Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,320)

Search Parameters:
Keywords = soil bacterial community and diversity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2183 KiB  
Article
Interannual Variations in Soil Bacterial Community Diversity and Analysis of Influencing Factors During the Restoration Process of Scirpus Mariqueter Wetlands
by Yaru Li, Shubo Fang, Qinyi Wang, Pengling Wu, Peimin He and Wei Liu
Biology 2025, 14(8), 1013; https://doi.org/10.3390/biology14081013 - 7 Aug 2025
Abstract
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and [...] Read more.
Due to human activities and the invasion of Spartina alterniflora, the population of Scirpus mariqueter (S. mariqueter) in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and influencing factors of soil bacterial communities during the restoration of S. mariqueter wetlands, we selected S. mariqueter populations as the research focus and divided the samples into two years, S1 and S2. High-throughput sequencing technology was employed for observation and analysis. The results revealed that from S1 to S2, soil bacterial diversity in the S. mariqueter wetland increased significantly and displayed clear seasonal patterns. The dominant bacterial phyla included Proteobacteria, Bacteroidota, Firmicutes, and Acidobacteriota. Among these, Proteobacteria had the highest relative abundance, while Acidobacteriota showed the most pronounced increase, surpassing Bacteroidota and Firmicutes to become the second most abundant group. Redundancy analysis (RDA) indicated that soil organic matter and electrical conductivity were the key factors influencing the composition and diversity of the soil bacterial community, with Acidobacteriota playing a dominant role during wetland restoration. In conclusion, during the ecological restoration of the S. mariqueter wetlands, attention should be given to environmental factors such as soil organic matter and electrical conductivity, while the regulatory role of Acidobacteriota in wetland soils should not be overlooked. This study provides a microscopic perspective on the interactions between microbial diversity and ecosystem functions in coastal wetlands, offering valuable guidance for the ecological restoration of degraded wetlands. Full article
Show Figures

Figure 1

18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

17 pages, 3038 KiB  
Article
Neighbor Relatedness Contributes to Improvement in Grain Yields in Rice Cultivar Mixtures
by You Xu, Qin-Hang Han, Shuai-Shuai Xie and Chui-Hua Kong
Plants 2025, 14(15), 2385; https://doi.org/10.3390/plants14152385 - 2 Aug 2025
Viewed by 276
Abstract
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness [...] Read more.
The improvement in yield in cultivar mixtures has been well established. Despite increasing knowledge of the improvement involving within-species diversification and resource use efficiency, little is known about the benefits arising from relatedness-mediated intraspecific interactions in cultivar mixtures. This study used a relatedness gradient of rice cultivars to test whether neighbor relatedness contributes to improvements in grain yields in cultivar mixtures. We experimentally demonstrated the grain yield of rice cultivar mixtures with varying genetic relatedness under both field and controlled conditions. As a result, a closely related cultivar mixture had increased grain yield compared to monoculture and distantly related mixtures by optimizing the root-to-shoot ratio and accelerating flowering. The benefits over monoculture were most pronounced when compared to the significant yield reductions observed in distantly related mixtures. The relatedness-mediated improvement in yields depended on soil volume and nitrogen use level, with effects attenuating under larger soil volumes or nitrogen deficiency. Furthermore, neighbor relatedness enhanced the richness and diversity of both bacterial and fungal communities in the rhizosphere soil, leading to a significant restructuring of the microbial community composition. These findings suggest that neighbor relatedness may improve the grain yield of rice cultivar mixtures. Beneficial plant–plant interactions may be generated by manipulating cultivar kinship within a crop species. A thorough understanding of kinship strategies in cultivar mixtures offers promising prospects for increasing crop production. Full article
(This article belongs to the Special Issue Plant Chemical Ecology—2nd Edition)
Show Figures

Figure 1

20 pages, 3604 KiB  
Article
Analysis of the Differences in Rhizosphere Microbial Communities and Pathogen Adaptability in Chili Root Rot Disease Between Continuous Cropping and Rotation Cropping Systems
by Qiuyue Zhao, Xiaolei Cao, Lu Zhang, Xin Hu, Xiaojian Zeng, Yingming Wei, Dongbin Zhang, Xin Xiao, Hui Xi and Sifeng Zhao
Microorganisms 2025, 13(8), 1806; https://doi.org/10.3390/microorganisms13081806 - 1 Aug 2025
Viewed by 229
Abstract
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. [...] Read more.
In chili cultivation, obstacles to continuous cropping significantly compromise crop yield and soil health, whereas crop rotation can enhance the microbial environment of the soil and reduce disease incidence. However, its effects on the diversity of rhizosphere soil microbial communities are not clear. In this study, we analyzed the composition and characteristics of rhizosphere soil microbial communities under chili continuous cropping (CC) and chili–cotton crop rotation (CR) using high-throughput sequencing technology. CR treatment reduced the alpha diversity indices (including Chao1, Observed_species, and Shannon index) of bacterial communities and had less of an effect on fungal community diversity. Principal component analysis (PCA) revealed distinct compositional differences in bacterial and fungal communities between the treatments. Compared with CC, CR treatment has altered the structure of the soil microbial community. In terms of bacterial communities, the relative abundance of Firmicutes increased from 12.89% to 17.97%, while the Proteobacteria increased by 6.8%. At the genus level, CR treatment significantly enriched beneficial genera such as RB41 (8.19%), Lactobacillus (4.56%), and Bacillus (1.50%) (p < 0.05). In contrast, the relative abundances of Alternaria and Fusarium in the fungal community decreased by 6.62% and 5.34%, respectively (p < 0.05). Venn diagrams and linear discriminant effect size analysis (LEfSe) further indicated that CR facilitated the enrichment of beneficial bacteria, such as Bacillus, whereas CC favored enrichment of pathogens, such as Firmicutes. Fusarium solani MG6 and F. oxysporum LG2 are the primary chili root-rot pathogens. Optimal growth occurs at 25 °C, pH 6: after 5 days, MG6 colonies reach 6.42 ± 0.04 cm, and LG2 5.33 ± 0.02 cm, peaking in sporulation (p < 0.05). In addition, there are significant differences in the utilization spectra of carbon and nitrogen sources between the two strains of fungi, suggesting their different ecological adaptability. Integrated analyses revealed that CR enhanced soil health and reduced the root rot incidence by optimizing the structure of soil microbial communities, increasing the proportion of beneficial bacteria, and suppressing pathogens, providing a scientific basis for microbial-based soil management strategies in chili cultivation. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 - 1 Aug 2025
Viewed by 204
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

22 pages, 7580 KiB  
Article
Bacterial and Physicochemical Dynamics During the Vermicomposting of Bovine Manure: A Comparative Analysis of the Eisenia fetida Gut and Compost Matrix
by Tania Elizabeth Velásquez-Chávez, Jorge Sáenz-Mata, Jesús Josafath Quezada-Rivera, Rubén Palacio-Rodríguez, Gisela Muro-Pérez, Alan Joel Servín-Prieto, Mónica Hernández-López, Pablo Preciado-Rangel, María Teresa Salazar-Ramírez, Juan Carlos Ontiveros-Chacón and Cristina García-De la Peña
Microbiol. Res. 2025, 16(8), 177; https://doi.org/10.3390/microbiolres16080177 - 1 Aug 2025
Viewed by 145
Abstract
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition [...] Read more.
Vermicomposting is a sustainable biotechnological process that transforms organic waste through the synergistic activity of earthworms, such as Eisenia fetida, and their associated microbiota. This study evaluated bacterial and physicochemical dynamics during the vermicomposting of bovine manure by analyzing the microbial composition of the substrate and the gut of E. fetida at three time points (weeks 0, 6, and 12). The V3–V4 region of the 16S rRNA gene was sequenced, and microbial diversity was characterized using QIIME2. Significant differences in alpha diversity (observed features, Shannon index, and phylogenetic diversity) and beta diversity indicated active microbial succession. Proteobacteria, Bacteroidota, and Actinobacteriota were the dominant phyla, with abundances varying across habitats and over time. A significant enrichment of Proteobacteria, Bacteroidota, and the genera Chryseolinea, Flavobacterium, and Sphingomonas was observed in the manure treatments. In contrast, Actinobacteriota, Firmicutes, and the genera Methylobacter, Brevibacillus, Enhygromyxa, and Bacillus, among others, were distinctive of the gut samples and contributed to their dissimilarity from the manure treatments. Simultaneously, the physicochemical parameters indicated progressive substrate stabilization and nutrient enrichment. Notably, the organic matter and total organic carbon contents decreased (from 79.47% to 47.80% and from 46.10% to 27.73%, respectively), whereas the total nitrogen content increased (from 1.70% to 2.23%); these effects reduced the C/N ratio, which is a recognized indicator of maturity, from 27.13 to 12.40. The macronutrient contents also increased, with final values of 1.41% for phosphorus, 1.50% for potassium, 0.89% for magnesium, and 2.81% for calcium. These results demonstrate that vermicomposting modifies microbial communities and enhances substrate quality, supporting its use as a biofertilizer for sustainable agriculture, soil restoration, and agrochemical reduction. Full article
Show Figures

Figure 1

15 pages, 1987 KiB  
Article
Threshold Effects of Straw Returning Amounts on Bacterial Colonization in Black Soil
by Genzhu Wang, Wei Qin, Zhe Yin, Ziyuan Zhou, Jian Jiao, Xiaohong Xu, Yu Zhang and Xing Han
Microorganisms 2025, 13(8), 1797; https://doi.org/10.3390/microorganisms13081797 - 31 Jul 2025
Viewed by 237
Abstract
Straw returning (ST) significantly improves soil quality and profoundly impacts soil microorganisms. However, the effects of different ST application amounts on the soil bacterial community remain unclear, and more studies on optimal ST application amounts are warranted. This study aimed to investigate the [...] Read more.
Straw returning (ST) significantly improves soil quality and profoundly impacts soil microorganisms. However, the effects of different ST application amounts on the soil bacterial community remain unclear, and more studies on optimal ST application amounts are warranted. This study aimed to investigate the bacterial diversity and composition, as well as physicochemical properties, of soil in a corn field with 5-year ST amounts of 0, 3, 4.5, 5, and 6 t/hm2, respectively. The results indicated that ST significantly reduced soil bulk density and increased soil pH and nutrients. Meanwhile, ST had a significant effect on the bacterial composition, and the bacterial diversity increased significantly after ST. The relative abundance of Proteobacteria and Acidobacteria increased dramatically, whereas that of Actinobacteria significantly decreased after ST. The amount of ST had threshold effects on soil physicochemical properties and the dominant bacterial phyla. Moreover, the co-occurrence networks indicated that bacterial stability first increased and then decreased with the increase in ST amounts. Soil organic carbon and total nitrogen concentrations were the main drivers of bacterial diversity, whereas soil pH and total nitrogen concentrations were the main drivers of bacterial composition. This study strengthens the fact that ST amounts have threshold effects on the soil physicochemical properties and soil microorganisms, and ST amounts of 3–5 t/hm2 were appropriate. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 1706 KiB  
Article
Biochar-Immobilized Pseudomonas aeruginosa Enhances Copper Remediation and Growth of Chinese Milk Vetch (Astragalus sinicus)
by Yunkai Hu, Chuan Wang and Youbao Wang
Microorganisms 2025, 13(8), 1793; https://doi.org/10.3390/microorganisms13081793 - 31 Jul 2025
Viewed by 192
Abstract
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus [...] Read more.
Heavy metal-contaminated soil poses a severe threat to environmental quality and human health, calling for eco-friendly and efficient remediation strategies. This study explored the use of biochar-immobilized copper-resistant Pseudomonas aeruginosa to remediate copper-contaminated soil and promote growth of Chinese milk vetch (Astragalus sinicus L.). Indoor pot experiments compared four groups: copper-contaminated soil (control), soil with biochar, soil with free bacteria, and soil with biochar-immobilized bacteria (IM). Results showed IM had the most significant effects on soil properties: it raised pH to 7.04, reduced bioavailable copper by 34.37%, and increased catalase (3.48%) and urease (78.95%) activities. IM also altered soil bacterial communities, decreasing their richness and evenness (alpha diversity) while shifting community composition. For Chinese milk vetch, IM reduced leaf malondialdehyde (a marker of oxidative stress) by 15%, increased total dry weight by 90%, and lowered copper accumulation in roots (18.62%) and shoots (60.33%). As a nitrogen-fixing plant, the vetch’s nitrogen fixation in roots and shoots rose by 82.70% and 57.08%, respectively, under IM. These findings demonstrate that biochar-immobilized Pseudomonas aeruginosa is a promising in situ amendment for remediating copper-contaminated soil and boosting plant growth. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 1268 KiB  
Article
Community Composition and Diversity of β-Glucosidase Genes in Soils by Amplicon Sequence Variant Analysis
by Luis Jimenez
Genes 2025, 16(8), 900; https://doi.org/10.3390/genes16080900 - 28 Jul 2025
Viewed by 189
Abstract
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the [...] Read more.
Cellulose, the most abundant organic polymer in soil, is degraded by the action of microbial communities. Cellulolytic taxa are widespread in soils, enhancing the biodegradation of cellulose by the synergistic action of different cellulase enzymes. β-glucosidases are the last enzymes responsible for the degradation of cellulose by producing glucose from the conversion of the disaccharide cellobiose. Different soils from the states of Delaware, Maryland, New Jersey, and New York were analyzed by direct DNA extraction, PCR analysis, and next generation sequencing of amplicon sequences coding for β-glucosidase genes. To determine the community structure and diversity of microorganisms carrying β-glucosidase genes, amplicon sequence variant analysis was performed. Results showed that the majority of β-glucosidase genes did not match any known phylum or genera with an average of 84% of sequences identified as unclassified. The forest soil sample from New York showed the highest value with 95.62%. When identification was possible, the bacterial phyla Pseudomonadota, Actinomycetota, and Chloroflexota were found to be dominant microorganisms with β-glucosidase genes in soils. The Delaware soil showed the highest diversity with phyla and genera showing the presence of β-glucosidase gene sequences in bacteria, fungi, and plants. However, the Chloroflexota genus Kallotanue was detected in 3 out of the 4 soil locations. When phylogenetic analysis of unclassified β-glucosidase genes was completed, most sequences aligned with the Chloroflexota genus Kallotenue and the Pseudomonadota species Sphingomonas paucimobilis. Since most sequences did not match known phyla, there is tremendous potential to discover new enzymes for possible biotechnological and pharmaceutical applications. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

13 pages, 1075 KiB  
Article
Response of Typical Artificial Forest Soil Microbial Community to Revegetation in the Loess Plateau, China
by Xiaohua Liu, Tianxing Wei, Dehui Fan, Huaxing Bi and Qingke Zhu
Agronomy 2025, 15(8), 1821; https://doi.org/10.3390/agronomy15081821 - 28 Jul 2025
Viewed by 216
Abstract
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess [...] Read more.
This study aims to analyze the differences in soil bacterial community structure under different vegetation restoration types, and to explore the role of microorganisms in the process of vegetation restoration on the soil ecosystem of the Grain for Green area in the Loess Plateau. High-throughput sequencing technology was used to analyze the alpha diversity of soil bacteria, community structure characteristics, and the correlation between soil environmental factors and bacterial communities in different artificial Hippophae rhamnoides forests. Soil microbial C and N show a decreasing trend with an increase in the 0–100 cm soil layers. The results indicated that the bacterial communities comprised 24 phyla, 55 classes, 110 orders, 206 families, 348 genera, 680 species, and 1989 OTUs. Additionally, the richness indices and diversity indices of the bacterial community in arbor shrub mixed forest are higher than those in shrub pure forest, and the indices of shrub forest on sunny slope are higher than those on shady slope. Across all samples, the dominant groups were Actinobacteria (37.27% on average), followed by Proteobacteria (23.91%), Acidobacteria (12.75%), and Chloroflexi (12.27%). Soil nutrient supply, such as TOC, TN, AN, AP, and AK, had crucial roles in shaping the composition and diversity of the bacterial communities. The findings reveal that vegetation restoration significantly affected soil bacterial community richness and diversity. Furthermore, based on the results, our data provide a starting point for establishing soil bacterial databases in the Loess Plateau, as well as for the plants associated with the vegetation restoration. Full article
Show Figures

Figure 1

18 pages, 4241 KiB  
Article
Distribution Patterns and Assembly Mechanisms of Rhizosphere Soil Microbial Communities in Schisandra sphenanthera Across Altitudinal Gradients
by Weimin Li, Luyao Yang, Xiaofeng Cong, Zhuxin Mao and Yafu Zhou
Biology 2025, 14(8), 944; https://doi.org/10.3390/biology14080944 - 27 Jul 2025
Viewed by 254
Abstract
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 [...] Read more.
To investigate the characteristics of rhizosphere soil microbial communities associated with Schisandra sphenanthera across different altitudinal gradients and to reveal the driving factors of microbial community dynamics, this study collected rhizosphere soil samples at four elevations: 900 m (HB1), 1100 m (HB2), 1300 m (HB3), and 1500 m (HB4). High-throughput sequencing and molecular ecological network analysis were employed to analyze the microbial community composition and species interactions. A null model was applied to elucidate community assembly mechanisms. The results demonstrated that bacterial communities were dominated by Proteobacteria, Acidobacteriota, Actinobacteriota, and Chloroflexi. The relative abundance of Proteobacteria increased with elevation, while that of Acidobacteriota and Actinobacteriota declined. Fungal communities were primarily composed of Ascomycota and Basidiomycota, with both showing elevated relative abundances at higher altitudes. Diversity indices revealed that HB2 exhibited the highest bacterial Chao, Ace, and Shannon indices but the lowest Simpson index. For fungi, HB3 displayed the highest Chao and Ace indices, whereas HB4 showed the highest Shannon index and the lowest Simpson index. Ecological network analysis indicated stronger bacterial competition at lower elevations and enhanced cooperation at higher elevations, contrasting with fungal communities that exhibited increased competition at higher altitudes. Altitude and soil nutrients were negatively correlated with soil carbon content, while plant nutrients and fungal diversity positively correlated with soil carbon. Null model analysis suggested that deterministic processes dominated bacterial community assembly, whereas stochastic processes governed fungal assembly. These findings highlight significant altitudinal shifts in the microbial community structure and assembly mechanisms in S. sphenanthera rhizosphere soils, driven by the synergistic effects of soil nutrients, plant growth, and fungal diversity. This study provides critical insights into microbial ecology and carbon cycling in alpine ecosystems, offering a scientific basis for ecosystem management and conservation. Full article
(This article belongs to the Section Ecology)
Show Figures

Graphical abstract

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 378
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 2181 KiB  
Article
Metabarcoding Analysis Reveals Microbial Diversity and Potential Soilborne Pathogens Associated with Almond Dieback and Decline
by André Albuquerque, Mariana Patanita, Joana Amaro Ribeiro, Maria Doroteia Campos, Filipa Santos, Tomás Monteiro, Margarida Basaloco and Maria do Rosário Félix
Plants 2025, 14(15), 2309; https://doi.org/10.3390/plants14152309 - 26 Jul 2025
Viewed by 410
Abstract
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond [...] Read more.
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond cultivars. Our results emphasize the multifactorial nature of almond decline and dieback, with possible co-infections by opportunistic fungi and bacteria playing a central role. Classical isolation identified 47 fungal species or genera, including Diaporthe amygdali, Diplodia corticola, Phytophthora sp., and several Fusarium species. Almond metabarcoding revealed a more diverse microbial community, highlighting the prevalence of soilborne pathogens such as Neocosmospora rubicola, Dactylonectria estremocensis, and Plectosphaerella niemeijerarum. Soil metabarcoding suggested that these pathogens likely originate from nursery substrates or soils shared with other crops, such as olives and vineyards, that serve as a source of inoculum. ‘Soleta’ generally presented lower richness when compared to the other tested cultivars, suggesting a higher degree of biotic stress and decreased plant resilience. This study highlights the value of integrating NGS approaches to comprehensively study complex diseases and the need for further research on pathogen interactions and cultivar susceptibility for the future development of new sustainable, targeted management strategies in almond orchards. Full article
Show Figures

Figure 1

17 pages, 3481 KiB  
Article
Influence of Ziziphus lotus (Rhamnaceae) Plants on the Spatial Distribution of Soil Bacterial Communities in Semi-Arid Ecosystems
by Nabil Radouane, Zakaria Meliane, Khaoula Errafii, Khadija Ait Si Mhand, Salma Mouhib and Mohamed Hijri
Microorganisms 2025, 13(8), 1740; https://doi.org/10.3390/microorganisms13081740 - 25 Jul 2025
Viewed by 342
Abstract
Ziziphus lotus (L.) Lam. (Rhamnaceae), a key shrub species native to North Africa, is commonly found in arid and semi-arid regions. Renowned for its resilience under harsh conditions, it forms vegetation clusters that influence the surrounding environment. These clusters create microhabitats that promote [...] Read more.
Ziziphus lotus (L.) Lam. (Rhamnaceae), a key shrub species native to North Africa, is commonly found in arid and semi-arid regions. Renowned for its resilience under harsh conditions, it forms vegetation clusters that influence the surrounding environment. These clusters create microhabitats that promote biodiversity, reduce soil erosion, and improve soil fertility. However, in agricultural fields, Z. lotus is often regarded as an undesirable species. This study investigated the bacterial diversity and community composition along spatial gradients around Z. lotus patches in barley-planted and non-planted fields. Using 16S rRNA gene sequencing, 84 soil samples were analyzed from distances of 0, 3, and 6 m from Z. lotus patches. MiSeq sequencing generated 143,424 reads, representing 505 bacterial ASVs across 22 phyla. Alpha-diversity was highest at intermediate distances (3 m), while beta-diversity analyses revealed significant differences in community composition across distances (p = 0.035). Pseudomonadota dominated close to the shrub (44% at 0 m) but decreased at greater distances, whereas Bacillota and Actinobacteriota displayed distinct spatial patterns. A core microbiome comprising 44 ASVs (8.7%) was shared across all distances, with the greatest number of unique ASVs identified at 3 m. Random forest analysis highlighted Skermanella and Rubrobacter as key discriminatory taxa. These findings emphasize the spatial structuring of bacterial communities around Z. lotus patches, demonstrating the shrub’s substantial influence on bacterial dynamics in arid ecosystems. Full article
Show Figures

Figure 1

15 pages, 1328 KiB  
Article
Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
by Shujuan Jiao, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li and Shuhao Qin
Agronomy 2025, 15(8), 1784; https://doi.org/10.3390/agronomy15081784 - 24 Jul 2025
Viewed by 236
Abstract
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity [...] Read more.
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity in fully mulched treatments (T2–T3) versus controls (CK), suggesting mulching enhances microbial community richness. This result suggests that complete mulching combined with ridge planting (T2) may significantly enhance bacterial proliferation in soil. The bacterial communities were predominantly composed of Acidobacteria, Pseudomonadota, Bacteroidota, Chloroflexota, and Planctomycetota. Among these, Acidobacteria showed the highest abundance, with ridge planting patterns favoring greater Acidobacteria richness compared to furrow planting. In contrast, Pseudomonadota exhibited higher abundance under half-mulching conditions than under complete mulching. At class level, Acidobacteria and Proteobacteria emerged as the most abundant groups, with Proteobacteria constituting 22.6–35.7% of total microbial populations. Notably, Proteobacteria demonstrated particular dominance under the complete mulching with ridge planting pattern (T2). At the genus level, Subgroup_6_norank represented the most dominant taxon among the 439 identified bacterial genera, accounting for 14.0–20.2% of communities across all treatments, with half-mulching ridge planting (T4) showing the highest relative abundance. Our findings demonstrate that different ridge-furrow film mulching patterns significantly influence soil microbial diversity. While traditional non-mulched (CK) and mulched flat plots (T1) exhibited similar impacts on bacterial community structure, other treatments displayed distinct taxonomic profiles. Complete mulching patterns, particularly ridge planting (T2), appear most conducive to microbial development, suggesting their potential to enhance soil biogeochemical cycling in continuous cropping systems. These results provide valuable insights for optimizing mulching practices to improve soil health in agricultural ecosystems. Full article
Show Figures

Figure 1

Back to TopTop