Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,884)

Search Parameters:
Keywords = social management systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 719 KiB  
Article
Recursive Interplay of Family and Biological Dynamics: Adults with Type 1 Diabetes Mellitus Under the Spotlight
by Helena Jorge, Bárbara Regadas Correia, Miguel Castelo-Branco and Ana Paula Relvas
Diabetology 2025, 6(8), 81; https://doi.org/10.3390/diabetology6080081 - 6 Aug 2025
Abstract
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was [...] Read more.
Objectives: Diabetes Mellitus involves demanding challenges that interfere with family functioning and routines. In turn, family and social context impacts individual glycemic control. This study aims to identify this recursive interplay, the mutual influences of family systems and diabetes management. Design: Data was collected through a cross-sectional design comparing patients, aged 22–55, with and without metabolic control. Methods: Participants filled out a set of self-report measures of sociodemographic, clinical and family systems assessment. Patients (91) were also invited to describe their perception about disease management interference regarding family functioning. We first examined the extent to which family variables grouped dataset to determine if there were similarities and dissimilarities that fit with our initial diabetic groups’ classification. Results: Cluster analysis results identify a two-cluster solution validating initial classification of two groups of patients: 49 with metabolic control (MC) and 42 without metabolic control (NoMC). Independent sample tests suggested statistically significant differences between groups in family subscales- family difficulties and family communication (p < 0.05). Binary logistic regression shed light on predictors of explained variance to no metabolic control, in four models: Sociodemographic, Clinical data, SCORE-15/Congruence Scale and Eating Behavior. Furthermore, groups differ on family support, level and sources of family conflict caused by diabetes management issues. Considering only patients who co-habit with a partner for more than one year (N = 44), NoMC patients score lower on marital functioning in all categories (p < 0.05). Discussion: Family-Chronic illness interaction plays a significant role in a patient’s adherence to treatment. This study highlights the Standards of Medical Care for Diabetes, considering caregivers and family members on diabetes care. Full article
Show Figures

Figure 1

17 pages, 926 KiB  
Review
Advancing Heart Failure Care Through Disease Management Programs: A Comprehensive Framework to Improve Outcomes
by Maha Inam, Robert M. Sangrigoli, Linda Ruppert, Pooja Saiganesh and Eman A. Hamad
J. Cardiovasc. Dev. Dis. 2025, 12(8), 302; https://doi.org/10.3390/jcdd12080302 - 5 Aug 2025
Abstract
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure [...] Read more.
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure Disease Management Programs (HF-DMPs) have emerged as structured frameworks that integrate evidence-based medical therapy, patient education, telemonitoring, and support for social determinants of health to optimize outcomes and reduce healthcare costs. This review outlines the key components of HF-DMPs, including patient identification and risk stratification, pharmacologic optimization, team-based care, transitional follow-up, remote monitoring, performance metrics, and social support systems. Incorporating tools such as artificial intelligence, pharmacist-led titration, and community health worker support, HF-DMPs represent a scalable approach to improving care delivery. The success of these programs depends on tailored interventions, interdisciplinary collaboration, and health equity-driven strategies. Full article
Show Figures

Graphical abstract

23 pages, 7533 KiB  
Article
Risk Management of Rural Road Networks Exposed to Natural Hazards: Integrating Social Vulnerability and Critical Infrastructure Access in Decision-Making
by Marta Contreras, Alondra Chamorro, Nikole Guerrero, Carolina Martínez, Tomás Echaveguren, Eduardo Allen and Nicolás C. Bronfman
Sustainability 2025, 17(15), 7101; https://doi.org/10.3390/su17157101 - 5 Aug 2025
Abstract
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences [...] Read more.
Road networks are essential for access, resource distribution, and population evacuation during natural events. These challenges are pronounced in rural areas, where network redundancy is limited and communities may have social disparities. While traditional risk management systems often focus on the physical consequences of hazard events alone, specialized literature increasingly suggests the development of a more comprehensive approach for risk assessment, where not only physical aspects associated with infrastructure, such as damage level or disruptions, but also the social and economic attributes of the affected population are considered. Consequently, this paper proposes a Vulnerability Access Index (VAI) to support road network decision-making that integrates the social vulnerability of rural communities exposed to natural events, their accessibility to nearby critical infrastructure, and physical risk. The research methodology considers (i) the Social Vulnerability Index (SVI) calculation based on socioeconomic variables, (ii) Importance Index estimation (Iimp) to evaluate access to critical infrastructure, (iii) VAI calculation combining SVI and Iimp, and (iv) application to a case study in the influence area of the Villarrica volcano in southern Chile. The results show that when incorporating social variables and accessibility, infrastructure criticality varies significantly compared to the infrastructure criticality assessment based solely on physical risk, modifying the decision-making regarding road infrastructure robustness and resilience improvements. Full article
Show Figures

Figure 1

20 pages, 2746 KiB  
Article
The Social Side of Internet of Things: Introducing Trust-Augmented Social Strengths for IoT Service Composition
by Jooik Jung and Ihnsik Weon
Sensors 2025, 25(15), 4794; https://doi.org/10.3390/s25154794 - 4 Aug 2025
Abstract
The integration of Internet of Things (IoT) systems with social networking concepts has opened new business and social opportunities, particularly by allowing smart objects to autonomously establish social relationships with each other and exchange information. However, these relations must be properly quantified and [...] Read more.
The integration of Internet of Things (IoT) systems with social networking concepts has opened new business and social opportunities, particularly by allowing smart objects to autonomously establish social relationships with each other and exchange information. However, these relations must be properly quantified and integrated with trust in order to proliferate the provisioning of IoT composite services. Therefore, this proposed work focuses on quantitatively computing social strength and trust among smart objects in IoT for the purpose of aiding efficient service composition with reasonable accuracy. In particular, we propose a trust-augmented social strength (TASS) management protocol that can cope with the heterogeneity of IoT and demonstrate high scalability and resiliency against various malicious attacks. Afterward, we show how the TASS measurements can be applied to service planning in IoT service composition. Based on the experimental results, we conclude that the proposed protocol is, in fact, capable of exhibiting the above-mentioned characteristics in real-world settings. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

86 pages, 28919 KiB  
Article
Sustainable Risk Mapping of High-Speed Rail Networks Through PS-InSAR and Geospatial Analysis
by Seung-Jun Lee, Hong-Sik Yun and Sang-Woo Kwak
Sustainability 2025, 17(15), 7064; https://doi.org/10.3390/su17157064 - 4 Aug 2025
Abstract
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in [...] Read more.
This study presents an integrated geospatial framework for assessing the risk to high-speed railway (HSR) infrastructure, combining a persistent scatterer interferometric synthetic aperture radar (PS-InSAR) analysis with multi-criteria decision-making in a geographic information system (GIS) environment. Focusing on the Honam HSR corridor in South Korea, the model incorporates both maximum ground deformation and subsidence velocity to construct a dynamic hazard index. Social vulnerability is quantified using five demographic and infrastructural indicators, and a two-stage analytic hierarchy process (AHP) is applied with dependency correction to mitigate inter-variable redundancy. The resulting high-resolution risk maps highlight spatial mismatches between geotechnical hazards and social exposure, revealing vulnerable segments in Gongju and Iksan that require prioritized maintenance and mitigation. The framework also addresses data limitations by interpolating groundwater levels and estimating train speed using spatial techniques. Designed to be scalable and transferable, this methodology offers a practical decision-support tool for infrastructure managers and policymakers aiming to enhance the resilience of linear transport systems. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 42
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 - 1 Aug 2025
Viewed by 190
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
23 pages, 798 KiB  
Article
Aligning with SDGs in Construction: The Foreman as a Key Lever for Reducing Worker Risk-Taking
by Jing Feng, Kongling Liu and Qinge Wang
Sustainability 2025, 17(15), 7000; https://doi.org/10.3390/su17157000 - 1 Aug 2025
Viewed by 198
Abstract
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent [...] Read more.
Improving occupational health and safety (OHS) in the construction industry can contribute to the advancement of the Sustainable Development Goals (SDGs), particularly Goals 3 (Good Health and Well-being) and 8 (Decent Work and Economic Growth). Yet, workers’ risk-taking behaviors (RTBs) remain a persistent challenge. Drawing on Social Cognitive Theory and Social Information Processing Theory, this study develops and tests a social influence model to examine how foremen’s safety attitudes (SAs) shape workers’ RTBs. Drawing on survey data from 301 construction workers in China, structural equation modeling reveals that foremen’s SAs significantly and negatively predict workers’ RTBs. However, the three dimensions of SAs—cognitive, affective, and behavioral—exert their influence through different pathways. Risk perception (RP) plays a key mediating role, particularly for the cognitive and behavioral dimensions. Furthermore, interpersonal trust (IPT) functions as a significant moderator in some of these relationships. By identifying the micro-social pathways that link foremen’s attitudes to workers’ safety behaviors, this study offers a testable theoretical framework for implementing the Sustainable Development Goals (particularly Goals 3 and 8) at the frontline workplace level. The findings provide empirical support for organizations to move beyond rule-based management and instead build more resilient OHS governance systems by systematically cultivating the multidimensional attitudes of frontline leaders. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

20 pages, 2054 KiB  
Article
Change Management in Aviation Organizations: A Multi-Method Theoretical Framework for External Environmental Uncertainty
by Ilona Skačkauskienė and Virginija Leonavičiūtė
Sustainability 2025, 17(15), 6994; https://doi.org/10.3390/su17156994 - 1 Aug 2025
Viewed by 161
Abstract
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid [...] Read more.
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid technological advancements, environmental pressures and regulatory changes—this research proposes a theoretical change management model for aviation service providers, such as airports. Integrating three analytical approaches, the model offers a robust, multi-method approach for supporting sustainable transformation under uncertainty. Normative analysis using Bayesian decision theory identifies influential external environmental factors, capturing probabilistic relationships, and revealing causal links under uncertainty. Prescriptive planning through scenario theory explores alternative future pathways and helps to identify possible predictions, offer descriptive evaluation employing fuzzy comprehensive evaluation, and assess decision quality under vagueness and complexity. The proposed four-stage model—observation, analysis, evaluation, and response—offers a methodology for continuous external environment monitoring, scenario development, and data-driven, proactive change management decision-making, including the impact assessment of change and development. The proposed model contributes to the theoretical advancement of the change management research area under uncertainty and offers practical guidance for aviation organizations (airports) facing a volatile external environment. This framework strengthens aviation organizations’ ability to anticipate, evaluate, and adapt to multifaceted external changes, supporting operational flexibility and adaptability and contributing to the sustainable development of aviation services. Supporting aviation organizations with tools to proactively manage systemic uncertainty, this research directly supports the integration of sustainability principles, such as resilience and adaptability, for long-term value creation through change management decision-making. Full article
Show Figures

Figure 1

21 pages, 2557 KiB  
Article
Coupling Patterns Between Urbanization and the Water Environment: A Case Study of Neijiang City, Sichuan Province, China
by Xiaofan Min, Jirong Liu, Yanlin Liu, Jie Zhou and Jiangtao Zhao
Sustainability 2025, 17(15), 6993; https://doi.org/10.3390/su17156993 - 1 Aug 2025
Viewed by 167
Abstract
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation [...] Read more.
The ongoing advancement of urbanization has significantly amplified its impacts on the water environment. Understanding the coupling relationships between urbanization and the water environment (UAWE) is crucial for Chinese policymakers aiming to promote sustainable urban development. In this study, a comprehensive UAWE evaluation model was developed to examine the development trajectories in Neijiang City from 2012 to 2022. Methodologically, a comprehensive evaluation approach was applied to assess urbanization and water resource trends over this period, followed by the development of a Coupling Coordination Degree Model (CCDM) to quantify their synergistic relationship. The results showed that the coupling between the comprehensive urbanization index and the water environment system evolved over time, as reflected in the following key findings: (1) Neijiang underwent three distinct stages from 2012 to 2022 in terms of coupling and coordination between urbanization and the water environment: Basic Coordination (2012–2015), Good Coordination (2016–2020), and Excellent Coordination (2020–2022). (2) Urbanization exerted varying impacts on subsystems of the water environment, with the pressure-response subsystems exhibiting marked volatility from 2012 to 2022. The impact intensity followed the order spatial urbanization > economic urbanization > social urbanization > population urbanization. These findings offer valuable theoretical and practical insights for aligning urban sustainability goals with effective water environment protection measures. This study provides essential guidance for policymakers in Neijiang and similar regions, enabling the development of tailored strategies for sustainable urbanization and enhanced water management. Full article
Show Figures

Figure 1

12 pages, 735 KiB  
Article
Perceived Barriers and Facilitators in Cardiovascular Risk Management in Colombia: A Qualitative Analysis of the RE-HOPE Study
by Jose P. Lopez-Lopez, Yesica Giraldo-Castrillon, Johanna Otero, Claudia Torres, Alvaro Castañeda-Hernandez, Daniel Martinez-Bello, Claudia Garcia, Marianne Lopez-Cabrera and Patricio Lopez-Jaramillo
Int. J. Environ. Res. Public Health 2025, 22(8), 1199; https://doi.org/10.3390/ijerph22081199 - 31 Jul 2025
Viewed by 147
Abstract
Introduction: Low medication adherence and low hypertension control are a public health challenge, particularly in low- and middle-income countries (LMICs). Healthcare system- and patient-related barriers hinder the successful management of hypertension. This study aimed to identify the perceptions of barriers and facilitators to [...] Read more.
Introduction: Low medication adherence and low hypertension control are a public health challenge, particularly in low- and middle-income countries (LMICs). Healthcare system- and patient-related barriers hinder the successful management of hypertension. This study aimed to identify the perceptions of barriers and facilitators to hypertension management among health system stakeholders in Santander, Colombia. Materials and Methods: We conducted a qualitative, phenomenological, and interpretative study, comprising five focus groups, to explore the barriers and facilitators to managing people with hypertension. Each focus group was formed by stakeholders from territorial entities, healthcare insurers, or healthcare providers. Meetings were held between December 2022 and February 2023. The sessions were recorded and transcribed using NVivo Transcription and analyzed using NVivo version 1.6.1. Results: Seven categories of barriers and facilitators were identified: strategies, resources, access, risk assessment, cross-sector collaboration, articulation, and stewardship. Of these categories, articulation and stewardship emerged as the main barriers, as revealed through axial coding and cluster analysis, which highlighted deficiencies in stewardship practices, a lack of clear objectives, and misalignment with public policy frameworks. Conclusions: Multisectoral actions extending beyond healthcare providers and aimed at improving coordination and intersectoral collaboration are essential for enhancing hypertension control in LMICs, such as Colombia. Addressing social determinants and strengthening primary healthcare through community-based strategies are critical, making stewardship and improved access key priorities. Full article
Show Figures

Figure 1

20 pages, 1509 KiB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Viewed by 384
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 217
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Viewed by 316
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

Back to TopTop