Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,064)

Search Parameters:
Keywords = smart meeting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8429 KiB  
Review
Design and Fabrication of Customizable Urban Furniture Through 3D Printing Processes
by Antreas Kantaros, Theodore Ganetsos, Zoe Kanetaki, Constantinos Stergiou, Evangelos Pallis and Michail Papoutsidakis
Processes 2025, 13(8), 2492; https://doi.org/10.3390/pr13082492 - 7 Aug 2025
Abstract
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the [...] Read more.
Continuous progress in the sector of additive manufacturing has drastically aided the design and fabrication of urban furniture, offering high levels of customization and adaptability. This work looks into the potential of 3D printing to transform urban public spaces by allowing for the creation of functional, aesthetically pleasing, and user-centered furniture solutions. Through additive manufacturing processes, urban furniture can be tailored to meet the unique needs of diverse communities, allowing for the extended usage of sustainable materials, modular designs, and smart technologies. The flexibility of 3D printing also promotes the fabrication of complex, intricate designs that would be difficult or cost-prohibitive using traditional methods. Additionally, 3D-printed furniture can be optimized for specific environmental conditions, providing solutions that enhance accessibility, improve comfort, and promote inclusivity. The various advantages of 3D-printed urban furniture are examined, including reduced material waste and the ability to rapidly prototype and iterate designs alongside the potential for on-demand, local production. By embedding sensors and IoT devices, 3D-printed furniture can also contribute to the development of smart cities, providing real-time data for urban management and improving the overall user experience. As cities continue to encourage and adopt sustainable and innovative solutions, 3D printing is believed to play a crucial role in future urban infrastructure planning. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 1246 KiB  
Systematic Review
Exploring the Management Models and Strategies for Hospital in the Home Initiatives
by Amir Hossein Ghapanchi, Afrooz Purarjomandlangrudi, Navid Ahmadi Eftekhari, Josephine Stevens and Kirsty Barnes
Technologies 2025, 13(8), 343; https://doi.org/10.3390/technologies13080343 - 7 Aug 2025
Abstract
Hospital in the Home (HITH) programs are emerging as a key pillar of smart city healthcare infrastructure, leveraging technology to extend care beyond traditional hospital walls. The global healthcare sector has been conceptualizing the notion of a care without walls hospital, also called [...] Read more.
Hospital in the Home (HITH) programs are emerging as a key pillar of smart city healthcare infrastructure, leveraging technology to extend care beyond traditional hospital walls. The global healthcare sector has been conceptualizing the notion of a care without walls hospital, also called HITH, where virtual care takes precedence to address the multifaceted needs of an increasingly aging population grappling with a substantial burden of chronic disease. HITH programs have the potential to significantly reduce hospital bed occupancy, enabling hospitals to better manage the ever-increasing demand for inpatient care. Although many health providers and hospitals have established their own HITH programs, there is a lack of research that provides healthcare executives and HITH program managers with management models and frameworks for such initiatives. There is also a lack of research that provides strategies for improving HITH management in the health sector. To fill this gap, the current study ran a systematic literature review to explore state-of-the-art with regard to this topic. Out of 2631 articles in the pool of this systematic review, 20 articles were deemed to meet the eligibility criteria for the study. After analyzing these studies, nine management models were extracted, which were then categorized into three categories, namely, governance models, general models, and virtual models. Moreover, this study found 23 strategies and categorized them into five groups, namely, referral support, external support, care model support, technical support, and clinical team support. Finally, implications of findings for practitioners are carefully provided. These findings provide healthcare executives and HITH managers with practical frameworks for selecting appropriate management models and implementing evidence-based strategies to optimize program effectiveness, reduce costs, and improve patient outcomes while addressing the growing demand for home-based care. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

14 pages, 24112 KiB  
Article
ImpactAlert: Pedestrian-Carried Vehicle Collision Alert System
by Raghav Rawat, Caspar Lant, Haowen Yuan and Dennis Shasha
Electronics 2025, 14(15), 3133; https://doi.org/10.3390/electronics14153133 - 6 Aug 2025
Abstract
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from [...] Read more.
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from unseen directions. This paper argues for the need for such a system, the design and algorithms of ImpactAlert, and experiments carried out in varied urban environments, ranging from densely crowded to semi-urban in the United States, India and China. ImpactAlert makes use of a LiDAR camera found on a commercial wireless phone, processes the data over several frames to evaluate the time to impact and speed of potential threats. When ImpactAlert determines a threat meets the criteria set by the user, it sends warning signals through an output device to warn a pedestrian. The output device can be an audible warning and/or a low-cost smart cane that vibrates when danger approaches. Our experiments in urban and semi-urban environments show that (i) ImpactAlert can avoid nearly all false negatives (when an alarm should be sent and it isn’t) and (ii) enjoys a low false positive rate. The net result is an effective low cost system to alert pedestrians in an urban environment. Full article
Show Figures

Figure 1

24 pages, 5022 KiB  
Article
Aging-Invariant Sheep Face Recognition Through Feature Decoupling
by Suhui Liu, Chuanzhong Xuan, Zhaohui Tang, Guangpu Wang, Xinyu Gao and Zhipan Wang
Animals 2025, 15(15), 2299; https://doi.org/10.3390/ani15152299 - 6 Aug 2025
Abstract
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the [...] Read more.
Precise recognition of individual ovine specimens plays a pivotal role in implementing smart agricultural platforms and optimizing herd management systems. With the development of deep learning technology, sheep face recognition provides an efficient and contactless solution for individual sheep identification. However, with the growth of sheep, their facial features keep changing, which poses challenges for existing sheep face recognition models to maintain accuracy across the dynamic changes in facial features over time, making it difficult to meet practical needs. To address this limitation, we propose the lifelong biometric learning of the sheep face network (LBL-SheepNet), a feature decoupling network designed for continuous adaptation to ovine facial changes, and constructed a dataset of 31,200 images from 55 sheep tracked monthly from 1 to 12 months of age. The LBL-SheepNet model addresses dynamic variations in facial features during sheep growth through a multi-module architectural framework. Firstly, a Squeeze-and-Excitation (SE) module enhances discriminative feature representation through adaptive channel-wise recalibration. Then, a nonlinear feature decoupling module employs a hybrid channel-batch attention mechanism to separate age-related features from identity-specific characteristics. Finally, a correlation analysis module utilizes adversarial learning to suppress age-biased feature interference, ensuring focus on age-invariant identifiers. Experimental results demonstrate that LBL-SheepNet achieves 95.5% identification accuracy and 95.3% average precision on the sheep face dataset. This study introduces a lifelong biometric learning (LBL) mechanism to mitigate recognition accuracy degradation caused by dynamic facial feature variations in growing sheep. By designing a feature decoupling network integrated with adversarial age-invariant learning, the proposed method addresses the performance limitations of existing models in long-term individual identification. Full article
(This article belongs to the Section Animal System and Management)
Show Figures

Figure 1

22 pages, 518 KiB  
Article
Staying or Leaving a Shrinking City: Migration Intentions of Creative Youth in Erzurum, Eastern Türkiye
by Defne Dursun and Doğan Dursun
Sustainability 2025, 17(15), 7109; https://doi.org/10.3390/su17157109 - 6 Aug 2025
Abstract
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or [...] Read more.
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or leave decisions. Survey data from 742 Architecture and Fine Arts students at Atatürk University were analyzed using factor analysis, logistic regression, and correlation to identify key migration drivers. Findings reveal that, in addition to economic concerns such as limited job opportunities and low income, personal development opportunities and social engagement also play a decisive role. In particular, the perception of limited chances for skill enhancement and the belief that Erzurum is not a good place to meet people emerged as the strongest predictors of migration intentions. These results suggest that members of the creative class are influenced not only by economic incentives but also by broader urban experiences related to self-growth and social connectivity. This study highlights spatial inequalities in access to cultural, educational, and social infrastructure, raising important questions about spatial justice in shrinking urban contexts. This paper contributes to the literature on shrinking cities by highlighting creative youth in mid-sized Global South cities. It suggests smart shrinkage strategies focused on creative sector development, improved quality of life, and inclusive planning to retain young talent and support sustainable urban revitalization. Full article
Show Figures

Graphical abstract

21 pages, 1800 KiB  
Article
GAPSO: Cloud-Edge-End Collaborative Task Offloading Based on Genetic Particle Swarm Optimization
by Wu Wen, Yibin Huang, Zhong Xiao, Lizhuang Tan and Peiying Zhang
Symmetry 2025, 17(8), 1225; https://doi.org/10.3390/sym17081225 - 3 Aug 2025
Viewed by 241
Abstract
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems [...] Read more.
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems caused by transmission delay and multi-level forwarding in cloud computing by processing data close to the data source. In this paper, we propose a cloud–edge–end collaborative task offloading strategy with task response time and execution energy consumption as the optimization targets under a limited resource environment. The tasks generated by smart devices can be processed using three kinds of computing nodes, including user devices, edge servers, and cloud servers. The computing nodes are constrained by bandwidth and computing resources. For the target optimization problem, a genetic particle swarm optimization algorithm considering three layers of computing nodes is designed. The task offloading optimization is performed by introducing (1) opposition-based learning algorithm, (2) adaptive inertia weights, and (3) adjustive acceleration coefficients. All metaheuristic algorithms adopt a symmetric training method to ensure fairness and consistency in evaluation. Through experimental simulation, compared with the classic evolutionary algorithm, our algorithm reduces the objective function value by about 6–12% and has higher algorithm convergence speed, accuracy, and stability. Full article
Show Figures

Figure 1

18 pages, 8141 KiB  
Review
AI-Driven Aesthetic Rehabilitation in Edentulous Arches: Advancing Symmetry and Smile Design Through Medit SmartX and Scan Ladder
by Adam Brian Nulty
J. Aesthetic Med. 2025, 1(1), 4; https://doi.org/10.3390/jaestheticmed1010004 - 1 Aug 2025
Viewed by 600
Abstract
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in [...] Read more.
The integration of artificial intelligence (AI) and advanced digital workflows is revolutionising full-arch implant dentistry, particularly for geriatric patients with edentulous and atrophic arches, for whom achieving both prosthetic passivity and optimal aesthetic outcomes is critical. This narrative review evaluates current challenges in intraoral scanning accuracy—such as scan distortion, angular deviation, and cross-arch misalignment—and presents how innovations like the Medit SmartX AI-guided workflow and the Scan Ladder system can significantly enhance precision in implant position registration. These technologies mitigate stitching errors by using real-time scan body recognition and auxiliary geometric references, yielding mean RMS trueness values as low as 11–13 µm, comparable to dedicated photogrammetry systems. AI-driven prosthetic design further aligns implant-supported restorations with facial symmetry and smile aesthetics, prioritising predictable midline and occlusal plane control. Early clinical data indicate that such tools can reduce prosthetic misfits to under 20 µm and lower complication rates related to passive fit, while shortening scan times by up to 30% compared to conventional workflows. This is especially valuable for elderly individuals who may not tolerate multiple lengthy adjustments. Additionally, emerging AI applications in design automation, scan validation, and patient-specific workflow adaptation continue to evolve, supporting more efficient and personalised digital prosthodontics. In summary, AI-enhanced scanning and prosthetic workflows do not merely meet functional demands but also elevate aesthetic standards in complex full-arch rehabilitations. The synergy of AI and digital dentistry presents a transformative opportunity to consistently deliver superior precision, passivity, and facial harmony for edentulous implant patients. Full article
Show Figures

Graphical abstract

29 pages, 3508 KiB  
Article
Assessment of the Energy Efficiency of Individual Means of Transport in the Process of Optimizing Transport Environments in Urban Areas in Line with the Smart City Idea
by Grzegorz Augustyn, Jerzy Mikulik, Wojciech Lewicki and Mariusz Niekurzak
Energies 2025, 18(15), 4079; https://doi.org/10.3390/en18154079 - 1 Aug 2025
Viewed by 203
Abstract
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a [...] Read more.
One of the fundamental goals of contemporary mobility is to optimize transport processes in urban areas. The solution in this area seems to be the implementation of the idea of sustainable transport systems based on the Smart City concept. The article presents a case study—an assessment of the possibilities of changing mobility habits based on the idea of sustainable urban transport, taking into account the criterion of energy consumption of individual means of transport. The analyses are based on a comparison of selected means of transport occurring in the urban environment according to several key parameters for the optimization and efficiency of transport processes, i.e., cost, time, travel comfort, and impact on the natural environment, while simultaneously linking them to the criterion of energy consumption of individual means of transport. The analyzed parameters currently constitute the most important group of challenges in the area of shaping and planning optimal and sustainable urban transport. The presented research was used to indicate the connections between various areas of optimization of the transport process and the energy efficiency of individual modes of transport. Analyses have shown that the least time-consuming process of urban mobility is associated with the highest level of CO2 emissions and, at the same time, the highest level of energy efficiency. However, combining public transport with other means of transport can meet most of the transport expectations of city residents, also in terms of energy optimization. The research results presented in the article can contribute to the creation of a strategy for the development of the transport network based on the postulates of increasing the optimization and efficiency of individual means of transport in urban areas. At the same time, recognizing the criterion of energy intensity of means of transport as leading in the development of sustainable urban mobility. Thus, confirming the important role of existing transport systems in the process of shaping and planning sustainable urban mobility in accordance with the idea of Smart City. Full article
Show Figures

Figure 1

50 pages, 8673 KiB  
Article
Challenges of Integrating Assistive Technologies and Robots with Embodied Intelligence in the Homes of Older People Living with Frailty
by Abdel-Karim Al-Tamimi, Lantana Hewitt, David Cameron, Maher Salem and Armaghan Moemeni
Appl. Sci. 2025, 15(15), 8415; https://doi.org/10.3390/app15158415 - 29 Jul 2025
Viewed by 257
Abstract
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance [...] Read more.
The rapid increase in the global population of older adults presents a significant challenge, but also a unique opportunity to leverage technological advancements for promoting independent living and well-being. This study introduces the CIREI framework, which is a comprehensive model designed to enhance the integration of smart home and assistive technologies specifically for pre-frail older adults. Developed through a systematic literature review and innovative and comprehensive co-design activities, the CIREI framework captures the nuanced needs, preferences, and challenges faced by older adults, caregivers, and experts. Key findings from the co-design workshop highlight critical factors such as usability, privacy, and personalised learning preferences, which directly influence technology adoption. These insights informed the creation of an intelligent middleware prototype named WISE-WARE, which seamlessly integrates commercial off-the-shelf (COTS) devices to support health management and improve the quality of life for older adults. The CIREI framework’s adaptability ensures it can be extended and refined to meet the ever-changing needs of the ageing population, providing a robust foundation for future research and development in user-centred technology design. All workshop materials, including tools and methodologies, are made available to encourage the further exploration and adaptation of the CIREI framework, ensuring its relevance and effectiveness in the dynamic landscape of ageing and technology. This research contributes significantly to the discourse on ageing in place, digital inclusion, and the role of technology in empowering older adults to maintain independence. Full article
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 494
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

20 pages, 766 KiB  
Article
Accelerating Deep Learning Inference: A Comparative Analysis of Modern Acceleration Frameworks
by Ishrak Jahan Ratul, Yuxiao Zhou and Kecheng Yang
Electronics 2025, 14(15), 2977; https://doi.org/10.3390/electronics14152977 - 25 Jul 2025
Viewed by 322
Abstract
Deep learning (DL) continues to play a pivotal role in a wide range of intelligent systems, including autonomous machines, smart surveillance, industrial automation, and portable healthcare technologies. These applications often demand low-latency inference and efficient resource utilization, especially when deployed on embedded or [...] Read more.
Deep learning (DL) continues to play a pivotal role in a wide range of intelligent systems, including autonomous machines, smart surveillance, industrial automation, and portable healthcare technologies. These applications often demand low-latency inference and efficient resource utilization, especially when deployed on embedded or edge devices with limited computational capacity. As DL models become increasingly complex, selecting the right inference framework is essential to meeting performance and deployment goals. In this work, we conduct a comprehensive comparison of five widely adopted inference frameworks: PyTorch, ONNX Runtime, TensorRT, Apache TVM, and JAX. All experiments are performed on the NVIDIA Jetson AGX Orin platform, a high-performance computing solution tailored for edge artificial intelligence workloads. The evaluation considers several key performance metrics, including inference accuracy, inference time, throughput, memory usage, and power consumption. Each framework is tested using a wide range of convolutional and transformer models and analyzed in terms of deployment complexity, runtime efficiency, and hardware utilization. Our results show that certain frameworks offer superior inference speed and throughput, while others provide advantages in flexibility, portability, or ease of integration. We also observe meaningful differences in how each framework manages system memory and power under various load conditions. This study offers practical insights into the trade-offs associated with deploying DL inference on resource-constrained hardware. Full article
(This article belongs to the Special Issue Hardware Acceleration for Machine Learning)
Show Figures

Figure 1

23 pages, 2363 KiB  
Review
Handover Decisions for Ultra-Dense Networks in Smart Cities: A Survey
by Akzhibek Amirova, Ibraheem Shayea, Didar Yedilkhan, Laura Aldasheva and Alma Zakirova
Technologies 2025, 13(8), 313; https://doi.org/10.3390/technologies13080313 - 23 Jul 2025
Viewed by 526
Abstract
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, [...] Read more.
Handover (HO) management plays a key role in ensuring uninterrupted connectivity across evolving wireless networks. While previous generations such as 4G and 5G have introduced several HO strategies, these techniques are insufficient to meet the rigorous demands of sixth-generation (6G) networks in ultra-dense, heterogeneous smart city environments. Existing studies often fail to provide integrated HO solutions that consider key concerns such as energy efficiency, security vulnerabilities, and interoperability across diverse network domains, including terrestrial, aerial, and satellite systems. Moreover, the dynamic and high-mobility nature of smart city ecosystems further complicate real-time HO decision-making. This survey aims to highlight these critical gaps by systematically categorizing state-of-the-art HO approaches into AI-based, fuzzy logic-based, and hybrid frameworks, while evaluating their performance against emerging 6G requirements. Future research directions are also outlined, emphasizing the development of lightweight AI–fuzzy hybrid models for real-time decision-making, the implementation of decentralized security mechanisms using blockchain, and the need for global standardization to enable seamless handovers across multi-domain networks. The key outcome of this review is a structured and in-depth synthesis of current advancements, which serves as a foundational reference for researchers and engineers aiming to design intelligent, scalable, and secure HO mechanisms that can support the operational complexity of next-generation smart cities. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

30 pages, 10173 KiB  
Article
Integrated Robust Optimization for Lightweight Transformer Models in Low-Resource Scenarios
by Hui Huang, Hengyu Zhang, Yusen Wang, Haibin Liu, Xiaojie Chen, Yiling Chen and Yuan Liang
Symmetry 2025, 17(7), 1162; https://doi.org/10.3390/sym17071162 - 21 Jul 2025
Viewed by 408
Abstract
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized [...] Read more.
With the rapid proliferation of artificial intelligence (AI) applications, an increasing number of edge devices—such as smartphones, cameras, and embedded controllers—are being tasked with performing AI-based inference. Due to constraints in storage capacity, computational power, and network connectivity, these devices are often categorized as operating in resource-constrained environments. In such scenarios, deploying powerful Transformer-based models like ChatGPT and Vision Transformers is highly impractical because of their large parameter sizes and intensive computational requirements. While lightweight Transformer models, such as MobileViT, offer a promising solution to meet storage and computational limitations, their robustness remains insufficient. This poses a significant security risk for AI applications, particularly in critical edge environments. To address this challenge, our research focuses on enhancing the robustness of lightweight Transformer models under resource-constrained conditions. First, we propose a comprehensive robustness evaluation framework tailored for lightweight Transformer inference. This framework assesses model robustness across three key dimensions: noise robustness, distributional robustness, and adversarial robustness. It further investigates how model size and hardware limitations affect robustness, thereby providing valuable insights for robustness-aware model design. Second, we introduce a novel adversarial robustness enhancement strategy that integrates lightweight modeling techniques. This approach leverages methods such as gradient clipping and layer-wise unfreezing, as well as decision boundary optimization techniques like TRADES and SMART. Together, these strategies effectively address challenges related to training instability and decision boundary smoothness, significantly improving model robustness. Finally, we deploy the robust lightweight Transformer models in real-world resource-constrained environments and empirically validate their inference robustness. The results confirm the effectiveness of our proposed methods in enhancing the robustness and reliability of lightweight Transformers for edge AI applications. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Consumables Usage and Carbon Dioxide Emissions in Logging Operations
by Dariusz Pszenny and Tadeusz Moskalik
Forests 2025, 16(7), 1197; https://doi.org/10.3390/f16071197 - 20 Jul 2025
Viewed by 261
Abstract
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John [...] Read more.
In this study, we comprehensively analyzed material consumption (fuel, hydraulic oil, lubricants, and AdBlue fluid) and estimated carbon dioxide emissions during logging operations. This study was carried out in the northeastern part of Poland. Four harvesters and four forwarders representing two manufacturers (John Deere-Deere & Co., Moline, USA, and Komatsu Forest AB, Umeå, Sweden) were analyzed to compare their operational efficiency and constructional influences on overall operating costs. Due to differences in engine emission standards, approximate greenhouse gas emissions were estimated. The results indicate that harvesters equipped with Stage V engines have lower fuel consumption, while large forwarders use more consumables than small ones per hour and cubic meter of harvested and extracted timber. A strong positive correlation was observed between total machine time and fuel consumption (r = 0.81), as well as between machine time and total volume of timber harvested (r = 0.72). Older and larger machines showed about 40% higher combustion per unit of wood processed. Newer machines meeting higher emission standards (Stage V) generally achieved lower CO2 and other GHG emissions compared to older models. Machines with Stage V engines emitted about 2.07 kg CO2 per processing of 1 m3 of wood, while machines with older engine types emitted as much as 4.35 kg CO2 per 1 m3—roughly half as much. These differences are even more pronounced in the context of nitrogen oxide (NOx) emissions: the estimated NOx emissions for the older engine types were as high as ~85 g per m3, while those for Stage V engines were only about 5 g per m3 of harvested wood. Continuing the study would need to expand the number of machines analyzed, as well as acquire more detailed performance data on individual operators. A tool that could make this possible would be fleet monitoring services offered by the manufacturers of the surveyed harvesters and forwards, such as Smart Forestry or Timber Manager. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

28 pages, 2422 KiB  
Article
Reverse Logistics Network Optimization for Retired BIPV Panels in Smart City Energy Systems
by Cimeng Zhou and Shilong Li
Buildings 2025, 15(14), 2549; https://doi.org/10.3390/buildings15142549 - 19 Jul 2025
Viewed by 314
Abstract
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental [...] Read more.
Through the energy conversion of building skins, building-integrated photovoltaic (BIPV) technology, the core carrier of the smart city energy system, encourages the conversion of buildings into energy-generating units. However, the decommissioning of the module faces the challenge of physical dismantling and financial environmental damage because of the close coupling with the building itself. As the first tranche of BIPV projects will enter the end of their life cycle, it is urgent to establish a multi-dimensional collaborative recycling mechanism that meets the characteristics of building pv systems. Based on the theory of reverse logistics network, the research focuses on optimizing the reverse logistics network during the decommissioning stage of BIPV modules, and proposes a dual-objective optimization model that considers both cost and carbon emissions for BIPV. Meanwhile, the multi-level recycling network which covers “building points-regional transfer stations-specialized distribution centers” is designed in the research, the Pareto solution set is solved by the improved NSGA-II algorithm, a “1 + 1” du-al-core construction model of distribution center and transfer station is developed, so as to minimize the total cost and life cycle carbon footprint of the logistics network. At the same time, the research also reveals the driving effect of government reward and punishment policies on the collaborative behavior of enterprise recycling, and provides methodological support for the construction of a closed-loop supply chain of “PV-building-environment” symbiosis. The study concludes that in the process of constructing smart city energy system, the systematic control of resource circulation and environmental risks through the optimization of reverse logistics network can provide technical support for the sustainable development of smart city. Full article
(This article belongs to the Special Issue Research on Smart Healthy Cities and Real Estate)
Show Figures

Figure 1

Back to TopTop