Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,016)

Search Parameters:
Keywords = smart farms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1523 KiB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 - 1 Aug 2025
Viewed by 326
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 2515 KiB  
Article
Solar Agro Savior: Smart Agricultural Monitoring Using Drones and Deep Learning Techniques
by Manu Mundappat Ramachandran, Bisni Fahad Mon, Mohammad Hayajneh, Najah Abu Ali and Elarbi Badidi
Agriculture 2025, 15(15), 1656; https://doi.org/10.3390/agriculture15151656 - 1 Aug 2025
Viewed by 295
Abstract
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the [...] Read more.
The Solar Agro Savior (SAS) is an innovative solution that is assisted by drones for the sustainable utilization of water and plant disease observation in the agriculture sector. This system integrates an alerting mechanism for humidity, moisture, and temperature variations, which affect the plants’ health and optimization in water utilization, which enhances plant yield productivity. A significant feature of the system is the efficient monitoring system in a larger region through drones’ high-resolution cameras, which enables real-time, efficient response and alerting for environmental fluctuations to the authorities. The machine learning algorithm, particularly recurrent neural networks, which is a pioneer with agriculture and pest control, is incorporated for intelligent monitoring systems. The proposed system incorporates a specialized form of a recurrent neural network, Long Short-Term Memory (LSTM), which effectively addresses the vanishing gradient problem. It also utilizes an attention-based mechanism that enables the model to assign meaningful weights to the most important parts of the data sequence. This algorithm not only enhances water utilization efficiency but also boosts plant yield and strengthens pest control mechanisms. This system also provides sustainability through the re-utilization of water and the elimination of electric energy through solar panel systems for powering the inbuilt irrigation system. A comparative analysis of variant algorithms in the agriculture sector with a machine learning approach was also illustrated, and the proposed system yielded 99% yield accuracy, a 97.8% precision value, 98.4% recall, and a 98.4% F1 score value. By encompassing solar irrigation and artificial intelligence-driven analysis, the proposed algorithm, Solar Argo Savior, established a sustainable framework in the latest agricultural sectors and promoted sustainability to protect our environment and community. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

26 pages, 1790 KiB  
Article
A Hybrid Deep Learning Model for Aromatic and Medicinal Plant Species Classification Using a Curated Leaf Image Dataset
by Shareena E. M., D. Abraham Chandy, Shemi P. M. and Alwin Poulose
AgriEngineering 2025, 7(8), 243; https://doi.org/10.3390/agriengineering7080243 - 1 Aug 2025
Viewed by 249
Abstract
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the [...] Read more.
In the era of smart agriculture, accurate identification of plant species is critical for effective crop management, biodiversity monitoring, and the sustainable use of medicinal resources. However, existing deep learning approaches often underperform when applied to fine-grained plant classification tasks due to the lack of domain-specific, high-quality datasets and the limited representational capacity of traditional architectures. This study addresses these challenges by introducing a novel, well-curated leaf image dataset consisting of 39 classes of medicinal and aromatic plants collected from the Aromatic and Medicinal Plant Research Station in Odakkali, Kerala, India. To overcome performance bottlenecks observed with a baseline Convolutional Neural Network (CNN) that achieved only 44.94% accuracy, we progressively enhanced model performance through a series of architectural innovations. These included the use of a pre-trained VGG16 network, data augmentation techniques, and fine-tuning of deeper convolutional layers, followed by the integration of Squeeze-and-Excitation (SE) attention blocks. Ultimately, we propose a hybrid deep learning architecture that combines VGG16 with Batch Normalization, Gated Recurrent Units (GRUs), Transformer modules, and Dilated Convolutions. This final model achieved a peak validation accuracy of 95.24%, significantly outperforming several baseline models, such as custom CNN (44.94%), VGG-19 (59.49%), VGG-16 before augmentation (71.52%), Xception (85.44%), Inception v3 (87.97%), VGG-16 after data augumentation (89.24%), VGG-16 after fine-tuning (90.51%), MobileNetV2 (93.67), and VGG16 with SE block (94.94%). These results demonstrate superior capability in capturing both local textures and global morphological features. The proposed solution not only advances the state of the art in plant classification but also contributes a valuable dataset to the research community. Its real-world applicability spans field-based plant identification, biodiversity conservation, and precision agriculture, offering a scalable tool for automated plant recognition in complex ecological and agricultural environments. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 - 31 Jul 2025
Viewed by 344
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 586
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

28 pages, 2789 KiB  
Review
A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
by Zhijie Cao, Shantong Sun and Xu Bao
Appl. Sci. 2025, 15(15), 8438; https://doi.org/10.3390/app15158438 - 30 Jul 2025
Viewed by 477
Abstract
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly [...] Read more.
Agriculture is the foundational industry for human survival, profoundly impacting economic, ecological, and social dimensions. In the face of global challenges such as rapid population growth, resource scarcity, and climate change, achieving technological innovation in agriculture and advancing smart farming have become increasingly critical. In recent years, deep learning and computer vision have developed rapidly. Key areas in computer vision—such as deep learning-based image processing, object detection, and multimodal fusion—are rapidly transforming traditional agricultural practices. Processes in agriculture, including planting planning, growth management, harvesting, and post-harvest handling, are shifting from experience-driven methods to digital and intelligent approaches. This paper systematically reviews applications of deep learning and computer vision in agricultural growth management over the past decade, categorizing them into four key areas: crop identification, grading and classification, disease monitoring, and weed detection. Additionally, we introduce classic methods and models in computer vision and deep learning, discussing approaches that utilize different types of visual information. Finally, we summarize current challenges and limitations of existing methods, providing insights for future research and promoting technological innovation in agriculture. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

24 pages, 17213 KiB  
Review
Empowering Smart Soybean Farming with Deep Learning: Progress, Challenges, and Future Perspectives
by Huihui Sun, Hao-Qi Chu, Yi-Ming Qin, Pingfan Hu and Rui-Feng Wang
Agronomy 2025, 15(8), 1831; https://doi.org/10.3390/agronomy15081831 - 28 Jul 2025
Viewed by 426
Abstract
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies [...] Read more.
This review comprehensively examines the application of deep learning technologies across the entire soybean production chain, encompassing areas such as disease and pest identification, weed detection, crop phenotype recognition, yield prediction, and intelligent operations. By systematically analyzing mainstream deep learning models, optimization strategies (e.g., model lightweighting, transfer learning), and sensor data fusion techniques, the review identifies their roles and performances in complex agricultural environments. It also highlights key challenges including data quality limitations, difficulties in real-world deployment, and the lack of standardized evaluation benchmarks. In response, promising directions such as reinforcement learning, self-supervised learning, interpretable AI, and multi-source data fusion are proposed. Specifically for soybean automation, future advancements are expected in areas such as high-precision disease and weed localization, real-time decision-making for variable-rate spraying and harvesting, and the integration of deep learning with robotics and edge computing to enable autonomous field operations. This review provides valuable insights and future prospects for promoting intelligent, efficient, and sustainable development in soybean production through deep learning. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Integrated Smart Farm System Using RNN-Based Supply Scheduling and UAV Path Planning
by Dongwoo You, Yukai Chen and Donkyu Baek
Drones 2025, 9(8), 531; https://doi.org/10.3390/drones9080531 - 28 Jul 2025
Viewed by 349
Abstract
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned [...] Read more.
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned Aerial Vehicles (UAVs). The proposed framework forecasts future resource shortages using an RNN model and recent environmental data collected from the field. Based on these forecasts, the system schedules a resource supply plan and determines the UAV path by considering both dynamic energy consumption and priority levels, aiming to maximize the efficiency of the resource supply. Experimental results show that the proposed integrated smart farm framework achieves an average reduction of 81.08% in the supply miss rate. This paper demonstrates the potential of an integrated AI- and UAV-based smart farm management system in achieving both environmental responsiveness and operational optimization. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

19 pages, 338 KiB  
Article
Top Management Challenges in Using Artificial Intelligence for Sustainable Development Goals: An Exploratory Case Study of an Australian Agribusiness
by Amanda Balasooriya and Darshana Sedera
Sustainability 2025, 17(15), 6860; https://doi.org/10.3390/su17156860 - 28 Jul 2025
Viewed by 355
Abstract
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life [...] Read more.
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life on Land (SDG 15). However, such implementations are fraught with multifaceted challenges. This study explores the technological, organizational, and environmental challenges confronting top management in the agricultural sector utilizing the technological–organizational–environmental framework. As interest in AI-enabled sustainable initiatives continues to rise globally, this exploration is timely and relevant. The study employs an interpretive case study approach, drawing insights from a carbon sequestration project within the agricultural sector where AI technologies have been integrated to support sustainability goals. The findings reveal six key challenges: sustainable policy inconsistency, AI experts lacking farming knowledge, farmers’ resistance to change, limited knowledge and expertise to deploy AI, missing links in the existing system, and transition costs, which often hinder the achievement of long-term sustainability outcomes. This study emphasizes the importance of field realities and cross-disciplinary collaboration to optimize the role of AI in sustainability efforts. Full article
Show Figures

Figure 1

24 pages, 2803 KiB  
Article
AKI2ALL: Integrating AI and Blockchain for Circular Repurposing of Japan’s Akiyas—A Framework and Review
by Manuel Herrador, Romi Bramantyo Margono and Bart Dewancker
Buildings 2025, 15(15), 2629; https://doi.org/10.3390/buildings15152629 - 25 Jul 2025
Viewed by 588
Abstract
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into [...] Read more.
Japan’s 8.5 million vacant homes (Akiyas) represent a paradox of scarcity amid surplus: while rural depopulation leaves properties abandoned, housing shortages and bureaucratic inefficiencies hinder their reuse. This study proposes AKI2ALL, an AI-blockchain framework designed to automate the circular repurposing of Akiyas into ten high-value community assets—guesthouses, co-working spaces, pop-up retail and logistics hubs, urban farming hubs, disaster relief housing, parking lots, elderly daycare centers, exhibition spaces, places for food and beverages, and company offices—through smart contracts and data-driven workflows. By integrating circular economy principles with decentralized technology, AKI2ALL streamlines property transitions, tax validation, and administrative processes, reducing operational costs while preserving embodied carbon in existing structures. Municipalities list properties, owners select uses, and AI optimizes assignments based on real-time demand. This work bridges gaps in digital construction governance, proving that automating trust and accountability can transform systemic inefficiencies into opportunities for community-led, low-carbon regeneration, highlighting its potential as a scalable model for global vacant property reuse. Full article
(This article belongs to the Special Issue Advances in the Implementation of Circular Economy in Buildings)
Show Figures

Figure 1

20 pages, 4310 KiB  
Article
Training Rarámuri Criollo Cattle to Virtual Fencing in a Chaparral Rangeland
by Sara E. Campa Madrid, Andres R. Perea, Micah Funk, Maximiliano J. Spetter, Mehmet Bakir, Jeremy Walker, Rick E. Estell, Brandon Smythe, Sergio Soto-Navarro, Sheri A. Spiegal, Brandon T. Bestelmeyer and Santiago A. Utsumi
Animals 2025, 15(15), 2178; https://doi.org/10.3390/ani15152178 - 24 Jul 2025
Viewed by 618
Abstract
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed [...] Read more.
Virtual fencing (VF) offers a promising alternative to conventional or electrified fences for managing livestock grazing distribution. This study evaluated the behavioral responses of 25 Rarámuri Criollo cows fitted with Nofence® collars in Pine Valley, CA, USA. The VF system was deployed in chaparral rangeland pastures. The study included a 14-day training phase followed by an 18-day testing phase. The collar-recorded variables, including audio warnings and electric pulses, animal movement, and daily typical behavior patterns of cows classified into a High or Low virtual fence response group, were compared using repeated-measure analyses with mixed models. During training, High-response cows (i.e., resistant responders) received more audio warnings and electric pulses, while Low-response cows (i.e., active responders) had fewer audio warnings and electric pulses, explored smaller areas, and exhibited lower mobility. Despite these differences, both groups showed a time-dependent decrease in the pulse-to-warning ratio, indicating increased reliance on audio cues and reduced need for electrical stimulation to achieve similar containment rates. In the testing phase, both groups maintained high containment with minimal reinforcement. The study found that Rarámuri Criollo cows can effectively adapt to virtual fencing technology, achieving over 99% containment rate while displaying typical diurnal patterns for grazing, resting, or traveling behavior. These findings support the technical feasibility of using virtual fencing in chaparral rangelands and underscore the importance of accounting for individual behavioral variability in behavior-based containment systems. Full article
Show Figures

Figure 1

30 pages, 9222 KiB  
Article
Using Deep Learning in Forecasting the Production of Electricity from Photovoltaic and Wind Farms
by Michał Pikus, Jarosław Wąs and Agata Kozina
Energies 2025, 18(15), 3913; https://doi.org/10.3390/en18153913 - 23 Jul 2025
Viewed by 318
Abstract
Accurate forecasting of electricity production is crucial for the stability of the entire energy sector. However, predicting future renewable energy production and its value is difficult due to the complex processes that affect production using renewable energy sources. In this article, we examine [...] Read more.
Accurate forecasting of electricity production is crucial for the stability of the entire energy sector. However, predicting future renewable energy production and its value is difficult due to the complex processes that affect production using renewable energy sources. In this article, we examine the performance of basic deep learning models for electricity forecasting. We designed deep learning models, including recursive neural networks (RNNs), which are mainly based on long short-term memory (LSTM) networks; gated recurrent units (GRUs), convolutional neural networks (CNNs), temporal fusion transforms (TFTs), and combined architectures. In order to achieve this goal, we have created our benchmarks and used tools that automatically select network architectures and parameters. Data were obtained as part of the NCBR grant (the National Center for Research and Development, Poland). These data contain daily records of all the recorded parameters from individual solar and wind farms over the past three years. The experimental results indicate that the LSTM models significantly outperformed the other models in terms of forecasting. In this paper, multilayer deep neural network (DNN) architectures are described, and the results are provided for all the methods. This publication is based on the results obtained within the framework of the research and development project “POIR.01.01.01-00-0506/21”, realized in the years 2022–2023. The project was co-financed by the European Union under the Smart Growth Operational Programme 2014–2020. Full article
Show Figures

Figure 1

28 pages, 1858 KiB  
Article
Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network
by Alexis Barrios-Ulloa, Andrés Solano-Barliza, Wilson Arrubla-Hoyos, Adelaida Ojeda-Beltrán, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos and Alejandro Cama-Pinto
Sustainability 2025, 17(15), 6664; https://doi.org/10.3390/su17156664 - 22 Jul 2025
Viewed by 529
Abstract
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the [...] Read more.
Agriculture 5.0 represents a shift towards a more sustainable agricultural model, integrating Artificial Intelligence (AI), the Internet of Things (IoT), robotics, and blockchain technologies to enhance productivity and resource management, with an emphasis on social and environmental resilience. This article explores how the evolution of wireless technologies to sixth-generation networks (6G) can support innovation in Colombia’s agricultural sector and foster rural advancement. The study follows three main phases: search, analysis, and selection of information. In the search phase, key government policies, spectrum management strategies, and the relevant literature from 2020 to 2025 were reviewed. The analysis phase addresses challenges such as spectrum regulation and infrastructure deployment within the context of a developing country. Finally, the selection phase evaluates technological readiness and policy frameworks. Findings suggest that 6G could revolutionize Colombian agriculture by improving connectivity, enabling real-time monitoring, and facilitating precision farming, especially in rural areas with limited infrastructure. Successful 6G deployment could boost agricultural productivity, reduce socioeconomic disparities, and foster sustainable rural development, contingent on aligned public policies, infrastructure investments, and human capital development. Full article
(This article belongs to the Special Issue Sustainable Precision Agriculture: Latest Advances and Prospects)
Show Figures

Figure 1

Back to TopTop