Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network
Abstract
1. Introduction
1.1. Challenges in Global Food Demand and Population Growth
1.2. Current Overview of Colombian Population and Agricultural Production
1.3. Related Work in Other Countries/Latitudes
1.4. Main Characteristics That Differentiate 6G vs. 5G
- To analyze the potential improvements that the implementation of the 6G network could bring for smart agriculture in Colombia.
- To examine the benefits that smart agriculture solutions based on the IoT and 6G would offer in different regions and departments of the country.
- Assess the current state of mobile networks in Colombia and the spectrum requirements needed for a future adoption of 6G technology.
- Propose future applications that integrate 6G and the IoT in the context of Colombian agriculture.
2. Background
2.1. Evolution of Agriculture 4.0 to Agriculture 5.0—Similarities and Differences
2.2. Smart Agriculture
- Use intelligent networked sensors to collect and analyze data.
- Integrate with AI-based applications for accurate recommendations on fertilization, irrigation, and disease diagnosis.
- Automate and remotely control farming processes using IoT technologies and cloud computing.
2.3. Scenarios of 6G Use
2.4. Projected Frequency Bands in 6G
- Coverage.
- Sustainability.
- Sensing-related capabilities.
- Integration of AI.
- Interoperability.
2.5. Current Frequency Bands Operating in Colombia
3. Materials and Methods
3.1. Search
3.2. Analysis
3.3. Selection Processes
4. Results and Discussion
4.1. Future Challenges for 6G Implementation in Colombia
4.2. Projected 6G Applications in Colombia’s Economy
4.3. Current Colombian Agricultural Outlook
4.3.1. Soil Fertility and Nutrient Management
4.3.2. Pest and Disease Detection
4.3.3. Digital Traceability in the Agro-Food Chain
4.3.4. Agroclimatic Monitoring and Smart Irrigation
4.3.5. Autonomous Aerial Systems for Smallholder Farming
4.4. Other Projected Use Cases for 6G in Colombia
4.5. Challenges in Agriculture 4.0 and Agricultural 5.0 in Colombia
4.6. Future Prospects by Agricultural Domain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fountas, S.; Espejo-García, B.; Kasimati, A.; Gemtou, M.; Panoutsopoulos, H.; Anastasiou, E. Agriculture 5.0: Cutting-Edge Technologies, Trends, and Challenges. IT Prof. 2024, 26, 40–47. [Google Scholar] [CrossRef]
- Bissadu, K.D.; Sonko, S.; Hossain, G. Society 5.0 Enabled Agriculture: Drivers, Enabling Technologies, Architectures, Opportunities, and Challenges. Inf. Process. Agric. 2025, 12, 112–124. [Google Scholar] [CrossRef]
- Taha, M.F.; Mao, H.; Zhang, Z.; Elmasry, G.; Awad, M.A.; Abdalla, A.; Mousa, S.; Elwakeel, A.E.; Elsherbiny, O. Emerging Technologies for Precision Crop Management Towards Agriculture 5.0: A Comprehensive Overview. Agriculture 2025, 15, 582. [Google Scholar] [CrossRef]
- Barrios-Ulloa, A.; Cama-Pinto, D.; Mardini-Bovea, J.; Díaz-Martínez, J.; Cama-Pinto, A. Projections of IoT Applications in Colombia Using 5G Wireless Networks. Sensors 2021, 21, 7167. [Google Scholar] [CrossRef] [PubMed]
- Organizatión de las Naciones Unidas para la Alimentación y la Agricultura (FAO). El Estado de La Seguridad Alimentaria y la Nutrición en el Mundo 2024: Financiación Para Acabar con el Hambre, La Inseguridad Alimentaria y la Malnutrición en Todas Sus Formas; FAO: Rome, Italy, 2024. [Google Scholar]
- Akhter, R.; Sofi, S.A. Precision Agriculture Using IoT Data Analytics and Machine Learning. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 5602–5618. [Google Scholar] [CrossRef]
- Assimakopoulos, F.; Vassilakis, C.; Margaris, D.; Kotis, K.; Spiliotopoulos, D. The Implementation of “Smart” Technologies in the Agricultural Sector: A Review. Information 2024, 15, 466. [Google Scholar] [CrossRef]
- 6G IA; AIOTI. The Role of 6G in Agriculture; AIOTI: Brussels, Belgium, 2024. [Google Scholar]
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- United Nations Population. 2024. Available online: https://population.un.org/wpp/ (accessed on 9 April 2025).
- Departamento Administrativo Nacional de Estadística (DANE) Proyecciones de Población. 2024. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion (accessed on 20 April 2025).
- Barrios-Ulloa, A.; Cama-Pinto, A.; De-la-Hoz-Franco, E.; Ramírez-Velarde, R.; Cama-Pinto, D. Modeling of Path Loss for Radio Wave Propagation in Wireless Sensor Networks in Cassava Crops Using Machine Learning. Agriculture 2023, 13, 2046. [Google Scholar] [CrossRef]
- Finagro Growth of the Agricultural Sector and AgroExpo 2023, a Challenge for Rural Development. 2023. Available online: https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuario-agroexpo-2023-reto-desarrollo-del-campo (accessed on 28 May 2025).
- UPRA. Colombian Agricultural Sector Generated 244,000 Jobs in January. 2024. Available online: https://www.financecolombia.com/colombian-agricultural-sector-generated-244000-jobs-in-january/ (accessed on 29 May 2025).
- Ramírez Molina, R.I.; Vergara Ramos, L.A.; Romero, L.R.; Lay Raby, N.D.; Severino-González, P.; Villalobos Antúnez, J.V.; Santamaria Ruiz, M.J. Business Strategies in Agricultural Units to Incorporate Value Chains in New National and International Markets: A Case Study of Colombia. Procedia Comput. Sci. 2024, 238, 1002–1008. [Google Scholar] [CrossRef]
- Ferrucho, R.L.; Marín-Ramírez, G.A.; Gaitan, A. Integrated Disease Management for the Sustainable Production of Colombian Coffee. Agronomy 2024, 14, 1286. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Lu, W.; Gao, Y.; Gong, Y.; Cao, J. 6G-Enabled Smart Agriculture: A Review and Prospect. Electronics 2022, 11, 2845. [Google Scholar] [CrossRef]
- Polymeni, S.; Plastras, S.; Skoutas, D.N.; Kormentzas, G.; Skianis, C. The Impact of 6G-IoT Technologies on the Development of Agriculture 5.0: A Review. Electronics 2023, 12, 2651. [Google Scholar] [CrossRef]
- Pawan, Y.V.R.N.; Prakash, K.B. Enhancing Connectivity and Data-Driven Decision-Making for Smart Agriculture by Embracing 6G Technology; Development of 6G Networks and Technology; Wiley Data and Cybersecurity: New York, NY, USA, 2024; pp. 241–263. [Google Scholar]
- Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Solano-Barliza, A.; Rambauth-Ibarra, G.; Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. Precision Agriculture and Sensor Systems Applications in Colombia through 5G Networks. Sensors 2022, 22, 7295. [Google Scholar] [CrossRef] [PubMed]
- International Telecommunication Union. IMT Towards 2030 and Beyond (IMT-2030). 2025. Available online: https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/pages/default.aspx (accessed on 29 May 2025).
- Zeng, S.; Di, B.; Zhang, H.; Gao, J.; Yue, S.; Hu, X.; Fu, R.; Zhou, J.; Liu, X.; Zhang, H.; et al. RIS-Based IMT-2030 Testbed for MmWave Multi-Stream Ultra-Massive MIMO Communications. IEEE Wirel. Commun. 2024, 31, 375–382. [Google Scholar] [CrossRef]
- Liu, R.; Lin, H.; Lee, H.; Chaves, F.; Lim, H.; Sköld, J. Beginning of the Journey Toward 6G: Vision and Framework. IEEE Commun. Mag. 2023, 61, 8–9. [Google Scholar] [CrossRef]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The Roadmap to 6G: AI Empowered Wireless Networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef]
- Wu, Q.; Zheng, B.; You, C.; Zhu, L.; Shen, K.; Shao, X.; Mei, W.; Di, B.; Zhang, H.; Basar, E.; et al. Intelligent Surfaces Empowered Wireless Network: Recent Advances and the Road to 6G. Proc. IEEE 2024, 112, 724–763. [Google Scholar] [CrossRef]
- Lindenschmitt, D.; Fischer, C.; Haussmann, S.; Kalter, M.; Kallfass, I.; Schotten, H.D. Agricultural On-Demand Networks for 6G Enabled by THz Communication. arXiv 2024. [Google Scholar] [CrossRef]
- 3GPP Work Plan. 2025. Available online: https://www.3gpp.org/ftp/Information/WORK_PLAN/ (accessed on 12 April 2025).
- Ericsson 6G Networks. 2024. Available online: https://www.ericsson.com/en/6g (accessed on 13 April 2025).
- National Telecommunications and Information Administration Report of Subcommittee on 6G. Available online: https://www.ntia.gov/sites/default/files/2023-12/6g_subcommittee_final_report.pdf (accessed on 15 April 2025).
- 5G Americas. The 6G Upgrade in the 7–8 GHz Spectrum Range: Coverage, Capacity and Technology. 2024. pp. 1–7. Available online: https://www.5gamericas.org/the-6g-upgrade-in-the-7-8-ghz-spectrum-range (accessed on 15 April 2025).
- Anderson, M. Millimeter Waves May Not Be 6G’s Most Promising Spectrum. Available online: https://spectrum.ieee.org/6g-spectrum-fr3 (accessed on 14 April 2025).
- Radio Spectrum Policy Group. 6G Strategic Vision. Brussels. 2025. Available online: https://radio-spectrum-policy-group.ec.europa.eu/document/download/89457260-ab6b-495a-9a10-437711cbe831_en?filename=RSPG25-006final-RSPG_Report_on_6G_strategic_vision.pdf (accessed on 14 April 2025).
- Telefónica European Telecoms CEOs Call for 6 GHz Band for Mobile Networks. 2024. Available online: https://www.telefonica.com/es/sala-comunicacion/blog/ceos-telcos-europeas-piden-banda-6-ghz-redes-moviles/ (accessed on 14 April 2025).
- Commerce Spectrum Management Advisory Committee. Report of Subcommittee on 6G. Dubai. 2023. Available online: https://www.ntia.gov/sites/default/files/2023-12/6g_subcommittee_briefing.pdf (accessed on 15 April 2025).
- Ericsson 6G Spectrum—Enabling the Future Mobile Life Beyond 2030. 2024. Available online: https://www.ericsson.com/en/reports-and-papers/white-papers/6g-spectrum-enabling-the-future-mobile-life-beyond-2030 (accessed on 15 April 2025).
- GSMA Mobile Evolution: Spectrum for 6G. 2025. Available online: https://www.gsma.com/connectivity-for-good/spectrum/mobile-evolution-spectrum-for-6g/ (accessed on 16 April 2025).
- Nokia Bell Labs Extreme Massive MIMO for Macro Cell Capacity Boost in 5G-Advanced and 6G. 2023. pp. 3–5. Available online: https://onestore.nokia.com/asset/210786 (accessed on 16 April 2025).
- Abu-Surra, S.; Choi, W.; Choi, S.; Seok, E.; Kim, D.; Sharma, N.; Advani, S. End-to-End 140 GHz Wireless Link Demonstration with Fully-Digital Beamformed System. In Proceedings of the IEEE International Conference on Communications Workshops, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Ministry of Communications of India Bharat 6G Vision. 2023. pp. 20–22. Available online: https://bharat6galliance.com/bharat6G/public/assets/report/document_79664556.pdf (accessed on 29 May 2025).
- 6G Flagship—University of Oulu White Paper on RF Enabling 9 6G—Opportunities and Challenges from Technology to Spectrum. 2021. pp. 10–11. Available online: https://oulurepo.oulu.fi/bitstream/handle/10024/36613/isbn978-952-62-2841-9.pdf?sequence=1&isAllowed=y (accessed on 18 April 2025).
- ANE Colombia Participates in the Global Discussion on the Development of ITU 5G and 6G Networks. 2024. Available online: https://www.ane.gov.co/SitePages/det-noticias.aspx?p=581 (accessed on 18 April 2025).
- CRC Trends in the Development of 5G Mobile Networks. 2025. Available online: https://www.crcom.gov.co/system/files/Biblioteca%20Virtual/Estudio%20de%20tendencias%20en%20el%20desarrollo%20de%20redes%20m%C3%B3viles%205G/Estudio-tendencias-desarrollo-redes-moviles-5G.pdf (accessed on 19 April 2025).
- Congreso de la República de Colombia Ley 1978 de 2019. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=98210 (accessed on 18 April 2025).
- Asamblea Nacional Constituyente Constitución Política de La República de Colombia. 1991. p. 25. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=4125 (accessed on 20 April 2025).
- Barrios-Ulloa, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Monsalvo-Amarís, J.; Hernández-López, A.; Cama-Pinto, A. Overview of Mobile Communications in Colombia and Introduction to 5G. Sensors 2023, 232, 9–10. [Google Scholar] [CrossRef] [PubMed]
- ITU-R. Economic Aspects of Spectrum Management. Geneva. 2018. Available online: https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2012-6-2018-PDF-E.pdf (accessed on 20 April 2025).
- MinTIC Colombia Plan Marco de Asignación de Usos Del Espectro 2020–2022. Available online: https://www.mintic.gov.co/portal/715/articles-161074_recurso_1.pdf (accessed on 20 April 2025).
- MinTIC Colombia Acta Resultados Subasta. 2023. Available online: https://mintic.gov.co/micrositios/asignacion-espectro-imt-2023/828/articles-333735_recurso_1.pdf (accessed on 20 April 2025).
- MinTIC Colombia Decreto 984 de 2022. Available online: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=187728 (accessed on 22 April 2025).
- MinTIC Colombia “5G Es Una Realidad Para El País”: Ministro Mauricio Lizcano. Available online: https://mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/333419:5G-es-una-realidad-para-el-pais-Ministro-Mauricio-Lizcano#:~:text=Tras%20cinco%20horas%20de%20una,valor%20de%20%241%2C37%20billones (accessed on 25 April 2025).
- Food and Agriculture Organization of the United Nations. DVI Readiness Assessment Tool; Digital Villages Initiative in Europe and Central Asia: Roma, Italia, 2025; Available online: https://www.fao.org/digital-villages-initiative/europe/dvi-readiness-assessment/en (accessed on 20 June 2025).
- Liu, R.; Zhang, L.; Li, R.Y.-N.; Renzo, M. Di The ITU Vision and Framework for 6G: Scenarios, Capabilities, and Enablers. IEEE Veh. Technol. Mag. 2025, 20, 114–122. [Google Scholar] [CrossRef]
- ANE Plan Maestro de Gestión de Espectro 2022–2026. Available online: https://www.ane.gov.co/Sliders/archivos/gesti%C3%B3n%20t%C3%A9cnica/Plan%20maestro%20de%20gesti%C3%B3n%20del%20espectro/Documentos/DocumentoActualizaci%C3%B3n2022PMGE.pdf (accessed on 25 April 2025).
- ANE Documento de Consulta Pública Sobre Las Bandas de Frecuencia Identificadas En Colombia Para El Futuro Desarrollo de Las Telecomunicaciones Móviles Internacionales Móviles. Available online: https://www.ane.gov.co/Documentos%20compartidos/ArchivosDescargables/noticias/Consulta%20p%C3%BAblica%20sobre%20las%20bandas%20disponibles%20para%20el%20futuro%20desarrollo%20de%20las%20IMT%20en%20Colombia.pdf (accessed on 25 April 2025).
- MinTIC Colombia Plan Integral de Expansión de Conectividad Digital. Available online: https://mintic.gov.co/micrositios/PlanConectividadDigital/870/w3-channel.html (accessed on 27 April 2025).
- Ministry of Agriculture and Rural Development. More than 232,000 People from Rural Areas Escaped Poverty in the Last Year; News—Ministry of Agriculture and Rural Development: Bogotá, Colombia, 2024. Available online: https://www.minagricultura.gov.co/noticias/Paginas/M%C3%A1s-de-232-mil-personas-de-zonas-rurales-salieron-de-la-pobreza-en-el-%C3%BAltimo-a%C3%B1o.aspx (accessed on 20 June 2025).
- GSMA. Spectrum Pricing as an Enabler in Bridging the Coverage and Usage Gaps; Connectivity for Good—GSMA: London, UK, 2025; Available online: https://www.gsma.com/connectivity-for-good/spectrum/spectrum-pricing-as-an-enabler-in-bridging-the-coverage-and-usage-gaps/ (accessed on 20 June 2025).
- MinTIC Colombia Colombia Es Líder Mundial En Gestión de Espectro. Available online: https://www.mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/14619:Colombia-es-lider-mundial-en-gestion-de-espectro (accessed on 27 April 2025).
- Datos Macro Colombia: Economía y Demografía. Available online: https://datosmacro.expansion.com/paises/colombia#:~:text=Colombia%2C%20con%20una%20poblaci%C3%B3n%20de,39%20por%20volumen%20de%20PIB (accessed on 28 April 2025).
- DANE Estadísticas Por Tema: Demografía y Población. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion (accessed on 28 April 2025).
- Departamento Nacional de Planeación-DNP. Plan Nacional de Desarrollo: Colombia Potencia Mundial de La Vida 2022–2026; DNP: Bogota, Colombia, 2023. [Google Scholar]
- ISO/IEC 17025; Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- AGROSAVIA. Soil Fertility Analysis for Agronomic Decision-Making; AGROSAVIA: Bogotá, Colombia, 2022; Available online: https://www.agrosavia.co/en/product-and-services/technological-offer/agricultural-line/permanent-crops/laboratory-services/372-soil-fertility-analysis-service (accessed on 23 June 2025).
- Velásquez, D.E.; Rodríguez, J.A.; Carrillo, C.E.; López, D.M. Early Detection of Coffee Leaf Rust Using UAV-Based Multispectral Images and Deep Learning in Colombian Crops. Sensors 2020, 20, 7288. [Google Scholar] [CrossRef]
- Bettín-Díaz, R.; Rojas, A.E.; Mejía-Moncayo, C. Blockchain for tracing Colombian origin coffee with Hyperledger. Oper. Res. Forum. 2022, 3, 64. [Google Scholar] [CrossRef]
- Ministerio de Ciencia, Tecnología e Innovación. Convocatoria “ColombIA Inteligente: Desarrollo e Implementación de Soluciones Mediante Inteligencia Artificial y Ciencias del Espacio para los Territorios” (Convocatoria 950); Minciencias: Bogotá, Colombia, 2024. Available online: https://minciencias.gov.co/convocatoria-colombia-inteligente (accessed on 23 June 2025).
- Ministerio de Ciencia, Tecnología e Innovación. Convocatoria “ColombIA Inteligente: Ciencia y Tecnologías Cuánticas e Inteligencia Artificial para los Territorios”; Minciencias: Bogotá, Colombia, 2025. Available online: https://minciencias.gov.co/convocatorias/convocatoria-colombia-inteligente-ciencia-y-tecnologias-cuanticas-e-inteligencia (accessed on 23 June 2025).
- Ministerio de Tecnologías de la Información y las Comunicaciones. Con AgroTECH, el MinTIC Potenciará el Campo con Inteligencia Artificial; MinTIC: Bogotá, Colombia, 2024. Available online: https://mintic.gov.co/portal/inicio/Sala-de-prensa/Noticias/276923:Con-AgroTECH-el-MinTIC-potenciara-el-campo-con-Inteligencia-Artificial (accessed on 7 July 2025).
- Severiche-Maury, Z.; Uc-Rios, C.E.; Arrubla-Hoyos, W.; Cama-Pinto, D.; Holgado-Terriza, J.A.; Damas-Hermoso, M.; Cama-Pinto, A. Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks. Energies 2025, 18, 1247. [Google Scholar] [CrossRef]
- Arrubla-Hoyos, W.; Gómez, J.G.; De-La-Hoz-Franco, E. Differential Classification of Dengue, Zika, and Chikungunya Using Machine Learning—Random Forest and Decision Tree Techniques. Informatics 2024, 11, 69. [Google Scholar] [CrossRef]
- Solano-Barliza, A.; Valls, A.; Acosta-Coll, M.; Moreno, A.; Escorcia-Gutiérrez, J.; De-La-Hoz-Franco, E.; Arregoces-Julio, I. Enhancing Fair Tourism Opportunities in Emerging Destinations by Means of Multi-Criteria Recommender Systems: The Case of Restaurants in Riohacha, Colombia. Int. J. Comput. Intell. Syst. 2024, 17, 283. [Google Scholar] [CrossRef]
- Ovalle Másmela, J.; Romero-Perdomo, F.; Uribe Galvis, C. Tecnologías Emergentes Para El Agro y Su Aplicación En Colombia; Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA): Mosquera, Colombia, 2023. [Google Scholar]
- Cama-Pinto, D.; Damas, M.; Holgado-Terriza, J.A.; Arrabal-Campos, F.M.; Martínez-Lao, J.A.; Cama-Pinto, A.; Manzano-Agugliaro, F. A Deep Learning Model of Radio Wave Propagation for Precision Agriculture and Sensor System in Greenhouses. Agronomy 2023, 13, 244. [Google Scholar] [CrossRef]
Aspect | Agriculture 4.0 | Agriculture 5.0 |
---|---|---|
Main focus | Automation and digitization of processes | Human–machine integration with a sustainable and resilient approach |
Key technologies | IoT, big data, cloud computing, drones | Advanced AI, 6G, cobots, digital twins, blockchain, quantum computing |
Objective | Increase productivity and efficiency | Sustainability, personalization, and social well-being |
Human–machine interaction | Limited, machines perform repetitive tasks | Close collaboration, humans at the center of decision-making |
Sustainability | Less focus on environmental impact | High priority on sustainable and eco-friendly agricultural practices |
Personalization | Mass and standardized production | Personalized production tailored to individual needs |
Aspect | 5G Network in Agriculture 4.0 | 6G Network in Agriculture 5.0 |
---|---|---|
Data Speed | Up to 10 Gbps | Up to 1 Tbps |
Latency | Approximately 1 ms | Less than 1 ms |
Coverage | Good, but limited in rural areas | Greater coverage, especially in remote areas |
IoT Connectivity | Supports a large number of IoT devices | Optimizes massive and efficient communication among IoT sensors |
Technological Integration | Supports IoT, big data, cloud computing | Supports advanced AI, cobots, digital twins, blockchain, quantum computing |
Impact on Agriculture | Automation and digitization of processes | Intelligent monitoring, sustainability, personalization, and human–machine collaboration |
Key Benefits | Improves productivity and efficiency | Enables innovative solutions, resilience, and sustainability in Agriculture 5.0 |
Aspect | Agriculture 4.0 | Agriculture 5.0 | Similarities | Differences |
---|---|---|---|---|
Focus | Mainly focused on automation and technological efficiency | Human-centered, with emphasis on sustainability, resilience, and social harmony | Use of advanced technologies to improve agriculture | Agriculture 5.0 emphasizes the synergy between human expertise and intelligent systems, with a strong focus on sustainability beyond mere automation |
Technologies | IoT, big data, cloud computing, robotics | AI, IoT, cobots, blockchain, 6G, quantum computing, digital twins, edge computing | Both use IoT, AI, and robotics | Agriculture 5.0 incorporates a broader spectrum of cutting-edge technologies, such as blockchain and quantum computing, to drive innovation across the agricultural value chain |
Human–Machine Interaction | Mostly automated processes with minimal human interaction | Active collaboration and synergy between humans and machines | Both use machines to assist in agricultural tasks | Agriculture 5.0 encourages specialized job creation and increased human involvement |
Sustainability | Focused on productivity and efficiency | Strong emphasis on ecological and social sustainability | Both aim to improve agricultural production | Agriculture 5.0 explicitly includes ecosystem protection and social equity |
Data Use | Big data analysis and cloud computing | Edge computing and real-time decision-making | Both rely on data-driven decision-making | Agriculture 5.0 uses real-time data with integrated intelligence for mass personalization |
Social Impact | Limited consideration | Addresses inequality, job security, and social inclusion | Both influence agricultural practices | Agriculture 5.0 seeks to reduce inequalities and improve working and social conditions |
General Objective | Increase efficiency and automation | Achieve resilient, sustainable, and human-centered agriculture | Overall improvement of agriculture | Agriculture 5.0 aligns with the Society 5.0 vision for holistic and super-intelligent development |
Challenges | High initial costs, data management, limited training | Cybersecurity, high costs, regulation, continuous training | Both face technological and social challenges | Agriculture 5.0 demands greater attention to cybersecurity, regulation, and social adaptation |
Opportunities | Improved productivity and automation | Creation of skilled jobs, mass personalization, food security, sustainability | Both offer technological advancements for agriculture | Agriculture 5.0 provides expanded social and environmental benefits, focusing on inclusion and resilience |
Frequency Band | Features |
---|---|
470/698 MHz | Deliberations concerning this issue are anticipated at the World Radiocommunication Conference (WRC) planned for 2031. |
700 MHz/800 MHz/900 MHz | Low bands for broadband electronic communications. |
1500 MHz/1800 MHz/2 GHz/ 2.6 GHz/3.6 GHz | Mid bands for broadband electronic communications. |
26 GHz/42 GHz | High bands for broadband electronic communications. |
3.8–4.2 GHz | Low/medium power local area networks. |
6425–7125 MHz | Deployment of wireless access systems (WAS), including local area radio networks (RLAN). |
4400–4800 MHz/7125–7250 MHz/ 7750–8400 MHz/14.8–15.35 GHz | Under study at the 2027 WRC. |
Year | Frequency (MHz) | Amount of Spectrum Assigned |
---|---|---|
2010 | 2500–2690 | 50 MHz |
2011 | 1850–1852.5 1930–1932.5 | 5 MHz |
1852.5–1855 1932.5–1935 | 5 MHz | |
1867.5–1870 1947.5–1950 | 5 MHz | |
1885–1887.5 1965–1967.5 | 5 MHz | |
1887.5–1890 1967.5–1970 | 5 MHz | |
2013 | 1710–1725 2110–2125 | 30 MHz |
1725–1740 2125–2140 | 30 MHz | |
1740–1755 2140–2155 | 30 MHz | |
2525–2540 2645–2660 | 30 MHz | |
2555–2570 2675–2690 | 30 MHz | |
2575–2615 | 40 MHz | |
2014 | 835.02–844.98 846.51–848.97 880.02–889.98 891.51–893.97 | 25 MHz |
1875.0–1882.5 1955.0–1962.5 | 15 MHz | |
824.04–825 825.03–834.99 845.01–846.08 869.04–870 870.03–879.99 890.01–891.48 | 25 MHz | |
1850–1852.5 1855–1860 15 MHz 1935–1940 | 15 MHz | |
2019 | 703–713 758–768 | 20 MHz |
713–723 768–778 | 20 MHz | |
723–733 778–788 | 20 MHz | |
733–743 788–798 | 20 MHz | |
2515–2520 2635–2640 | 10 MHz | |
2520–2525 2640–2645 | 10 MHz | |
2540–2545 2660–2665 | 10 MHz | |
2545–2550 2665–2670 | 10 MHz | |
2550–2555 2670–2675 | 10 MHz | |
2023 | 2555–2560 2675–2680 | 10 MHz |
3300–3380 | 80 MHz | |
3380–3460 | 80 MHz | |
3460–3540 | 80 MHz | |
3540–3620 | 80 MHz |
Band Category | Frequency Band | Maximum Amount of Spectrum |
---|---|---|
Low bands | Less than 1 GHz | 50 MHz |
Middle bands | Between 1 GHz and less than 3 GHz | 100 MHz |
Medium–high bands | Between 3 GHz and 6 GHz | 100 MHz |
Subject Consulted | Colombian National Government Entity | Documents Consulted |
---|---|---|
Agriculture | National Development Plan (DNP) 2023 AGROSAVIA | The National Development Plan 2022–2026 ‘Colombia World Power of Life’ |
6G | Conference 2023—WRC-23 | Acts of WRC-23 and ITU-R Resolution 65 on the development of 6G |
Agricultural Domain | Key 6G Feature | Expected Benefit | Illustrative KPI/Source |
---|---|---|---|
Soil and Crop Monitoring | Integrated Sensing and AI at the Edge (ISAC) | Improved soil health monitoring and nutrient mapping | Reduction in fertilizer use by up to 20% [64]. |
Pest and Disease Detection | Massive IoT + Real-time Multispectral Streaming | Faster disease alerts and early interventions in high-value crops | 93% accuracy in coffee rust detection [65]. |
Digital Traceability | Ultra-Reliable Low-Latency Communication (uRLLC) | Transparent supply chains and real-time compliance with EUDR | Full-chain traceability via Hyperledger Fabric [66]. |
Smart Irrigation and Agroclimatic Management | Edge Computing + ISAC + mMTC | Localized irrigation optimization and climate resilience | Notable reductions in water and energy consumption in Valle del Cauca IoT-irrigation pilots [67]. |
Name | Features | Existing or Potential Applications in Colombia | Limitations and Challenges |
---|---|---|---|
Space–Air–Ground Integrated Networks | Integration of data collected from drones, satellites, and multispectral imaging. | Yield prediction using drones and multispectral cameras; crop mapping for irrigation and fertilization. | Rural connectivity limitations and high technological infrastructure costs. |
Terahertz Technology (analog: advanced sensors and NIRS spectroscopy) | High sensitivity and fast analysis. | Quality analysis of milk and forage using NIRS; remote sensors such as EM38 and NDVI. | Limited access to specialized equipment in rural areas and need for technical training. |
Reconfigurable Intelligent Surfaces (RIS) | Smart reconfiguration of the wireless propagation environment (analog: IoT with microsensors). | Microsensors for IoT in precision agriculture; real-time environmental monitoring. | Not yet industrialized; requires field validation. |
Wireless AI | Continuous learning and automatic model adjustment. | AI system for fertilization plan prediction across more than 100 crops; human–machine collaboration improves predictions. | Still limited to specific applications; more integration with communication networks needed. |
Integrated Sensing and Communication (ISAC) | Simultaneous sensing and data transmission from the field. | Monitoring platforms for decision-making in tomato production, pest control, and price prediction. | Lack of standardization; adverse environmental conditions may impact accuracy. |
Massive MIMO (analog: multisource and multisensor platforms) | High spectral efficiency and wide coverage with multiple access points. | Multisource platforms like AlimenTro, with over 1.8 million analyses and real-time data for livestock nutrition. | Technical complexity in integrating multiple sensors and data sources; interoperability challenges. |
Agricultural Domain | Future Prospects Enabled by 6G |
---|---|
Soil Fertility and Nutrient Management | Real-time transmission of soil data will enable dynamic fertilization systems. AI models deployed at the edge could provide crop-specific nutrient recommendations on demand. |
Pest and Disease Detection | Autonomous drones and ground sensors with AI-powered early warning systems could interact in real time via 6G networks to detect and mitigate outbreaks before they spread. |
Digital Traceability Systems | Blockchain technologies platforms may become widespread, ensuring compliance with international standards like EUDR. Sixth-generation connectivity will enable instant and secure traceability across the chain. |
Agroclimatic Monitoring and Irrigation | Precision irrigation systems powered by real-time sensors and edge computing will autonomously adjust water use, enhancing resilience to climate variability in remote areas. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios-Ulloa, A.; Solano-Barliza, A.; Arrubla-Hoyos, W.; Ojeda-Beltrán, A.; Cama-Pinto, D.; Arrabal-Campos, F.M.; Cama-Pinto, A. Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network. Sustainability 2025, 17, 6664. https://doi.org/10.3390/su17156664
Barrios-Ulloa A, Solano-Barliza A, Arrubla-Hoyos W, Ojeda-Beltrán A, Cama-Pinto D, Arrabal-Campos FM, Cama-Pinto A. Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network. Sustainability. 2025; 17(15):6664. https://doi.org/10.3390/su17156664
Chicago/Turabian StyleBarrios-Ulloa, Alexis, Andrés Solano-Barliza, Wilson Arrubla-Hoyos, Adelaida Ojeda-Beltrán, Dora Cama-Pinto, Francisco Manuel Arrabal-Campos, and Alejandro Cama-Pinto. 2025. "Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network" Sustainability 17, no. 15: 6664. https://doi.org/10.3390/su17156664
APA StyleBarrios-Ulloa, A., Solano-Barliza, A., Arrubla-Hoyos, W., Ojeda-Beltrán, A., Cama-Pinto, D., Arrabal-Campos, F. M., & Cama-Pinto, A. (2025). Agriculture 5.0 in Colombia: Opportunities Through the Emerging 6G Network. Sustainability, 17(15), 6664. https://doi.org/10.3390/su17156664