A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tomato Growth Trial Conditions and Maintenance
2.3. Plant Sampling and Characterisation
2.4. Soil Sampling and Characterisation
2.5. Polymer Characterisation
2.6. Data Analysis
3. Discussion of Results
3.1. Water Conservation Efficacy
3.2. Soil Analysis
3.3. Plant Growth Analysis
3.4. Polymer Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brodhagen, M.; Goldberger, J.R.; Hayes, D.G.; Inglis, D.A.; Marsh, T.L.; Miles, C. Policy considerations for limiting unintended residual plastic in agricultural soils. Environ. Sci. Policy 2017, 69, 81–84. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. “White revolution” to “white pollution”—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef]
- López-López, R.; Inzunza-Ibarra, M.A.; Sánchez-Cohen, I.; Fierro-Álvarez, A.; Sifuentes-Ibarra, E. Water use efficiency and productivity of habanero pepper (Capsicum chinense Jacq.) based on two transplanting dates. Water Sci. Technol. 2015, 71, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Memon, M.S.; Jun, Z.; Jun, G.; Ullah, F.; Hassan, M.; Ara, S.; Changying, J. Comprehensive review for the effects of ridge furrow plastic mulching on crop yield and water use efficiency under different crops. Int. Agric. Eng. J. 2017, 26, 58–67. [Google Scholar]
- Schonbeck, M.W. Weed Suppression and Labor Costs Associated with Organic, Plastic, and Paper Mulches in Small-Scale Vegetable Production. J. Sustain. Agric. 1999, 13, 13–33. [Google Scholar] [CrossRef]
- Schonbeck, M.W.; Evanylo, G.K. Effects of Mulches on Soil Properties and Tomato Production II. Plant-Available Nitrogen, Organic Matter Input, and Tilth-Related Properties. J. Sustain. Agric. 1998, 13, 83–100. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Troger, J.; Munoz, K.; Fror, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Summers, C.G.; Stapleton, J.J. Use of UV reflective mulch to delay the colonization and reduce the severity of Bemisia argentifolii (Homoptera: Aleyrodidae) infestations in cucurbits. Crop Prot. 2002, 21, 921–928. [Google Scholar] [CrossRef]
- Waggoner, P.E.; Miller, P.M.; De Roo, H.C. Plastic Mulching Principles and Benefits; Connecticut Agricultural Experiment Station: New Haven, CT, USA, 1960; Volume 634, p. 44. [Google Scholar]
- Bläsing, M.; Amelung, W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018, 612, 422–435. [Google Scholar] [CrossRef]
- Meng, K.; Ren, W.; Teng, Y.; Wang, B.; Han, Y.; Christie, P.; Luo, Y. Application of biodegradable seedling trays in paddy fields: Impacts on the microbial community. Sci. Total Environ. 2019, 656, 750–759. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Y.; Qin, X.; Jia, W.; Chai, L.; Huang, M.; Huang, Y. Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci. Total Environ. 2019, 688, 470–478. [Google Scholar] [CrossRef]
- Huerta, L.E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; Van der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220, 523–531. [Google Scholar] [CrossRef]
- Huerta Lwanga, E.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; Van Der Ploeg, M.; Besseling, E.; Koelmans, A.A.; Geissen, V. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Hoang, V.H.; Nguyen, M.K.; Hoang, T.D.; Ha, M.C.; Huyen, N.T.T.; Hoang Bui, V.K.; Pham, M.T.; Nguyen, C.M.; Chang, S.W.; Nguyen, D.D. Sources, environmental fate, and impacts of microplastic contamination in agricultural soils: A comprehensive review. Sci. Total Environ. 2024, 950, 175276. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Microplastics in agricultural soils in China: Sources, impacts and solutions. Environ. Pollut. 2023, 322, 121235. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Haoa, W.; Gaoa, L.; Lia, H.; Gonga, D.; Cui, N. Comparison of maize water consumption at different scales between mulched and non-mulched croplands. Agric. Water Manag. 2019, 216, 315–324. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Tillage Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Xiao, L.; Wei, X.; Wang, C.; Zhao, R. Plastic film mulching significantly boosts crop production and water use efficiency but not evapotranspiration in China. Agric. Water Manag. 2023, 275, 108023. [Google Scholar] [CrossRef]
- Ejaz Qureshi, M.; Hanjra, M.A.; Ward, J. Impact of water scarcity in Australia on global food security in an era of climate change. Food Policy 2013, 38, 136–145. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. The State of Food and Agriculture, Climate Change, Agriculture and Food Security. 2016. Available online: https://www.fao.org/3/a-i6030e.pdf (accessed on 11 July 2025).
- Roser, M.; Ortiz-Ospina, E. World Population Growth. Available online: https://ourworldindata.org/world-population-growth/ (accessed on 11 July 2025).
- Arcos-Hernandez, M.V.; Laycock, B.; Pratt, S.; Donose, B.C.; Nikolič, M.A.L.; Luckman, P.; Werker, A.; Lant, P.A. Biodegradation in a soil environment of activated sludge derived polyhydroxyalkanoate (PHBV). Polym. Degrad. Stab. 2012, 97, 2301–2312. [Google Scholar] [CrossRef]
- González Petit, M.; Correa, Z.; Sabino, M.A. Degradation of a Polycaprolactone/Eggshell Biocomposite in a Bioreactor. J. Polym. Environ. 2015, 23, 11–20. [Google Scholar] [CrossRef]
- Harmaen, A.S.; Khalina, A.; Azowa, I.; Hassan, M.A.; Tarmian, A. Thermal and Biodegradation Properties of Poly(lactic acid)/Fertilizer/Oil Palm Fibers Blends Biocomposites. Polym. Compos. 2015, 36, 576–583. [Google Scholar] [CrossRef]
- Jain, R.; Tiwari, A. Biosynthesis of planet friendly bioplastics using renewable carbon source. J. Environ. Health Sci. Eng. 2015, 13, 11. [Google Scholar] [CrossRef]
- Tabasi, R.Y.; Ajji, A. Selective degradation of biodegradable blends in simulated laboratory composting. Polym. Degrad. Stab. 2015, 120, 435–442. [Google Scholar] [CrossRef]
- Weng, Y.X.; Wang, X.L.; Wang, Y.Z. Biodegradation behavior of PHAs with different chemical structures under controlled composting conditions. Polym. Test. 2011, 30, 372–380. [Google Scholar] [CrossRef]
- Wu, C.S. Preparation, Characterization, and Biodegradability of Renewable Resource-Based Composites from recycled polylactide bioplastic and sisal fibers. J. Appl. Polym. Sci. 2012, 123, 347–455. [Google Scholar] [CrossRef]
- Wu, C.S. Preparation and Characterization of Polyhydroxyalkanoate Bioplastic-Based Green Renewable Composites from Rice Husk. J. Polym. Environ. 2014, 22, 384–392. [Google Scholar] [CrossRef]
- Adhikari, R.; Casey, P.; Bristow, K.L.; Freischmidt, G.; Hornbuckle, J. Sprayable Polymer Membrane for Agriculture. Patent WO 2015/184490A1, 10 December 2015. [Google Scholar]
- Al-Kalbani, M.S.; Cookson, P.; Rahman, H.A. Uses of Hydrophobic Siloxane Polymer (Guilspare®) for Soil Water Management Application in the Sultanate of Oman. Water Int. 2003, 28, 217–223. [Google Scholar] [CrossRef]
- Caputo, M.; Cesare, C.D.; Iovieno, P.; Immirzi, B.; Baldantoni, D.; Stipic, M.; Zaccardelli, M.; Accursio, V. Biodegradable Spray Mulch Applications in Greenhouse Agroecosystems. Sustainability. 2024, 16, 5973. [Google Scholar] [CrossRef]
- Cline, J.; Neilsen, G.; Hogue, E.; Kuchta, S.; Neilsen, D. Spray-on-mulch technology for intensively grown irrigated apple orchards: Influence on tree establishment, early yields, and soil physical properties. HortTechnology 2011, 21, 398–411. [Google Scholar] [CrossRef]
- Dewi, S.K.; Han, Z.M.; Bhat, A.S.; Zhang, F.; Wei, Y.; Li, F. Effect of plastic mulch residue on plant growth performance and soil properties. Environ. Pollut. 2024, 343, 123254. [Google Scholar] [CrossRef]
- Fernández, J.E.; Moreno, F.; Murillo, J.M.; Cuevas, M.V.; Kohler, F. Evaluating the effectiveness of a hydrophobic polymer for conserving water and reducing weed infection in a sandy loam soil. Agric. Water Manag. 2001, 51, 29–51. [Google Scholar] [CrossRef]
- Immirzi, B.; Santagata, G.; Vox, G.; Schettini, E. Preparation, characterisation and field-testing of a biodegradable sodium alginate-based spray mulch. Biosyst. Eng. 2009, 102, 461–472. [Google Scholar] [CrossRef]
- Santagata, G.; Malinconico, M.; Immirzi, B.; Schettini, E.; Mugnozza, G.S.; Vox, G. An overview of biodegradable films and spray coatings as sustainable alternative to oil-based mulching films. Acta Hortic. 2014, 1037, 921–928. [Google Scholar] [CrossRef]
- Sartore, L.; Schettini, E.; de Palma, L.; Brunetti, G.; Cocozza, C.; Vox, G. Effect of hydrolyzed protein-based mulching coatings on the soil properties and productivity in a tunnel greenhouse crop system. Sci. Total Environ. 2018, 645, 1221–1229. [Google Scholar] [CrossRef] [PubMed]
- Schettini, E.; Vox, G.; Malinconico, M.; Immirzi, B.; Santagata, G. Physical Properties of Innovative Biodegradable Spray Coating for Soil Mulching in Greenhouse Cultivation. Acta Hortic. 2005, 691, 725–732. [Google Scholar] [CrossRef]
- Schettini, E.; Sartore, L.; Barbaglio, M.; Vox, G. Hydrolyzed protein-based materials for biodegradable spray mulching coatings. Acta Hortic. 2012, 952, 359–366. [Google Scholar] [CrossRef]
- Adhikari, R.; Mingtarja, H.; Freischmidt, G.; Bristow, K.L.; Casey, P.S.; Johnston, P.; Sangwan, P. Effect of viscosity modifiers on soil wicking and physico-mechanical properties of a polyurethane based sprayable biodegradable polymer membrane. Agric. Water Manag. 2019, 222, 346–353. [Google Scholar] [CrossRef]
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO Publishing: Collingwood, VIC, Australia, 2011; p. 495. [Google Scholar]
- Li, J.; Huang, B.; Wang, Q.; Li, Y.; Fang, W.; Han, D.; Yan, D.; Guo, M.; Cao, A. Effects of fumigation with metam-sodium on soil microbial biomass, respiration, nitrogen transformation, bacterial community diversity and genes encoding key enzymes involved in nitrogen cycling. Sci. Total Environ. 2017, 598, 1027–1036. [Google Scholar] [CrossRef]
- King, G. Annual Study Survey; The Australian Processing Tomato Research Council Inc., Australian Processing Tomato Grower: Echuca, VIC, Australia, 2017. [Google Scholar]
- Rayment, G.E.; Lyons, D.J. 4A1 pH of 1:5 Soil/Water Suspension, in: Soil Chemical Methods—Australasia; CSIRO Publishing: Clayton, VIC, Australia, 2011; pp. 19–39. [Google Scholar]
- Baethgen, W.E.; Alley, M.M. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant kjeldahl digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Franquera, E.N. Influence of different colored plastic mulch on the growth of lettuce (Lactuca sativa). J. Ornam. Hortic. Plants 2011, 1, 97–104. [Google Scholar]
- Adams, P.; Ho, L.C. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil. 1993, 154, 127–132. [Google Scholar] [CrossRef]
- Saure, M.C. Blossom-end rot of tomato (Lycopersicon esculentum Mill.)—A calcium or a stress-related disorder? Sci. Hortic. 2001, 90, 193–208. [Google Scholar] [CrossRef]
Characteristic | Vertosol |
---|---|
Ca2+, mg/kg | 1675 |
Mg2+, mg/kg | 524 |
Na+, mg/kg | 140 |
K+, mg/kg | 58 |
P(Colwell), mg/kg | 65 |
NO3−, mg/kg | 26.1 |
NH4, mg/kg | 3.7 |
Electrical Conductivity, dS/m | 0.17 |
Total C, % | 1.12 |
Total N, % | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borrowman, C.; Little, K.; Adhikari, R.; Saito, K.; Gordon, S.; Patti, A.F. A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches. Agriculture 2025, 15, 1581. https://doi.org/10.3390/agriculture15151581
Borrowman C, Little K, Adhikari R, Saito K, Gordon S, Patti AF. A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches. Agriculture. 2025; 15(15):1581. https://doi.org/10.3390/agriculture15151581
Chicago/Turabian StyleBorrowman, Cuyler, Karen Little, Raju Adhikari, Kei Saito, Stuart Gordon, and Antonio F. Patti. 2025. "A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches" Agriculture 15, no. 15: 1581. https://doi.org/10.3390/agriculture15151581
APA StyleBorrowman, C., Little, K., Adhikari, R., Saito, K., Gordon, S., & Patti, A. F. (2025). A Comparative Plant Growth Study of a Sprayable, Degradable Polyester–Urethane–Urea Mulch and Two Commercial Plastic Mulches. Agriculture, 15(15), 1581. https://doi.org/10.3390/agriculture15151581