A Review of Computer Vision and Deep Learning Applications in Crop Growth Management
Abstract
1. Introduction
2. Computer Vision
2.1. Monocular Camera
2.2. Stereo Vision Camera
2.3. Structured Light Camera
2.4. Hyperspectral and Multispectral Cameras
2.5. Infrared Vision Sensors and Spectrometers
3. Deep Learning
3.1. Attention Mechanism
3.2. Transformer-Based Models
3.3. Image Segmentation and Image Detection Models
4. Agricultural Applications
4.1. Crop Identification and Detection
4.2. Crop Grading
4.3. Disease Monitoring
4.4. Weed Detection
4.5. Actual Case Applications
5. Challenges and the Way Forward
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, X.; Liao, J.; Zang, Y.; Ou, Y.; Wang, P. Developing from mechanized to smart agricultural production in China. Strateg. Study Chin. Acad. Eng. 2022, 24, 46–54. [Google Scholar] [CrossRef]
- Christiaensen, L.; Rutledge, Z.; Taylor, J.E. Viewpoint: The future of work in agri-food. Food Policy 2021, 99, 101963. [Google Scholar] [CrossRef]
- Akbar, J.U.M.; Kamarulzaman, S.F.; Muzahid, A.J.M.; Rahman, M.A.; Uddin, M. A comprehensive review on deep learning assisted computer vision techniques for smart greenhouse agriculture. IEEE Access 2024, 12, 4485–4522. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Ranganathan, J.; Waite, R.; Searchinger, T.; Hanson, C. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts; World Resources Institute: Washington, DC, USA, 2018; p. 5. [Google Scholar]
- Dhanya, V.G.; Subeesh, A.; Kushwaha, N.L.; Vishwakarma, D.K.; Kumar, T.N.; Ritika, G.; Singh, A.N. Deep learning based computer vision approaches for smart agricultural applications. Artif. Intell. Agric. 2022, 6, 211–229. [Google Scholar] [CrossRef]
- Tian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar] [CrossRef]
- Jin, Y.; Xia, X.; Gao, Q.; Yue, Y.; Lim, E.G.; Wong, P.; Ding, W.; Zhu, X. Deep learning in produce perception of harvesting robots: A comprehensive review. Appl. Soft Comput. 2025, 174, 112971. [Google Scholar] [CrossRef]
- Ukwuoma, C.C.; Qin, Z.; Bin Heyat, M.B.; Ali, L.; Almaspoor, Z.; Monday, H.N. Recent advancements in fruit detection and classification using deep learning techniques. Math. Probl. Eng. 2022, 2022, 9210947. [Google Scholar] [CrossRef]
- Zheng, W.; Lan, R.; Zhangzhong, L.; Yang, L.; Gao, L.; Yu, J. A Hybrid Approach for Soil Total Nitrogen Anomaly Detection Integrating Machine Learning and Spatial Statistics. Agronomy 2023, 13, 2669. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Ma, Y.; Woolf, D.; Fan, M.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Zhao, L.; Haque, S.M.; Wang, R. Automated seed identification with computer vision: Challenges and opportunities. Seed Sci. Technol. 2022, 50, 75–102. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple target recognition method in complex environment based on improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of weed detection methods based on computer vision. Sensors 2021, 21, 3647. [Google Scholar] [CrossRef]
- Shoaib, M.; Sadeghi-Niaraki, A.; Ali, F.; Hussain, I.; Khalid, S. Leveraging deep learning for plant disease and pest detection: A comprehensive review and future directions. Front. Plant Sci. 2025, 16, 1538163. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Zhao, S.; Jiang, Y.; Wang, J.; Jin, Y. Design of a virtual multi-interaction operation system for hand–eye coordination of grape harvesting robots. Agronomy 2023, 13, 829. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, L.; Xu, L.; Zhang, Q.; Liu, J.; Cai, Q.; Zhang, W. Stereo-vision-based multi-crop harvesting edge detection for precise automatic steering of combine harvester. Biosyst. Eng. 2022, 215, 115–128. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A review on the application of computer vision and machine learning in the tea industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Kim, W.S.; Lee, D.H.; Kim, Y.J.; Kim, T.; Lee, W.S.; Choi, C.H. Stereo-vision-based crop height estimation for agricultural robots. Comput. Electron. Agric. 2021, 181, 105937. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Xu, B.; Sun, J.; Mujumdar, A.S. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends Food Sci. Technol. 2020, 105, 251–260. [Google Scholar] [CrossRef]
- Xu, Q.; Cai, J.R.; Zhang, W.; Bai, J.W.; Li, Z.Q.; Tan, B.; Sun, L. Detection of citrus Huanglongbing (HLB) based on the HLB-induced leaf starch accumulation using a home-made computer vision system. Biosyst. Eng. 2022, 218, 163–174. [Google Scholar] [CrossRef]
- Chen, J.; Lian, Y.; Zou, R.; Zhang, S.; Ning, X.; Han, M. Real-time grain breakage sensing for rice combine harvesters using machine vision technology. Int. J. Agric. Biol. Eng. 2020, 13, 194–199. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Adade, S.Y.S.S.; Lin, J.; Lin, H.; Chen, Q. Tea grading, blending, and matching based on computer vision and deep learning. J. Sci. Food Agric. 2025, 105, 3239–3251. [Google Scholar] [CrossRef]
- Zhu, C.; Hao, S.; Liu, C.; Wang, Y.; Jia, X.; Xu, J.; Guo, S.; Huo, J.; Wang, W. An Efficient Computer Vision-Based Dual-Face Target Precision Variable Spraying Robotic System for Foliar Fertilisers. Agronomy 2024, 14, 2770. [Google Scholar] [CrossRef]
- Huang, X.Y.; Pan, S.H.; Sun, Z.Y.; Ye, W.T.; Aheto, J.H. Evaluating quality of tomato during storage using fusion information of computer vision and electronic nose. J. Food Process Eng. 2018, 41, e12832. [Google Scholar] [CrossRef]
- Tu, H.; Huang, D.; Huang, X.; Aheto, J.H.; Ren, Y.; Wang, Y.; Liu, J.; Niu, S.; Xu, M. Detection of browning of fresh-cut potato chips based on machine vision and electronic nose. J. Food Process Eng. 2021, 44, e13631. [Google Scholar]
- Lei, L.; Yang, Q.; Yang, L.; Shen, T.; Wang, R.; Fu, C. Deep learning implementation of image segmentation in agricultural applications: A comprehensive review. Artif. Intell. Rev. 2024, 57, 149. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Zhang, Y.; Zhou, J.; Wu, J.; Li, P. Real-time detection and location of potted flowers based on a ZED camera and a YOLO V4-tiny deep learning algorithm. Horticulturae 2021, 8, 21. [Google Scholar] [CrossRef]
- Badhan, S.; Desai, K.; Dsilva, M.; Sonkusare, R.; Weakey, S. Real-time weed detection using machine learning and stereo-vision. In Proceedings of the 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, India, 2–4 April 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Zheng, B.; Sun, G.; Meng, Z.; Nan, R. Vegetable size measurement based on stereo camera and keypoints detection. Sensors 2022, 22, 1617. [Google Scholar] [CrossRef]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Mesri-Gundoshmian, T.; Farooque, A.A.; Afzaal, H. Estimation of soil surface roughness using stereo vision approach. Sensors 2021, 21, 4386. [Google Scholar] [CrossRef] [PubMed]
- Ruigrok, T.; van Henten, E.J.; Kootstra, G. Stereo Vision for Plant Detection in Dense Scenes. Sensors 2024, 24, 1942. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, B.; Zhang, Z.; Li, H.; Zhang, M. Applications of machine vision in agricultural robot navigation: A review. Comput. Electron. Agric. 2022, 198, 107085. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; Marinello, F. A feasibility study on the use of a structured light depth-camera for three-dimensional body measurements of dairy cows in free-stall barns. Sensors 2018, 18, 673. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Slaughter, D.C.; Max, N.; Maloof, J.N.; Sinha, N. Structured light-based 3D reconstruction system for plants. Sensors 2015, 15, 18587–18612. [Google Scholar] [CrossRef]
- Atif, M.; Lee, S. Adaptive pattern resolution for structured light 3D camera system. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–4. [Google Scholar]
- Fu, L.; Gao, F.; Wu, J.; Li, R.; Karkee, M.; Zhang, Q. Application of consumer RGB-D cameras for fruit detection and localization in field: A critical review. Comput. Electron. Agric. 2020, 177, 105687. [Google Scholar] [CrossRef]
- Shuai, L.; Li, Z.; Chen, Z.; Luo, D.; Mu, J. A research review on deep learning combined with hyperspectral Imaging in multiscale agricultural sensing. Comput. Electron. Agric. 2024, 217, 108577. [Google Scholar] [CrossRef]
- Tamayo-Monsalve, M.A.; Mercado-Ruiz, E.; Villa-Pulgarin, J.P.; Bravo-Ortiz, M.A.; Arteaga-Arteaga, H.B.; Mora-Rubio, A.; Alzate-Grisales, J.A.; Arias-Garzon, D.; Romero-Cano, V.; Orozco-Arias, S.; et al. Coffee maturity classification using convolutional neural networks and transfer learning. IEEE Access 2022, 10, 42971–42982. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, J.; Tian, Y.; Lu, B.; Hang, Y.; Chen, Q. Hyperspectral technique combined with deep learning algorithm for detection of compound heavy metals in lettuce. Food Chem. 2020, 321, 126503. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat biomass, yield, and straw-grain ratio estimation from multi-temporal UAV-based RGB and multispectral images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Li, J.; Luo, W.; Han, L.; Cai, Z.; Guo, Z. Two-wavelength image detection of early decayed oranges by coupling spectral classification with image processing. J. Food Compos. Anal. 2022, 111, 104642. [Google Scholar] [CrossRef]
- Petersson, H.; Gustafsson, D.; Bergstrom, D. (December). Hyperspectral image analysis using deep learning—A review. In Proceedings of the 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), Oulu, Finland, 12–15 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Shafique, A.; Siraj, M.; Cheng, B.; Alsaif, S.A.; Sadad, T. Hyperspectral Imaging and Advanced Vision Transformers for Identifying Pure and Pesticide-Coated Apples. IEEE Access 2025, 13, 66405–66419. [Google Scholar] [CrossRef]
- Feng, H.; Chen, Y.; Song, J.; Lu, B.; Shu, C.; Qiao, J.; Liao, Y.; Yang, W. Maturity classification of rapeseed using hyperspectral image combined with machine learning. Plant Phenomics 2024, 6, 0139. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Li, X.; Cunha, M.; Jayavelu, S.; Cammarano, D.; Fu, Y. Machine learning-based approaches for predicting SPAD values of maize using multi-spectral images. Remote Sens. 2022, 14, 1337. [Google Scholar] [CrossRef]
- Tian, S.; Lu, Q.; Wei, L. Multiscale superpixel-based fine classification of crops in the UAV-based hyperspectral imagery. Remote Sens. 2022, 14, 3292. [Google Scholar] [CrossRef]
- Shen, T.; Zhou, X.; Shi, J.; Li, Z.; Huang, X.; Xu, Y.; Chen, W. Determination geographical origin and flavonoids content of goji berry using near-infrared spectroscopy and chemometrics. Food Anal. Methods 2016, 9, 68–79. [Google Scholar]
- Zhang, H.; Jiang, H.; Liu, G.; Mei, C.; Huang, Y. Identification of Radix puerariae starch from different geographical origins by FT-NIR spectroscopy. Int. J. Food Prop. 2017, 20 (Suppl. 2), 1567–1577. [Google Scholar] [CrossRef]
- Li, Y.; Zou, X.; Shen, T.; Shi, J.; Zhao, J.; Holmes, M. Determination of geographical origin and anthocyanin content of black goji berry (Lycium ruthenicum Murr.) using near-infrared spectroscopy and chemometrics. Food Anal. Methods 2017, 10, 1034–1044. [Google Scholar]
- Lu, J.; Zhang, M.; Hu, Y.; Ma, W.; Tian, Z.; Liao, H.; Chen, J.; Yang, Y. From Outside to Inside: The Subtle Probing of Globular Fruits and Solanaceous Vegetables Using Machine Vision and Near-Infrared Methods. Agronomy 2024, 14, 2395. [Google Scholar] [CrossRef]
- Patel, K.K.; Pathare, P.B. Principle and applications of near-infrared imaging for fruit quality assessment—An overview. Int. J. Food Sci. Technol. 2024, 59, 3436–3450. [Google Scholar] [CrossRef]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, S.; Zuo, M.; Zhang, B.; Zhu, Q.; Kong, J. Discrimination of new and aged seeds based on on-line near-infrared spectroscopy technology combined with machine learning. Foods 2024, 13, 1570. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Li, X.; Zhang, C.; Lei, Z. Online inspection of browning in yali pears using visible-near infrared spectroscopy and interpretable spectrogram-based CNN modeling. Biosensors 2023, 13, 203. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Wang, F.; Liu, X.; Wu, Y. Rapid assessment of tomato ripeness using visible/near-infrared spectroscopy and machine vision. Food Anal. Methods 2017, 10, 1721–1726. [Google Scholar] [CrossRef]
- Türkler, L.; Akkan, T.; Akkan, L.Ö. Detection of Water Leakage in Drip Irrigation Systems Using Infrared Technique in Smart Agricultural Robots. Sensors 2023, 23, 9244. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A deep learning method for predicting lead content in oilseed rape leaves using fluorescence hyperspectral imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; Ge, X.; Wu, X.; Shen, J.; Song, Y. Detection of key organs in tomato based on deep migration learning in a complex background. Agriculture 2018, 8, 196. [Google Scholar] [CrossRef]
- You, J.; Li, D.; Wang, Z.; Chen, Q.; Ouyang, Q. Prediction and visualization of moisture content in Tencha drying processes by computer vision and deep learning. J. Sci. Food Agric. 2024, 104, 5486–5494. [Google Scholar] [CrossRef]
- Manikandan, R.; Ranganathan, G.; Bindhu, V. Deep learning based IoT module for smart farming in different environmental conditions. Wirel. Pers. Commun. 2023, 128, 1715–1732. [Google Scholar] [CrossRef]
- Li, H.; Luo, X.; Haruna, S.A.; Zareef, M.; Chen, Q.; Ding, Z.; Yan, Y. Au-Ag OHCs-based SERS sensor coupled with deep learning CNN algorithm to quantify thiram and pymetrozine in tea. Food Chem. 2023, 428, 136798. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, Y.; Chen, Y.; Wu, Y.; Yue, Y. Pest identification via deep residual learning in complex background. Comput. Electron. Agric. 2017, 141, 351–356. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Gong, C.; Chen, Y.; Yu, H. Applications of deep learning for dense scenes analysis in agriculture: A review. Sensors 2020, 20, 1520. [Google Scholar] [CrossRef] [PubMed]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 27. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Tao, K.; Wang, A.; Shen, Y.; Lu, Z.; Peng, F.; Wei, X. Peach flower density detection based on an improved cnn incorporating attention mechanism and multi-scale feature fusion. Horticulturae 2022, 8, 904. [Google Scholar] [CrossRef]
- Zhao, S.; Peng, Y.; Liu, J.; Wu, S. Tomato leaf disease diagnosis based on improved convolution neural network by attention module. Agriculture 2021, 11, 651. [Google Scholar] [CrossRef]
- Zuo, X.; Chu, J.; Shen, J.; Sun, J. Multi-granularity feature aggregation with self-attention and spatial reasoning for fine-grained crop disease classification. Agriculture 2022, 12, 1499. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Bin, P.; Jing, B.; Wenjing, L.; Hu, Z.H.E.N.G.; Xiangyu, M.A. Survey on Visual Transformer for Image Classification. J. Front. Comput. Sci. Technol. 2024, 18, 320. [Google Scholar]
- Zhu, W.; Sun, J.; Wang, S.; Shen, J.; Yang, K.; Zhou, X. Identifying field crop diseases using transformer-embedded convolutional neural network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- De Silva, M.; Brown, D. Multispectral plant Disease Detection with Vision transformer–convolutional neural network hybrid approaches. Sensors 2023, 23, 8531. [Google Scholar] [CrossRef]
- Luo, Z.; Yang, W.; Yuan, Y.; Gou, R.; Li, X. Semantic segmentation of agricultural images: A survey. Inf. Process. Agric. 2024, 11, 172–186. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Miao, Z.; Yu, X.; Li, N.; Zhang, Z.; He, C.; Li, Z.; Deng, C.; Sun, T. Efficient tomato harvesting robot based on image processing and deep learning. Precis. Agric. 2023, 24, 254–287. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Kong, J.L.; Jin, X.B.; Wang, X.Y.; Su, T.L.; Zuo, M. CropDeep: The crop vision dataset for deep-learning-based classification and detection in precision agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Sun, J.; Zhou, X.; Yao, K.; Tang, N. Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J. Food Process. Preserv. 2022, 46, e16414. [Google Scholar] [CrossRef]
- Bhattarai, U.; Bhusal, S.; Zhang, Q.; Karkee, M. AgRegNet: A deep regression network for flower and fruit density estimation, localization, and counting in orchards. Comput. Electron. Agric. 2024, 227, 109534. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Wu, C.; Wu, H. Fruit Distribution Density Estimation in YOLO-Detected Strawberry Images: A Kernel Density and Nearest Neighbor Analysis Approach. Agriculture 2024, 14, 1848. [Google Scholar] [CrossRef]
- Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wang, B. Research on apple object detection and localization method based on improved YOLOX and RGB-D images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Liu, X.; Jia, W.; Ruan, C.; Zhao, D.; Gu, Y.; Chen, W. The recognition of apple fruits in plastic bags based on block classification. Precis. Agric. 2018, 19, 735–749. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. Ts-yolo: An all-day and lightweight tea canopy shoots detection model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Li, A.; Wang, C.; Ji, T.; Wang, Q.; Zhang, T. D3-YOLOv10: Improved YOLOv10-Based Lightweight Tomato Detection Algorithm Under Facility Scenario. Agriculture 2024, 14, 2268. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Ali, S.; Yang, N.; Fu, S.; Zhang, Y. Multi-class detection of cherry tomatoes using improved Yolov4-tiny model. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar]
- Shi, Y.; Duan, Z.; Qing, S.; Zhao, L.; Wang, F.; Yuwen, X. YOLOV9S-Pear: A lightweight YOLOV9S-Based improved model for young Red Pear Small-Target recognition. Agronomy 2024, 14, 2086. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, Y.; Wang, R.; Wang, Y.; Yin, C.; Fu, M.; Fu, W. Recognition of mango and location of picking point on stem based on a multi-task CNN model named YOLOMS. Precis. Agric. 2024, 25, 1454–1476. [Google Scholar] [CrossRef]
- Zhou, W.; Cui, Y.; Huang, H.; Huang, H.; Wang, C. A fast and data-efficient deep learning framework for multi-class fruit blossom detection. Comput. Electron. Agric. 2024, 217, 108592. [Google Scholar] [CrossRef]
- Dai, J.S.; He, Z.Q. Real-Time Recognition and Localization of Kiwifruit Based on Improved YOLOv5s Algorithm. IEEE Access 2024, 12, 156261–156272. [Google Scholar] [CrossRef]
- Yao, K.; Sun, J.; Zhou, X.; Nirere, A.; Tian, Y.; Wu, X. Nondestructive detection for egg freshness grade based on hyperspectral imaging technology. J. Food Process Eng. 2020, 43, e13422. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, J.; Sun, B.; Xu, Y.; Lu, F.; Ma, H. Inspection and classification of wheat quality using image processing. Qual. Assur. Saf. Crops Foods 2023, 15, 43–54. [Google Scholar] [CrossRef]
- Gururaj, N.; Vinod, V.; Vijayakumar, K. Deep grading of mangoes using convolutional neural network and computer vision. Multimed. Tools Appl. 2023, 82, 39525–39550. [Google Scholar] [CrossRef]
- Xu, B.; Cui, X.; Ji, W.; Yuan, H.; Wang, J. Apple grading method design and implementation for automatic grader based on improved YOLOv5. Agriculture 2023, 13, 124. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Z.; Cao, Z.; Chen, Y.; Li, L.; Chen, L.; Zhang, S.; Wang, C.; Li, H.; Wang, B. Recognition Model for Tea Grading and Counting Based on the Improved YOLOv8n. Agronomy 2024, 14, 1251. [Google Scholar] [CrossRef]
- Lu, M.; Jiang, S.; Wang, C.; Chen, D.; Chen, T.E. Tobacco leaf grading based on deep convolutional neural networks and machine vision. J. ASABE 2022, 65, 11–22. [Google Scholar] [CrossRef]
- Lu, M.; Wang, C.; Wu, W.; Zhu, D.; Zhou, Q.; Wang, Z.; Chen, T.; Jiang, S.; Chen, D. Intelligent grading of tobacco leaves using an improved bilinear convolutional neural network. IEEE Access 2023, 11, 68153–68170. [Google Scholar] [CrossRef]
- Ni, J.; Liu, B.; Li, J.; Gao, J.; Yang, H.; Han, Z. Detection of carrot quality using DCGAN and deep network with squeeze-and-excitation. Food Anal. Methods 2022, 15, 1432–1444. [Google Scholar] [CrossRef]
- Zhang, Y.; Mohd Khairuddin, A.S.; Chuah, J.H.; Zhao, X.; Huang, J. An intelligent mangosteen grading system based on an improved convolutional neural network. Signal Image Video Process. 2024, 18, 8585–8595. [Google Scholar] [CrossRef]
- Ismail, N.; Malik, O.A. Real-time visual inspection system for grading fruits using computer vision and deep learning techniques. Inf. Process. Agric. 2022, 9, 24–37. [Google Scholar]
- Fan, S.; Li, J.; Zhang, Y.; Tian, X.; Wang, Q.; He, X.; Zhang, C.; Huang, W. On line detection of defective apples using computer vision system combined with deep learning methods. J. Food Eng. 2020, 286, 110102. [Google Scholar] [CrossRef]
- Ji, W.; Wang, J.; Xu, B.; Zhang, T. Apple grading based on multi-dimensional view processing and deep learning. Foods 2023, 12, 2117. [Google Scholar] [CrossRef]
- Jun, S.; Xin, Z.; Hanping, M.; Xiaohong, W.; Xiaodong, Z.; Hongyan, G. Identification of residue level in lettuce based on hyperspectra and chlorophyll fluorescence spectra. Int. J. Agric. Biol. Eng. 2016, 9, 231–239. [Google Scholar]
- Upadhyay, A.; Chandel, N.S.; Singh, K.P.; Chakraborty, S.K.; Nandede, B.M.; Kumar, M.; Subeesh, A.; Upendar, K.; Salem, A.; Elbeltagi, A. Deep learning and computer vision in plant disease detection: A comprehensive review of techniques, models, and trends in precision agriculture. Artif. Intell. Rev. 2025, 58, 92. [Google Scholar] [CrossRef]
- Duan, Y.; Han, W.; Guo, P.; Wei, X. YOLOv8-GDCI: Research on the Phytophthora Blight Detection Method of Different Parts of Chili Based on Improved YOLOv8 Model. Agronomy 2024, 14, 2734. [Google Scholar] [CrossRef]
- Meng, Q.; Guo, J.; Zhang, H.; Zhou, Y.; Zhang, X. A dual-branch model combining convolution and vision transformer for crop disease classification. PLoS ONE 2025, 20, e0321753. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, C.; Xiao, D.; Huang, Q. Automatic monitoring of flying vegetable insect pests using an RGB camera and YOLO-SIP detector. Precis. Agric. 2023, 24, 436–457. [Google Scholar] [CrossRef]
- Hassan, S.M.; Maji, A.K. Pest Identification based on fusion of Self-Attention with ResNet. IEEE Access 2024, 12, 6036–6050. [Google Scholar] [CrossRef]
- Li, M.; Cheng, S.; Cui, J.; Li, C.; Li, Z.; Zhou, C.; Lv, C. High-performance plant pest and disease detection based on model ensemble with inception module and cluster algorithm. Plants 2023, 12, 200. [Google Scholar] [CrossRef]
- Lamba, S.; Baliyan, A.; Kukreja, V. A novel GCL hybrid classification model for paddy diseases. Int. J. Inf. Technol. 2023, 15, 1127–1136. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Chen, Z.; Tang, D.; Li, Z.; Li, Z. FCBTYOLO: A lightweight and high-performance fine grain detection strategy for rice pests. IEEE Access 2023, 11, 101286–101295. [Google Scholar] [CrossRef]
- Maruthai, S.; Selvanarayanan, R.; Thanarajan, T.; Rajendran, S. Hybrid vision GNNs based early detection and protection against pest diseases in coffee plants. Sci. Rep. 2025, 15, 11778. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Dong, S.; Tang, J.; Wang, A.; Huang, R.; Jia, Y. Rapid image detection and recognition of rice false smut based on mobile smart devices with anti-light features from cloud database. Biosyst. Eng. 2022, 218, 229–244. [Google Scholar] [CrossRef]
- Yang, N.; Qian, Y.; EL-Mesery, H.S.; Zhang, R.; Wang, A.; Tang, J. Rapid detection of rice disease using microscopy image identification based on the synergistic judgment of texture and shape features and decision tree–confusion matrix method. J. Sci. Food Agric. 2019, 99, 6589–6600. [Google Scholar] [CrossRef]
- Hosny, K.M.; El-Hady, W.M.; Samy, F.M.; Vrochidou, E.; Papakostas, G.A. Multi-class classification of plant leaf diseases using feature fusion of deep convolutional neural network and local binary pattern. IEEE Access 2023, 11, 62307–62317. [Google Scholar] [CrossRef]
- Khalid, S.; Oqaibi, H.M.; Aqib, M.; Hafeez, Y. Small pests detection in field crops using deep learning object detection. Sustainability 2023, 15, 6815. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of deep learning-based variable rate agrochemical spraying system for targeted weeds control in strawberry crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Deng, L.; Miao, Z.; Zhao, X.; Yang, S.; Gao, Y.; Zhai, C.; Zhao, C. HAD-YOLO: An Accurate and Effective Weed Detection Model Based on Improved YOLOV5 Network. Agronomy 2025, 15, 57. [Google Scholar] [CrossRef]
- Tao, T.; Wei, X. STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field. Agriculture 2024, 15, 22. [Google Scholar] [CrossRef]
- Pei, H.; Sun, Y.; Huang, H.; Zhang, W.; Sheng, J.; Zhang, Z. Weed detection in maize fields by UAV images based on crop row preprocessing and improved YOLOv4. Agriculture 2022, 12, 975. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, C.; Lu, L.; Yan, Y.; Jun, W.; Wei, X.; Ke, X.; Jun, T. Star-YOLO: A lightweight and efficient model for weed detection in cotton fields using advanced YOLOv8 improvements. Comput. Electron. Agric. 2025, 235, 110306. [Google Scholar] [CrossRef]
- Janneh, L.L.; Zhang, Y.; Cui, Z.; Yang, Y. Multi-level feature re-weighted fusion for the semantic segmentation of crops and weeds. J. King Saud Univ. Comput. Inf. Sci. 2023, 35, 101545. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Cai, Z.; Zhong, Y.; Zhong, F.; Lin, X.; Wang, L. YOLO-ACE: Enhancing YOLO with Augmented Contextual Efficiency for Precision Cotton Weed Detection. Sensors 2025, 25, 1635. [Google Scholar] [CrossRef]
- Khan, S.D.; Basalamah, S.; Lbath, A. Weed–Crop segmentation in drone images with a novel encoder–decoder framework enhanced via attention modules. Remote Sens. 2023, 15, 5615. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Ma, G.; Du, X.; Shaheen, N.; Mao, H. Recognition of weeds at asparagus fields using multi-feature fusion and backpropagation neural network. Int. J. Agric. Biol. Eng. 2021, 14, 190–198. [Google Scholar] [CrossRef]
Reference | Target | Approach | Performance | Hardware Specifications | Number of Datasets |
---|---|---|---|---|---|
[84] | Apple detection and localization | YOLOX, SPP | F1: 93% mAP50: 94.09% speed: 167.43 FPS | i7+RTX 2080Ti (Intel, Santa Clara, CA, USA) | 4785 |
[14] | Apple target recognition | YOLOv4, EfficientNet-B0, PANet | mAP50: 93.42% Recall: 87.64% speed: 63.20 FPS | NVIDIA GTX 1080Ti (Nvidia, Santa Clara, CA, USA) | 10,385 |
[83] | Distribution density of strawberry fruits | YOLOv8n, Squeeze-and-Excitation, Kernel Density Estimation | mAP50-95: 87.3% Recall: 90.7% Speed: 15.95 FPS | NVIDIA GTX 1080Ti (Nvidia, Santa Clara, CA, USA) | 4500 |
[85] | Recognition of apple | SVM, BPNN, Watershed Algorithm | FNR: 4.65% FPR: 3.50% | NVIDIA GTX 1080Ti (Nvidia, Santa Clara, CA, USA) | ___ |
[86] | Tea detection | YOLOv4, DepC, DCN, Coordinate Attention, MobileNetV3 | Precision: 85.35% Recall: 78.42% mAP50: 82.12% | NVIDIA GTX 1080Ti (Nvidia, Santa Clara, CA, USA) | 4347 |
[87] | Tomato detection | YOLOv10, DyFasterNet, D-LKA | mAP50: 91.8% mAP50-95: 63.8% Speed: 80.1 FPS | NVIDIA GTX (Nvidia, Santa Clara, CA, USA) | 2000 |
[88] | Tomatoes detection | YOLOv4-Tiny, CBAM | mAP50: 90.78% Speed: 31.04 FPS | NVIDIA GTX (Nvidia, Santa Clara, CA, USA) | 8112 |
[89] | Red pear small-target recognition | YOLOv9s, SCDown, C2FUIBELAN | mAP50-95: 84.8% mAP50: 99.1% Recall: 97% Speed: 83.64 FPS | NVIDIA A16 (Nvidia, Santa Clara, CA, USA) | 1580 |
[90] | Recognition of mango | YOLOv5s, RepVGG | Precision: 84.81% Recall: 85.64% mAP50: 82.42% Speed: 39.73FPS | NVIDIA GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA) | 1760 |
[91] | Blossom detection | VoVNet, CenterNet2, Location Guidance Module | mAP50: 74.33% Speed: 47FPS | NVIDIA RTX GTX 3090 (Nvidia, Santa Clara, CA, USA) | 2760 |
Reference | Target | Approach | Performance | Hardware Specifications | Number of Datasets |
---|---|---|---|---|---|
[96] | Apple Grading | YOLOv5s, Squeeze-and-Excitation | mAP50: 90.6% Precision: 95.1% Recall: 95.2% Speed: 59.63 FPS | NVIDIA GTX1660Ti (Nvidia, Santa Clara, CA, USA) | 6000 |
[97] | Tea Grading | YOLOv8n, SPD-Conv, Super-Token Vision Transformer | mAP50: 89.1% Precision: 86.9% Recall: 85.5% | NVIDIA GeForce RTX 3060 (Nvidia, Santa Clara, CA, USA) | 3612 |
[98] | Tobacco Leaf Grading | A-ResNet-65, ResNet-34, BN-PReLU-Conv | Precision: 91.30% Speed: 82.18 FPS | NVIDIA GeForce GTX 1080Ti (Nvidia, Santa Clara, CA, USA) | 22,330 |
[99] | Tobacco Leaf Grading | VGG16, FPN-CBAM-ResNet50, FPN, CBAM | Precision: 80.65% Speed: 42.1 FPS | 2 × NVIDIA GeForce GTX 1080 Ti GPU (Nvidia, Santa Clara, CA, USA) | 22,322 |
[100] | Detection of Carrot Quality | ResNet-18, Squeeze-and-Excitation, DCGAN | Precision: 98.36% F1score: 98.41% | NVIDIA GTX 2060 (Nvidia, Santa Clara, CA, USA) | 6086 |
[101] | Mangosteen Grading | MobileNetV3, InceptionV3, CBAM | Precision: 97.15% Recall: 97.75% | NVIDIA GTX (Nvidia, Santa Clara, CA, USA) | 20,000 |
[102] | Grading Fruits | ResNet50, DenseNet121, EfficientNet, MobileNetV2 | A Precision: 99.2% ± 0.12% B Precision: 98.6% ± 0.42 | ___ | 9091 |
[103] | Apple Grading | CNN, Softmax, Max Pooling | Precision: 92%, Recall: 91%, Speed: 72 FPS | Intel E7400 CPU (Intel, Santa Clara, CA, USA) | 79,200 |
Reference | Target | Approach | Performance | Hardware Specifications | Number of Datasets |
---|---|---|---|---|---|
[107] | Disease detection | YOLOv8n, RepGFPN, Coordinate Attention | Recall: 84.2% mAP50: 88.9% Speed: 219.5 FPS | NVIDIA GeForce RTX 4060 (Nvidia, Santa Clara, CA, USA) | 1083 |
[108] | Disease classification | CNN, Vision Transformer, Separable Self-Attention | Data1 Precision: 99.71% Data2 Precision: 98.78% | NVIDIA GeForce RTX 4090 (Nvidia, Santa Clara, CA, USA) | 58,367 |
[109] | Detection of pests | YOLOv4, EfficientNetV2-S, Fully CNN | mAP50: 84.22% Speed: 4.72 FPS | 2×GeForce GTX 1080 Ti (Nvidia, Santa Clara, CA, USA) | 3557 |
[110] | Pest identification | ResNet, Self-Attention | Accuracy: 99.80% F1: 99.33% | Google Colab Pro Platform (https://colab.google/) | 4500 |
[111] | Plant pest and disease detection | YOLOv3, Faster R-CNN, Inception | mAP50: 85.2% Speed: 23 FPS | NVIDIA RTX 3080 (Nvidia, Santa Clara, CA, USA) | 26,106 |
[112] | Disease classification | CNN, GAN, LSTM | Bacterial Blight: Precision: 96% Recall: 97% F1: 99% | ___ | 5120 |
[113] | Detection of rice pests | YOLOv8n, FastGAN, Fully Connected Bottleneck Transformer, SPPF | mAP50: 93.6% Speed: 59.52 FPS | NVIDIA Tesla T4 (Nvidia, Santa Clara, CA, USA) | 13,877 |
[114] | Detection of pests | CNN, GNN, SPPF | F1: 87.24% Recall: 81.16% Precision: 87.40% | NVIDIA GeForce GTX 1050 Ti (Nvidia, Santa Clara, CA, USA) | 2850 |
Reference | Target | Approach | Performance | Hardware Specifications | Number of Datasets |
---|---|---|---|---|---|
[119] | Targeted Weeds Control | VGG-16, AlexNet, GoogleNet | Precision: 98% Recall: 97% F1: 97% | NVIDIA GeForce GTX 1080 GPU (Nvidia, Santa Clara, CA, USA) | 12443 |
[120] | Weed Detection | YOLOv5, HGNetV2, Scale Sequence Feature Fusion Module | mAP50: 94.2% Speed: 30.6 FPS | NVIDIA GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA) | 5270 |
[121] | Weed Detection | YOLOv5, BiFPN, Swin Transformer | mAP50: 90.8% Recall: 88.1% Precision: 64.4% Speed: 20.1 FPS | NVIDIA GTX 3080Ti (Nvidia, Santa Clara, CA, USA) | 5000 |
[122] | Fields Weed Detection | YOLOv4, CSPDarknet53, CBAM | mAP50: 86.89% Recall: weed: 78.02% maize: 83.55% | NVIDIA Tesla V100 (Nvidia, Santa Clara, CA, USA) | 3000 |
[123] | Weed Detection | YOLOv8, LSK, DySample | mAP50: 98.0% mAP50-95: 95.4% Speed: 118 FPS | NVIDIA GeForce RTX 3080 Ti (Nvidia, Santa Clara, CA, USA) | 6496 |
[124] | Semantic Segmentation of Crops and Weeds | ResNet34, CWFDM | Precision: 98.4% mIoU: 0.9164 F1: 0.9556 | NVIDIA Tesla P40 GPU (Nvidia, Santa Clara, CA, USA) | 492 |
[125] | Weed Detection | YOLOv5s, CSPDarkNet53, SKAttention | CottonWeedDet12 mAP50: 95.3% mAP50-95: 89.5% Speed: 77 FPS | NVIDIA RTX A5000 (Nvidia, Santa Clara, CA, USA) | 5648 |
[126] | Weed–Crop Segmentation | Dense-Inception, ASPP, CnSAU | mIoU Rice: 0.81 Weeds: 0.79 Others: 0.84 | ___ | 1092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Sun, S.; Bao, X. A Review of Computer Vision and Deep Learning Applications in Crop Growth Management. Appl. Sci. 2025, 15, 8438. https://doi.org/10.3390/app15158438
Cao Z, Sun S, Bao X. A Review of Computer Vision and Deep Learning Applications in Crop Growth Management. Applied Sciences. 2025; 15(15):8438. https://doi.org/10.3390/app15158438
Chicago/Turabian StyleCao, Zhijie, Shantong Sun, and Xu Bao. 2025. "A Review of Computer Vision and Deep Learning Applications in Crop Growth Management" Applied Sciences 15, no. 15: 8438. https://doi.org/10.3390/app15158438
APA StyleCao, Z., Sun, S., & Bao, X. (2025). A Review of Computer Vision and Deep Learning Applications in Crop Growth Management. Applied Sciences, 15(15), 8438. https://doi.org/10.3390/app15158438