Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (278)

Search Parameters:
Keywords = smart-joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2081 KiB  
Article
Tariff-Sensitive Global Supply Chains: Semi-Markov Decision Approach with Reinforcement Learning
by Duygu Yilmaz Eroglu
Systems 2025, 13(8), 645; https://doi.org/10.3390/systems13080645 (registering DOI) - 1 Aug 2025
Viewed by 138
Abstract
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), [...] Read more.
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

26 pages, 2875 KiB  
Article
Sustainable THz SWIPT via RIS-Enabled Sensing and Adaptive Power Focusing: Toward Green 6G IoT
by Sunday Enahoro, Sunday Cookey Ekpo, Mfonobong Uko, Fanuel Elias, Rahul Unnikrishnan, Stephen Alabi and Nurudeen Kolawole Olasunkanmi
Sensors 2025, 25(15), 4549; https://doi.org/10.3390/s25154549 - 23 Jul 2025
Viewed by 326
Abstract
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz [...] Read more.
Terahertz (THz) communications and simultaneous wireless information and power transfer (SWIPT) hold the potential to energize battery-less Internet-of-Things (IoT) devices while enabling multi-gigabit data transmission. However, severe path loss, blockages, and rectifier nonlinearity significantly hinder both throughput and harvested energy. Additionally, high-power THz beams pose safety concerns by potentially exceeding specific absorption rate (SAR) limits. We propose a sensing-adaptive power-focusing (APF) framework in which a reconfigurable intelligent surface (RIS) embeds low-rate THz sensors. Real-time backscatter measurements construct a spatial map used for the joint optimisation of (i) RIS phase configurations, (ii) multi-tone SWIPT waveforms, and (iii) nonlinear power-splitting ratios. A weighted MMSE inner loop maximizes the data rate, while an outer alternating optimisation applies semidefinite relaxation to enforce passive-element constraints and SAR compliance. Full-stack simulations at 0.3 THz with 20 GHz bandwidth and up to 256 RIS elements show that APF (i) improves the rate–energy Pareto frontier by 30–75% over recent adaptive baselines; (ii) achieves a 150% gain in harvested energy and a 440 Mbps peak per-user rate; (iii) reduces energy-efficiency variance by half while maintaining a Jain fairness index of 0.999;; and (iv) caps SAR at 1.6 W/kg, which is 20% below the IEEE C95.1 safety threshold. The algorithm converges in seven iterations and executes within <3 ms on a Cortex-A78 processor, ensuring compliance with real-time 6G control budgets. The proposed architecture supports sustainable THz-powered networks for smart factories, digital-twin logistics, wire-free extended reality (XR), and low-maintenance structural health monitors, combining high-capacity communication, safe wireless power transfer, and carbon-aware operation for future 6G cyber–physical systems. Full article
Show Figures

Figure 1

21 pages, 21215 KiB  
Article
ES-Net Empowers Forest Disturbance Monitoring: Edge–Semantic Collaborative Network for Canopy Gap Mapping
by Yutong Wang, Zhang Zhang, Jisheng Xia, Fei Zhao and Pinliang Dong
Remote Sens. 2025, 17(14), 2427; https://doi.org/10.3390/rs17142427 - 12 Jul 2025
Viewed by 393
Abstract
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; [...] Read more.
Canopy gaps are vital microhabitats for forest carbon cycling and species regeneration, whose accurate extraction is crucial for ecological modeling and smart forestry. However, traditional monitoring methods have notable limitations: ground-based measurements are inefficient; remote-sensing interpretation is susceptible to terrain and spectral interference; and traditional algorithms exhibit an insufficient feature representation capability. Aiming at overcoming the bottleneck issues of canopy gap identification in mountainous forest regions, we constructed a multi-task deep learning model (ES-Net) integrating an edge–semantic collaborative perception mechanism. First, a refined sample library containing multi-scale interference features was constructed, which included 2808 annotated UAV images. Based on this, a dual-branch feature interaction architecture was designed. A cross-layer attention mechanism was embedded in the semantic segmentation module (SSM) to enhance the discriminative ability for heterogeneous features. Meanwhile, an edge detection module (EDM) was built to strengthen geometric constraints. Results from selected areas in Yunnan Province (China) demonstrate that ES-Net outperforms U-Net, boosting the Intersection over Union (IoU) by 0.86% (95.41% vs. 94.55%), improving the edge coverage rate by 3.14% (85.32% vs. 82.18%), and reducing the Hausdorff Distance by 38.6% (28.26 pixels vs. 46.02 pixels). Ablation studies further verify that the synergy between SSM and EDM yields a 13.0% IoU gain over the baseline, highlighting the effectiveness of joint semantic–edge optimization. This study provides a terrain-adaptive intelligent interpretation method for forest disturbance monitoring and holds significant practical value for advancing smart forestry construction and ecosystem sustainable management. Full article
Show Figures

Graphical abstract

12 pages, 677 KiB  
Systematic Review
Quality of Life Outcomes Following Total Temporomandibular Joint Replacement: A Systematic Review of Long-Term Efficacy, Functional Improvements, and Complication Rates Across Prosthesis Types
by Luis Eduardo Almeida, Samuel Zammuto and Louis G. Mercuri
J. Clin. Med. 2025, 14(14), 4859; https://doi.org/10.3390/jcm14144859 - 9 Jul 2025
Viewed by 487
Abstract
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, [...] Read more.
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, compares custom versus stock prostheses, explores pediatric applications, and highlights technological innovations shaping the future of TMJ reconstruction. Methods: A systematic search of PubMed, Embase, and the Cochrane Library was conducted throughout April 2025 in accordance with PRISMA 2020 guidelines. Sixty-four studies were included, comprising 2387 patients. Results: Primary outcomes assessed were QoL improvement, pain reduction, and functional gains such as maximum interincisal opening (MIO). Secondary outcomes included complication rates and technological integration. TMJR consistently led to significant pain reduction (75–87%), average MIO increases of 26–36 mm, and measurable QoL improvements across physical, social, and psychological domains. Custom prostheses were particularly beneficial in anatomically complex or revision cases, while stock devices generally performed well for standard anatomical conditions. Pediatric TMJR demonstrated functional and airway benefits with no clear evidence of growth inhibition over short- to medium-term follow-up. Complications such as heterotopic ossification (~20%, reduced to <5% with fat grafting), infection (3–4.9%), and chronic postoperative pain (~20–30%) were reported but were largely preventable or manageable. Recent advancements, including CAD/CAM planning, 3D-printed prostheses, augmented-reality-assisted surgery, and biofilm-resistant materials, are enhancing personalization, precision, and implant longevity. Conclusions: TMJR is a safe and transformative treatment that consistently improves QoL in patients with end-stage TMJ disease. Future directions include long-term registry tracking, growth-accommodating prosthesis design, and biologically integrated smart implants. Full article
Show Figures

Figure 1

17 pages, 824 KiB  
Article
Resilient Event-Triggered H Control for a Class of LFC Systems Subject to Deception Attacks
by Yunfan Wang, Zesheng Xi, Bo Zhang, Tao Zhang and Chuan He
Electronics 2025, 14(13), 2713; https://doi.org/10.3390/electronics14132713 - 4 Jul 2025
Viewed by 200
Abstract
This paper explores an event-triggered load frequency control (LFC) strategy for smart grids incorporating electric vehicles (EVs) under the influence of random deception attacks. The aggressive attack signals are launched over the channels between the sensor and controller, compromising the integrity of transmitted [...] Read more.
This paper explores an event-triggered load frequency control (LFC) strategy for smart grids incorporating electric vehicles (EVs) under the influence of random deception attacks. The aggressive attack signals are launched over the channels between the sensor and controller, compromising the integrity of transmitted data and disrupting LFC commands. For the purpose of addressing bandwidth constraints, an event-triggered transmission scheme (ETTS) is developed to minimize communication frequency. Additionally, to mitigate the impact of random deception attacks in public environment, an integrated networked power grid model is proposed, where the joint impact of ETTS and deceptive interference is captured within a unified analytical structure. Based on this framework, a sufficient condition for stabilization is established, enabling the concurrent design of the H controller gain and the triggering condition. Finally, two case studies are offered to illustrate the effectiveness of the employed scheme. Full article
(This article belongs to the Special Issue Knowledge Information Extraction Research)
Show Figures

Figure 1

24 pages, 2253 KiB  
Article
Modeling Spatial Data with Heteroscedasticity Using PLVCSAR Model: A Bayesian Quantile Regression Approach
by Rongshang Chen and Zhiyong Chen
Entropy 2025, 27(7), 715; https://doi.org/10.3390/e27070715 - 1 Jul 2025
Viewed by 313
Abstract
Spatial data not only enables smart cities to visualize, analyze, and interpret data related to location and space, but also helps departments make more informed decisions. We apply a Bayesian quantile regression (BQR) of the partially linear varying coefficient spatial autoregressive (PLVCSAR) model [...] Read more.
Spatial data not only enables smart cities to visualize, analyze, and interpret data related to location and space, but also helps departments make more informed decisions. We apply a Bayesian quantile regression (BQR) of the partially linear varying coefficient spatial autoregressive (PLVCSAR) model for spatial data to improve the prediction of performance. It can be used to capture the response of covariates to linear and nonlinear effects at different quantile points. Through an approximation of the nonparametric functions with free-knot splines, we develop a Bayesian sampling approach that can be applied by the Markov chain Monte Carlo (MCMC) approach and design an efficient Metropolis–Hastings within the Gibbs sampling algorithm to explore the joint posterior distributions. Computational efficiency is achieved through a modified reversible-jump MCMC algorithm incorporating adaptive movement steps to accelerate chain convergence. The simulation results demonstrate that our estimator exhibits robustness to alternative spatial weight matrices and outperforms both quantile regression (QR) and instrumental variable quantile regression (IVQR) in a finite sample at different quantiles. The effectiveness of the proposed model and estimation method is demonstrated by the use of real data from the Boston median house price. Full article
(This article belongs to the Special Issue Bayesian Hierarchical Models with Applications)
Show Figures

Figure 1

25 pages, 3376 KiB  
Article
A Multi-Level Knowledge Distillation for Enhanced Crop Segmentation in Precision Agriculture
by Zhiyong Li, Lan Xiang, Jun Sun, Dingyi Liao, Lijia Xu and Mantao Wang
Agriculture 2025, 15(13), 1418; https://doi.org/10.3390/agriculture15131418 - 30 Jun 2025
Viewed by 467
Abstract
In this paper, we propose a knowledge distillation framework specifically designed for semantic segmentation tasks in agricultural scenarios. This framework aims to address several prevalent challenges in smart agriculture, including limited computational resources, strict real-time constraints, and suboptimal segmentation accuracy on cropped images. [...] Read more.
In this paper, we propose a knowledge distillation framework specifically designed for semantic segmentation tasks in agricultural scenarios. This framework aims to address several prevalent challenges in smart agriculture, including limited computational resources, strict real-time constraints, and suboptimal segmentation accuracy on cropped images. Traditional single-level feature distillation methods often suffer from insufficient knowledge transfer and inefficient utilization of multi-scale features, which significantly limits their ability to accurately segment complex crop structures in dynamic field environments. To overcome these issues, we propose a multi-level distillation strategy that leverages feature and embedding patch distillation, combining high-level semantic features with low-level texture details for joint distillation. This approach enables the precise capture of fine-grained agricultural elements, such as crop boundaries, stems, petioles, and weed clusters, which are critical for achieving robust segmentation. Additionally, we integrated an enhanced attention mechanism into the framework, which effectively strengthens and fuses key crop-related features during the distillation process, thereby further improving the model’s performance and image understanding capabilities. Extensive experiments on two agricultural datasets (sweet pepper and sugar) demonstrate that our method improves segmentation accuracy by 7.59% and 6.79%, without significantly increasing model complexity. Further validation shows that our approach exhibits strong generalization capabilities on two widely used public datasets, proving its applicability beyond agricultural domains. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

26 pages, 5240 KiB  
Article
A Linear Strong Constraint Joint Solution Method Based on Angle Information Enhancement
by Zhongliang Deng, Ziyao Ma, Xiangchuan Gao, Peijia Liu and Kun Yang
Appl. Sci. 2025, 15(12), 6808; https://doi.org/10.3390/app15126808 - 17 Jun 2025
Viewed by 231
Abstract
High-precision indoor positioning technology is increasingly prominent in its application value in emerging fields such as the Industrial Internet of Things, smart cities, and autonomous driving. 5G networks can transmit large-bandwidth signals and have the capability to transmit and receive signals with multiple [...] Read more.
High-precision indoor positioning technology is increasingly prominent in its application value in emerging fields such as the Industrial Internet of Things, smart cities, and autonomous driving. 5G networks can transmit large-bandwidth signals and have the capability to transmit and receive signals with multiple antennas, enabling the simultaneous acquisition of angle and distance observation information, providing a solution for high-precision positioning. Differences in the types and quantities of observation information in complex environments lead to positioning scenarios having a multimodal nature; how to propose an effective observation model that covers multimodal scenarios for high-precision robust positioning is an urgent problem to be solved. This paper proposes a three-stage time–frequency synchronization method based on group peak time sequence tracing. Timing coarse synchronization is performed through a group peak accumulation timing coarse synchronization algorithm for multi-window joint estimation, frequency offset estimation is based on cyclic prefixes, and finally, fine timing synchronization based on the primary synchronization signal (PSS) sliding cross-correlation is used to synchronize 5G signals to chip-level accuracy. Then, a tracking loop is used to track the Positioning Reference Signal (PRS) to within-chip accuracy, obtaining accurate distance information. After obtaining distance and angle information, a high-precision positioning method for multimodal scenarios based on 5G heterogeneous measurement combination is proposed. Using high-precision angle observation values as intermediate variables, this algorithm can still solve a closed-form positioning solution under sparse observation conditions, enabling the positioning system to achieve good positioning performance even with limited redundant observation information. Full article
(This article belongs to the Special Issue 5G/6G Mechanisms, Services, and Applications)
Show Figures

Figure 1

23 pages, 2071 KiB  
Systematic Review
Creating Value in Metaverse-Driven Global Value Chains: Blockchain Integration and the Evolution of International Business
by Sina Mirzaye Shirkoohi and Muhammad Mohiuddin
J. Theor. Appl. Electron. Commer. Res. 2025, 20(2), 126; https://doi.org/10.3390/jtaer20020126 - 2 Jun 2025
Viewed by 767
Abstract
The convergence of blockchain and metaverse technologies is poised to redefine how Global Value Chains (GVCs) create, capture, and distribute value, yet scholarly insight into their joint impact remains scattered. Addressing this gap, the present study aims to clarify where, how, and under [...] Read more.
The convergence of blockchain and metaverse technologies is poised to redefine how Global Value Chains (GVCs) create, capture, and distribute value, yet scholarly insight into their joint impact remains scattered. Addressing this gap, the present study aims to clarify where, how, and under what conditions blockchain-enabled transparency and metaverse-enabled immersion enhance GVC performance. A systematic literature review (SLR), conducted according to PRISMA 2020 guidelines, screened 300 articles from ABI Global, Business Source Premier, and Web of Science records, yielding 65 peer-reviewed articles for in-depth analysis. The corpus was coded thematically and mapped against three theoretical lenses: transaction cost theory, resource-based view, and network/ecosystem perspectives. Key findings reveal the following: 1. digital twins anchored in immersive platforms reduce planning cycles by up to 30% and enable real-time, cross-border supply chain reconfiguration; 2. tokenized assets, micro-transactions, and decentralized finance (DeFi) are spawning new revenue models but simultaneously shift tax triggers and compliance burdens; 3. cross-chain protocols are critical for scalable trust, yet regulatory fragmentation—exemplified by divergent EU, U.S., and APAC rules—creates non-trivial coordination costs; and 4. traditional IB theories require extension to account for digital-capability orchestration, emerging cost centers (licensing, reserve backing, data audits), and metaverse-driven network effects. Based on these insights, this study recommends that managers adopt phased licensing and geo-aware tax engines, embed region-specific compliance flags in smart-contract metadata, and pilot digital-twin initiatives in sandbox-friendly jurisdictions. Policymakers are urged to accelerate work on interoperability and reporting standards to prevent systemic bottlenecks. Finally, researchers should pursue multi-case and longitudinal studies measuring the financial and ESG outcomes of integrated blockchain–metaverse deployments. By synthesizing disparate streams and articulating a forward agenda, this review provides a conceptual bridge for international business scholarship and a practical roadmap for firms navigating the next wave of digital GVC transformation. Full article
Show Figures

Figure 1

16 pages, 498 KiB  
Review
Additive Manufacturing, Thermoplastics, CAD Technology, and Reverse Engineering in Orthopedics and Neurosurgery–Applications to Preventions and Treatment of Infections
by Gabriel Burato Ortis, Franco Camargo Zapparoli, Leticia Ramos Dantas, Paula Hansen Suss, Jamil Faissal Soni, Celso Júnio Aguiar Mendonça, Gustavo Henrique Loesch, Maíra de Mayo Oliveira Nogueira Loesch and Felipe Francisco Tuon
Antibiotics 2025, 14(6), 565; https://doi.org/10.3390/antibiotics14060565 - 31 May 2025
Viewed by 820
Abstract
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more [...] Read more.
The increasing demand for orthopedic and neurosurgical implants has driven advancements in biomaterials, additive manufacturing, and antimicrobial strategies. With an increasingly aging population, and a high incidence of orthopedic trauma in developing countries, the need for effective, biocompatible, and infection-resistant implants is more critical than ever. This review explores the role of polymers in 3D printing for medical applications, focusing on their use in orthopedic and neurosurgical implants. Polylactic acid (PLA), polycaprolactone (PCL), and polyetheretherketone (PEEK) have gained attention due to their biocompatibility, mechanical properties, and potential for antimicrobial modifications. A major challenge in implantology is the risk of periprosthetic joint infections (PJI) and surgical site infections (SSI). Current strategies, such as antibiotic-loaded polymethylmethacrylate (PMMA) spacers and bioactive coatings, aim to reduce infection rates, but limitations remain. Additive manufacturing enables the creation of customized implants with tailored porosity for enhanced osseointegration while allowing for the incorporation of antimicrobial agents. Future perspectives include the integration of artificial intelligence for implant design, nanotechnology for smart coatings, and bioresorbable scaffolds for improved bone regeneration. Advancing these technologies will lead to more efficient, cost-effective, and patient-specific solutions, ultimately reducing infection rates and improving long-term clinical outcomes. Full article
Show Figures

Figure 1

27 pages, 2928 KiB  
Article
ML-RASPF: A Machine Learning-Based Rate-Adaptive Framework for Dynamic Resource Allocation in Smart Healthcare IoT
by Wajid Rafique
Algorithms 2025, 18(6), 325; https://doi.org/10.3390/a18060325 - 29 May 2025
Viewed by 433
Abstract
The growing adoption of the Internet of Things (IoT) in healthcare has led to a surge in real-time data from wearable devices, medical sensors, and patient monitoring systems. This latency-sensitive environment poses significant challenges to traditional cloud-centric infrastructures, which often struggle with unpredictable [...] Read more.
The growing adoption of the Internet of Things (IoT) in healthcare has led to a surge in real-time data from wearable devices, medical sensors, and patient monitoring systems. This latency-sensitive environment poses significant challenges to traditional cloud-centric infrastructures, which often struggle with unpredictable service demands, network congestion, and end-to-end delay constraints. Consistently meeting the stringent QoS requirements of smart healthcare, particularly for life-critical applications, requires new adaptive architectures. We propose ML-RASPF, a machine learning-based framework for efficient service delivery in smart healthcare systems. Unlike existing methods, ML-RASPF jointly optimizes latency and service delivery rate through predictive analytics and adaptive control across a modular mist–edge–cloud architecture. The framework formulates task provisioning as a joint optimization problem that aims to minimize service latency and maximize delivery throughput. We evaluate ML-RASPF using a realistic smart hospital scenario involving IoT-enabled kiosks and wearable devices that generate both latency-sensitive and latency-tolerant service requests. Experimental results demonstrate that ML-RASPF achieves up to 20% lower latency, 18% higher service delivery rate, and 19% reduced energy consumption compared to leading baselines. Full article
Show Figures

Figure 1

12 pages, 8262 KiB  
Article
High-Sensitivity and Wide-Range Flexible Pressure Sensor Based on Gradient-Wrinkle Structures and AgNW-Coated PDMS
by Xiaoran Liu, Xinyi Wang, Tao Xue, Yingying Zhao and Qiang Zou
Micromachines 2025, 16(4), 468; https://doi.org/10.3390/mi16040468 - 15 Apr 2025
Cited by 1 | Viewed by 829
Abstract
Flexible pressure sensors have garnered significant attention due to their wide range of applications in human motion monitoring and smart wearable devices. However, the fabrication of pressure sensors that offer both high sensitivity and a wide detection range remains a challenging task. In [...] Read more.
Flexible pressure sensors have garnered significant attention due to their wide range of applications in human motion monitoring and smart wearable devices. However, the fabrication of pressure sensors that offer both high sensitivity and a wide detection range remains a challenging task. In this paper, we propose an AgNW-coated PDMS flexible piezoresistive sensor based on a gradient-wrinkle structure. By modifying the microstructure of PDMS, the sensor demonstrates varying sensitivities and pressure responses across different pressure ranges. The wrinkle microstructure contributes to high sensitivity (0.947 kPa−1) at low pressures, while the PDMS film with a gradient contact height ensures a continuous change in the contact area through the gradual activation of the contact wrinkles, resulting in a wide detection range (10–50 kPa). This paper also investigates the contact state of gradient-wrinkle films under different pressures to further elaborate on the sensor’s sensing mechanism. The sensor’s excellent performance in real-time response to touch behavior, joint motion, swallowing behavior recognition, and grasping behavior detection highlights its broad application prospects in human–computer interaction, human motion monitoring, and intelligent robotics. Full article
Show Figures

Figure 1

24 pages, 802 KiB  
Article
A New Proposal for Intelligent Continuous Controller of Robotic Finger Prostheses Using Deep Deterministic Policy Gradient Algorithm Through Simulated Assessments
by Guilherme de Paula Rúbio, Matheus Carvalho Barbosa Costa and Claysson Bruno Santos Vimieiro
Robotics 2025, 14(4), 49; https://doi.org/10.3390/robotics14040049 - 14 Apr 2025
Viewed by 633
Abstract
To improve the adaptability of the hand prosthesis, we propose a new smart control for a physiological finger prosthesis using the advantages of the deep deterministic policy gradient (DDPG) algorithm. A rigid body model was developed to represent the finger as a training [...] Read more.
To improve the adaptability of the hand prosthesis, we propose a new smart control for a physiological finger prosthesis using the advantages of the deep deterministic policy gradient (DDPG) algorithm. A rigid body model was developed to represent the finger as a training environment. The geometric characteristics and physiological physical properties of the finger available in the literature were assumed, but the joint’s stiffness and damping were neglected. The standard DDPG algorithm was modified to train an artificial neural network (ANN) to perform two predetermined trajectories: linear and sinusoidal. The ANN was evaluated through the use of a computational model that simulated the functionality of the finger prosthesis. The model demonstrated the capacity to successfully execute both sinusoidal and linear trajectories, exhibiting a mean error of 3.984±2.899 mm for the sinusoidal trajectory and 3.220±1.419 mm for the linear trajectory. Observing the torques, it was found that the ANN used different strategies to control the movement in order to adapt to the different trajectories. Allowing the ANN to use a combination of both trajectories, our model was able to perform trajectories that differed from purely linear and sinusoidal, showing its ability to adapt to the movement of the physiological finger. The results showed that it was possible to develop a controller for multiple trajectories, which is essential to provide more integrated and personalized prostheses. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

21 pages, 3706 KiB  
Article
Multi-Joint Symmetric Optimization Approach for Unmanned Aerial Vehicle Assisted Edge Computing Resources in Internet of Things-Based Smart Cities
by Aarthi Chelladurai, M. D. Deepak, Przemysław Falkowski-Gilski and Parameshachari Bidare Divakarachari
Symmetry 2025, 17(4), 574; https://doi.org/10.3390/sym17040574 - 10 Apr 2025
Viewed by 467
Abstract
Smart cities are equipped with a vast number of IoT devices, which help to collect and analyze data to improve the quality of life for urban people by offering a sustainable and connected environment. However, the rapid growth of IoT systems has issues [...] Read more.
Smart cities are equipped with a vast number of IoT devices, which help to collect and analyze data to improve the quality of life for urban people by offering a sustainable and connected environment. However, the rapid growth of IoT systems has issues related to the Quality of Service (QoS) and allocation of limited resources in IoT-based smart cities. The cloud in the IoT system also faces issues related to higher consumption of energy and extended latency. This research presents an effort to overcome these challenges by introducing opposition-based learning incorporated into Golden Jackal Optimization (OL-GJO) to assign distributed edge capabilities to diminish the energy consumption and delay in IoT-based smart cities. In the context of IoT-based smart cities, a three-layered architecture is developed, comprising the IoT system, the Unmanned Aerial Vehicle (UAV)-assisted edge layer, and the cloud layer. Moreover, the controller positioned at the edge of UAV helps determine the number of tasks. The proposed approach, based on opposition-based learning, is put forth to offer effective computing resources for delay-sensitive tasks. The multi-joint symmetric optimization uses OL-GJO, where opposition-based learning confirms a symmetric search process is employed, improving the task scheduling process in UAV-assisted edge computing. The experimental findings exhibit that OL-GJO performs in an effective manner while offloading resources. For 200 tasks, the delay experienced by OL-GJO is 2.95 ms, whereas Multi Particle Swarm Optimization (M-PSO) and the auction-based approach experience delays of 7.19 ms and 3.78 ms, respectively. Full article
Show Figures

Figure 1

23 pages, 4630 KiB  
Article
Federated Learning-Based Framework to Improve the Operational Efficiency of an Articulated Robot Manufacturing Environment
by Junyong So, In-Bae Lee and Sojung Kim
Appl. Sci. 2025, 15(8), 4108; https://doi.org/10.3390/app15084108 - 8 Apr 2025
Cited by 3 | Viewed by 596
Abstract
Although articulated robots with flexible automation systems are essential for implementing smart factories, their high initial investment costs make them difficult for small and medium-sized enterprises to implement. This study proposes a federated learning-based articulated robot control framework to improve the task completion [...] Read more.
Although articulated robots with flexible automation systems are essential for implementing smart factories, their high initial investment costs make them difficult for small and medium-sized enterprises to implement. This study proposes a federated learning-based articulated robot control framework to improve the task completion of multiple articulated robots used in automated systems under limited computing resources. The proposed framework consists of two modules: (1) a federated learning module for the cooperative training of multiple joint robots on a part-picking task and (2) an articulated robot control module to balance the efficiency of limited resources. The proposed framework is applied to cases with different numbers of joint robots, and its performance is evaluated in terms of training completion time, resource share ratio, network traffic, and completion time of a picking task. Under the devised framework, the experiment demonstrates object recognition by three joint robots with an accuracy of approximately 80% at a minimum number of learning rounds of 76 and with a network traffic intensity of 2303.5 MB. As a result, this study contributes to the expansion of federated learning use for articulated robot control in limited environments, such as small and medium-sized enterprises. Full article
Show Figures

Figure 1

Back to TopTop