Jorge Mongil-Manso, Joaquín Navarro-Hevia, Javier Velázquez, Virginia Díaz-Gutiérrez and Ana-Carolina Toledo-Rocha
Geosciences 2025, 15(6), 208; https://doi.org/10.3390/geosciences15060208 - 3 Jun 2025
Viewed by 833
Abstract
Gully erosion constitutes a significant global problem, as gullies are a substantial source of sediment that harms rivers, affecting aquatic fauna and water quality, altering flow regimes, and degrading soil, among other impacts. Gullies have been extensively studied in clayey soils, where they [...] Read more.
Gully erosion constitutes a significant global problem, as gullies are a substantial source of sediment that harms rivers, affecting aquatic fauna and water quality, altering flow regimes, and degrading soil, among other impacts. Gullies have been extensively studied in clayey soils, where they occur more frequently, but less so in soils or materials with a sandy texture. Therefore, utilizing field measurements and aerial orthophotography, this study characterizes the morphology of a set of gullies located in the Central System mountains (central Spain), formed on sandy soils derived from granite weathering, under a Mediterranean-continental climate. Furthermore, the influence of check dams on the gully slope is also studied. The selected gullies for this study are permanent, linear, parallel, continuous, V-shaped, and semi-active. They are longer, narrower, and shallower than other gullies in significantly different soils with which they have been compared, although the width/depth ratio is similar. Additionally, check dams have considerably reduced the slope (11% on average and a 23% maximum reduction), which may result in a reduction in the flow velocity and erosive capacity. Consequently, it can be affirmed that the presence of numerous check dams significantly affects gully morphology. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

23 pages, 953 KB  
Review
Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production
by Esperanza C. Iranzo, José Manuel Nicolau, Ramón Reiné and Jaume Tormo
Land 2025, 14(6), 1188; https://doi.org/10.3390/land14061188 - 2 Jun 2025
Cited by 1 | Viewed by 2521
Abstract
The transition from fossil fuels to renewable energy is fundamental to the mitigation of global climate change. Renewable power capacity is increasing globally, and solar photovoltaics will be the dominant renewable energy source by 2050. Photovoltaic parks (PVPs) require great expanses of land, [...] Read more.
The transition from fossil fuels to renewable energy is fundamental to the mitigation of global climate change. Renewable power capacity is increasing globally, and solar photovoltaics will be the dominant renewable energy source by 2050. Photovoltaic parks (PVPs) require great expanses of land, usually in drylands, creating impacts that can compromise the sustainability of surrounding ecosystems and PVPs. But both novel ecosystems in PVPs and the effect of PVPs on ecosystems are rarely studied. This paper reviews the current knowledge on the impact of PVPs on arid and semi-arid ecosystems and describes the structure and functioning of these novel ecosystems, including changes in microclimatic conditions, soil properties, vegetation and fauna, and shows how these factors hinder the full recovery of ecosystems in PVPs. Ensuring that we do not sacrifice biodiversity for clean energy production restoration is necessary; hence, we address the limitations and challenges of restoring ecosystems within PVPs and suggest the use of modern ecological restoration techniques and the incorporation of grazing into rational planning. More research is needed to fully understand the long-term impacts and interactions of PVPs with the environment, the evolution of novel ecosystems in PVPs and the restoration techniques needed to achieve the long-term sustainability of these infrastructures. Full article
(This article belongs to the Section Land, Biodiversity, and Human Wellbeing)
Show Figures

Figure 1

20 pages, 6716 KB  
Article
Floodplain Forest Soil Nematode Communities as Influenced by Non-Native Acer negundo L. Invasion
by Marek Renčo, Andrea Čerevková and Erika Gömöryová
Diversity 2025, 17(6), 376; https://doi.org/10.3390/d17060376 - 26 May 2025
Viewed by 790
Abstract
Invasive plants can significantly alter the composition and functioning of soil ecosystems, which in turn affects soil fauna such as microorganisms; mesofauna including mites, springtails, nematodes, and insects; and other invertebrates. We used clusters of three different tree species to investigate how they [...] Read more.
Invasive plants can significantly alter the composition and functioning of soil ecosystems, which in turn affects soil fauna such as microorganisms; mesofauna including mites, springtails, nematodes, and insects; and other invertebrates. We used clusters of three different tree species to investigate how they affect the composition of belowground soil nematode communities. The clusters included Acer negundo (L.) (an invasive, non-native species), Fraxinus excelsior (L.), and Alnus glutinosa (Gaertn.) (both as native representatives) in floodplain forest habitats of the Morava River. We investigated the families, genera, trophic groups, and functional guilds of soil nematodes in each tree cluster to assess the usefulness of nematodes as indicators of the impact of alien tree species on native communities. The study was complemented by measuring basic soil physico-chemical properties. The data show that nematode communities were not sensitive to A. negundo invasion, as clusters of invasive trees had similar nematode abundance, genus richness, diversity, family and genus composition, and trophic structure compared to species-specific clusters of two native tree species. A cumulative total of 96 nematode genera, belonging to 52 families, were recorded in the investigated floodplain forest sites. The most abundant families across all clusters were Alaimidae, Cephalobidae, Hoplolaimidae, and Rhabditidae for all tree clusters. Among the genera, Helicotylenchus, Pratylenchus, Paratylenchus (as obligate plant parasites), Filenchus, and Malenchus (as facultative plant parasites), as well as Acrobeloides, Eucephalobus, Plectus, and Rhabditis (as bacterivores), were the most dominant taxa. The measured soil properties did not differ significantly among tree species (p < 0.05). Nevertheless, redundancy analysis identified a significant correlation between soil moisture content and abundance of several nematode genera, nematode trophic groups, and functional guilds. The results indicate that the presence of invasive ash-leaved maple trees in the studied floodplain forests had no adverse effect on the diversity and functional structure of soil nematode communities. This study offers initial insights into nematode communities in Acer negundo invaded habitats, but further studies are needed to verify these findings. Full article
Show Figures

Figure 1

15 pages, 1095 KB  
Article
Virgin and Photoaged Polyethylene Microplastics Have Different Effects on Collembola and Enchytraeids
by Elise Quigley, Ana L. Patrício Silva, Sónia Chelinho, Maria J. I. Briones and Jose P. Sousa
Environments 2025, 12(6), 175; https://doi.org/10.3390/environments12060175 - 25 May 2025
Cited by 1 | Viewed by 1126
Abstract
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids [...] Read more.
Wariness is increasing about resident times of microplastics (MPs) in soils; however, limited knowledge is available on ultraviolet (UV) light exposure of MPs to soil fauna. This study investigated the effects of virgin and photoaged polyethylene microplastics (PE MPs) on soil mesofauna (enchytraeids and collembolans) at environmentally relevant concentrations in a microcosm incubation experiment. Ten individuals of each Enchytraeus crypticus and Folsomia candida and twenty Proisotoma minuta were exposed separately to virgin and photoaged PE MPs (40–48 μm) admixed in agricultural soil (0.2–2000 mg/kg) to evaluate reproduction and survival. After 28 d of exposure to photoaged PE MPs, there was a moderate survival reduction but reproduction promotion of E. crypticus. Contrastingly, F. candida exhibited an opposite trend, with survival enhancement and reproduction depression rates when exposed to both PE MP contaminated soils. However, P. minuta was the only species with significant apical endpoint changes after PE MP exposure; at 20 mg/kg photoaged and 2000 mg/kg virgin PE MP exposure, there was a 34% and 31% decrease in survival, respectively, and at 200 mg/kg photoaged PE MP exposure, an increase of 39% for reproduction. PE MPs had contrasting impacts on soil mesofauna species, which highlights the need to account for these variable results when understanding the repercussions of MP pollution on community assemblage and population dynamics in soils. Full article
(This article belongs to the Special Issue Ecotoxicity of Microplastics)
Show Figures

Figure 1

16 pages, 2358 KB  
Article
Effectiveness of Biochar on Cd Migration and Bioaccumulation in a Multi-Species Alkaline Fluvo-Aquic Soil System
by Dongqin Li, Changhong Lai, Hongzhi He, Dian Wen, Yiran Cao, Zhichao Wu, Furong Li, Hanzhi Shi, Xu Wang and Guikui Chen
Agronomy 2025, 15(6), 1276; https://doi.org/10.3390/agronomy15061276 - 22 May 2025
Viewed by 695
Abstract
Cadmium (Cd) contamination in alkaline soils threatens wheat safety in northern China. This study evaluates biochar’s dual role in Cd remediation and ecological trade-offs using a multi-species soil system (wheat–earthworm–soil). Biochar (Pennisetum hydridum) was applied to Cd-contaminated alkaline fluvo-aquic soils under controlled conditions. [...] Read more.
Cadmium (Cd) contamination in alkaline soils threatens wheat safety in northern China. This study evaluates biochar’s dual role in Cd remediation and ecological trade-offs using a multi-species soil system (wheat–earthworm–soil). Biochar (Pennisetum hydridum) was applied to Cd-contaminated alkaline fluvo-aquic soils under controlled conditions. The results revealed that biochar increased soil pH (8.6–9.6) and reduced CaCl2-extractable Cd by 30–45% in the topsoil (0–20 cm), lowering shoot Cd accumulation in wheat by 42–47%. However, alkaline stress from biochar suppressed wheat biomass by 42%, while earthworm Cd concentrations rose 30–45%, correlating with reduced survival (75% vs. 85–87% in controls). Structural equation modeling identified pH-driven chemisorption as the primary Cd immobilization mechanism, yet biochar amplified ecotoxicity to soil fauna. These findings highlight the need for balanced strategies to optimize biochar’s benefits in alkaline agroecosystems. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

16 pages, 3687 KB  
Article
Filling the Spring Gap in Southern Australia: Seasonal Activity of Four Dung Beetle Species Selected to Be Imported from Morocco
by Hasnae Hajji, Abdellatif Janati-Idrissi, Alberto Zamprogna, José Serin, Jean-Pierre Lumaret, Nassera Kadiri, Saleta Pérez Vila, Patrick V. Gleeson, Jane Wright and Valérie Caron
Insects 2025, 16(5), 538; https://doi.org/10.3390/insects16050538 - 20 May 2025
Cited by 1 | Viewed by 1313
Abstract
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully [...] Read more.
Dung beetles are important ecosystem engineers, as they utilize the excrement produced by animals. For nearly 60 years, several species of dung beetle have been introduced to Australia to help mitigate the problems caused by the accumulation of livestock dung. The twenty-three successfully established species directly contribute to reducing the environmental impacts from dung accumulation, providing improvements to soil health, pasture productivity and pest fly reduction. Despite this success, there are still geographical and seasonal gaps in dung beetle activity, causing dung to remain on the soil surface. The continued importation of new dung beetle species is warranted to fill these gaps. One of the significant remaining gaps is during spring in southern Australia. Four spring-active dung species from Morocco were selected for a new importation program (2018–2022): Euonthophagus crocatus, Onthophagus vacca, Onthophagus marginalis subsp. andalusicus and Gymnopleurus sturmi. These species were surveyed at four sites in Morocco on an altitudinal gradient to assess their seasonal activity. The four species were found at all sites during spring, but in varying abundances, with different species dominating different sites. This is most likely due to differences in local conditions such as soil type. Seasonal activity varied depending on elevation. Gymnopleurus sturmi was found to be active later in the season and should be considered as a summer species. The four species selected will be, if they establish, a useful addition to the already introduced and established dung beetle fauna in Australia. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

Back to TopTop