Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = smart charging of EV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
50 pages, 1100 KiB  
Article
The Impact of Renewable Generation Variability on Volatility and Negative Electricity Prices: Implications for the Grid Integration of EVs
by Marek Pavlík, Martin Vojtek and Kamil Ševc
World Electr. Veh. J. 2025, 16(8), 438; https://doi.org/10.3390/wevj16080438 - 4 Aug 2025
Abstract
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot [...] Read more.
The introduction of Renewable Energy Sources (RESs) into the electricity grid is changing the price dynamics of the electricity market and creating room for flexibility on the consumption side. This paper investigates different aspects of the interaction between the RES share, electricity spot prices, and electric vehicle (EV) charging strategies. Based on empirical data from Germany, France, and the Czech Republic for the period 2015–2025, four research hypotheses are tested using correlation and regression analysis, cost simulations, and classification algorithms. The results confirm a negative correlation between the RES share and electricity prices, as well as the effectiveness of smart charging in reducing costs. At the same time, it is shown that the occurrence of negative prices is significantly affected by a high RES share. The correlation analysis further suggests that higher production from RESs increases the potential for price optimisation through smart charging. The findings have implications for policymaking aimed at flexible consumption and efficient RES integration. Full article
Show Figures

Graphical abstract

20 pages, 1676 KiB  
Article
Data-Driven Distributionally Robust Optimization for Solar-Powered EV Charging Under Spatiotemporal Uncertainty in Urban Distribution Networks
by Tianhao Wang, Xuejiao Zhang, Xiaolin Zheng, Jian Wang, Shiqian Ma, Jian Chen, Mengyu Liu and Wei Wei
Energies 2025, 18(15), 4001; https://doi.org/10.3390/en18154001 - 27 Jul 2025
Viewed by 358
Abstract
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially [...] Read more.
The rapid electrification of transportation and the proliferation of rooftop solar photovoltaics (PVs) in urban environments are reshaping the operational dynamics of power distribution networks. However, the inherent uncertainty in electric vehicle (EV) behavior—including arrival times, charging preferences, and state-of-charge—as well as spatially and temporally variable solar generation, presents a profound challenge to existing scheduling frameworks. This paper proposes a novel data-driven distributionally robust optimization (DDRO) framework for solar-powered EV charging coordination under spatiotemporal uncertainty. Leveraging empirical datasets of EV usage and solar irradiance from a smart city deployment, the framework constructs Wasserstein ambiguity sets around historical distributions, enabling worst-case-aware decision-making without requiring the assumption of probability laws. The problem is formulated as a two-stage optimization model. The first stage determines day-ahead charging schedules, solar utilization levels, and grid allocations across an urban-scale distribution feeder. The second stage models real-time recourse actions—such as dynamic curtailment or demand reshaping—after uncertainties are realized. Physical grid constraints are modeled using convexified LinDistFlow equations, while EV behavior is segmented into user classes with individualized uncertainty structures. The model is evaluated on a modified IEEE 123-bus feeder with 52 EV-PV nodes, using 15 min resolution over a 24 h horizon and 12 months of real-world data. Comparative results demonstrate that the proposed DDRO method reduces total operational costs by up to 15%, eliminates voltage violations entirely, and improves EV service satisfaction by more than 30% relative to deterministic and stochastic baselines. This work makes three primary contributions: it introduces a robust, tractable optimization architecture that captures spatiotemporal uncertainty using empirical Wasserstein sets; it integrates behavioral and physical modeling within a unified dispatch framework for urban energy-mobility systems; and it demonstrates the value of robust coordination in simultaneously improving grid resilience, renewable utilization, and EV user satisfaction. The results offer practical insights for city-scale planners seeking to enable the reliable and efficient electrification of mobility infrastructure under uncertainty. Full article
Show Figures

Figure 1

23 pages, 13580 KiB  
Article
Enabling Smart Grid Resilience with Deep Learning-Based Battery Health Prediction in EV Fleets
by Muhammed Cavus and Margaret Bell
Batteries 2025, 11(8), 283; https://doi.org/10.3390/batteries11080283 - 24 Jul 2025
Viewed by 270
Abstract
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful [...] Read more.
The widespread integration of electric vehicles (EVs) into smart grid infrastructures necessitates intelligent and robust battery health diagnostics to ensure system resilience and performance longevity. While numerous studies have addressed the estimation of State of Health (SOH) and the prediction of remaining useful life (RUL) using machine and deep learning, most existing models fail to capture both short-term degradation trends and long-range contextual dependencies jointly. In this study, we introduce V2G-HealthNet, a novel hybrid deep learning framework that uniquely combines Long Short-Term Memory (LSTM) networks with Transformer-based attention mechanisms to model battery degradation under dynamic vehicle-to-grid (V2G) scenarios. Unlike prior approaches that treat SOH estimation in isolation, our method directly links health prediction to operational decisions by enabling SOH-informed adaptive load scheduling and predictive maintenance across EV fleets. Trained on over 3400 proxy charge-discharge cycles derived from 1 million telemetry samples, V2G-HealthNet achieved state-of-the-art performance (SOH RMSE: 0.015, MAE: 0.012, R2: 0.97), outperforming leading baselines including XGBoost and Random Forest. For RUL prediction, the model maintained an MAE of 0.42 cycles over a five-cycle horizon. Importantly, deployment simulations revealed that V2G-HealthNet triggered maintenance alerts at least three cycles ahead of critical degradation thresholds and redistributed high-load tasks away from ageing batteries—capabilities not demonstrated in previous works. These findings establish V2G-HealthNet as a deployable, health-aware control layer for smart city electrification strategies. Full article
Show Figures

Figure 1

22 pages, 7392 KiB  
Article
Model Predictive Control for Charging Management Considering Mobile Charging Robots
by Max Faßbender, Nicolas Rößler, Christoph Wellmann, Markus Eisenbarth and Jakob Andert
Energies 2025, 18(15), 3948; https://doi.org/10.3390/en18153948 - 24 Jul 2025
Viewed by 230
Abstract
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to [...] Read more.
Mobile Charging Robots (MCRs), essentially high-voltage batteries mounted on mobile platforms, offer a flexible solution for electric vehicle (EV) charging, particularly in environments like supermarket parking lots with photovoltaic (PV) generation. Unlike fixed charging stations, MCRs must be strategically dispatched and recharged to maximize operational efficiency and revenue. This study investigates a Model Predictive Control (MPC) approach using Mixed-Integer Linear Programming (MILP) to coordinate MCR charging and movement, accounting for the additional complexity that EVs can park at arbitrary locations. The performance impact of EV arrival and demand forecasts is evaluated, comparing perfect foresight with data-driven predictions using long short-term memory (LSTM) networks. A slack variable method is also introduced to ensure timely recharging of the MCRs. Results show that incorporating forecasts significantly improves performance compared to no prediction, with perfect forecasts outperforming LSTM-based ones due to better-timed recharging decisions. The study highlights that inaccurate forecasts—especially in the evening—can lead to suboptimal MCR utilization and reduced profitability. These findings demonstrate that combining MPC with predictive models enhances MCR-based EV charging strategies and underlines the importance of accurate forecasting for future smart charging systems. Full article
Show Figures

Figure 1

20 pages, 13715 KiB  
Article
Dynamic Reconfiguration for Energy Management in EV and RES-Based Grids Using IWOA
by Hossein Lotfi, Mohammad Hassan Nikkhah and Mohammad Ebrahim Hajiabadi
World Electr. Veh. J. 2025, 16(8), 412; https://doi.org/10.3390/wevj16080412 - 23 Jul 2025
Viewed by 200
Abstract
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations [...] Read more.
Effective energy management is vital for enhancing reliability, reducing operational costs, and supporting the increasing penetration of electric vehicles (EVs) and renewable energy sources (RESs) in distribution networks. This study presents a dynamic reconfiguration strategy for distribution feeders that integrates EV charging stations (EVCSs), RESs, and capacitors. The goal is to minimize both Energy Not Supplied (ENS) and operational costs, particularly under varying demand conditions caused by EV charging in grid-to-vehicle (G2V) and vehicle-to-grid (V2G) modes. To improve optimization accuracy and avoid local optima, an improved Whale Optimization Algorithm (IWOA) is employed, featuring a mutation mechanism based on Lévy flight. The model also incorporates uncertainties in electricity prices and consumer demand, as well as a demand response (DR) program, to enhance practical applicability. Simulation studies on a 95-bus test system show that the proposed approach reduces ENS by 16% and 20% in the absence and presence of distributed generation (DG) and EVCSs, respectively. Additionally, the operational cost is significantly reduced compared to existing methods. Overall, the proposed framework offers a scalable and intelligent solution for smart grid integration and distribution network modernization. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-Mobility, 2nd Edition)
Show Figures

Figure 1

28 pages, 1080 KiB  
Systematic Review
A Literature Review on Strategic, Tactical, and Operational Perspectives in EV Charging Station Planning and Scheduling
by Marzieh Sadat Aarabi, Mohammad Khanahmadi and Anjali Awasthi
World Electr. Veh. J. 2025, 16(7), 404; https://doi.org/10.3390/wevj16070404 - 18 Jul 2025
Viewed by 535
Abstract
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil [...] Read more.
Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large scale was not widely considered. However, electric vehicles offer several advantages that have garnered attention. They are environmentally friendly, with simpler drive systems compared to traditional fossil fuel vehicles. Additionally, electric vehicles are highly efficient, with an efficiency of around 90%, in contrast to fossil fuel vehicles, which have an efficiency of about 30% to 35%. The higher energy efficiency of electric vehicles contributes to lower operational costs, which, alongside regulatory incentives and shifting consumer preferences, has increased their strategic importance for many vehicle manufacturers. In this paper, we present a thematic literature review on electric vehicles charging station location planning and scheduling. A systematic literature review across various data sources in the area yielded ninety five research papers for the final review. The research results were analyzed thematically, and three key directions were identified, namely charging station deployment and placement, optimal allocation and scheduling of EV parking lots, and V2G and smart charging systems as the top three themes. Each theme was further investigated to identify key topics, ongoing works, and future trends. It has been found that optimization methods followed by simulation and multi-criteria decision-making are most commonly used for EV infrastructure planning. A multistakeholder perspective is often adopted in these decisions to minimize costs and address the range anxiety of users. The future trend is towards the integration of renewable energy in smart grids, uncertainty modeling of user demand, and use of artificial intelligence for service quality improvement. Full article
Show Figures

Figure 1

38 pages, 1945 KiB  
Review
Grid Impacts of Electric Vehicle Charging: A Review of Challenges and Mitigation Strategies
by Asiri Tayri and Xiandong Ma
Energies 2025, 18(14), 3807; https://doi.org/10.3390/en18143807 - 17 Jul 2025
Viewed by 806
Abstract
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV [...] Read more.
Electric vehicles (EVs) offer a sustainable solution for reducing carbon emissions in the transportation sector. However, their increasing widespread adoption poses significant challenges for local distribution grids, many of which were not designed to accommodate the heightened and irregular power demands of EV charging. Components such as transformers and distribution networks may experience overload, voltage imbalances, and congestion—particularly during peak periods. While upgrading grid infrastructure is a potential solution, it is often costly and complex to implement. The unpredictable nature of EV charging behavior further complicates grid operations, as charging demand fluctuates throughout the day. Therefore, efficient integration into the grid—both for charging and potential discharging—is essential. This paper reviews recent studies on the impacts of high EV penetration on distribution grids and explores various strategies to enhance grid performance during peak demand. It also examines promising optimization methods aimed at mitigating negative effects, such as load shifting and smart charging, and compares their effectiveness across different grid parameters. Additionally, the paper discusses key challenges related to impact analysis and proposes approaches to improve them in order to achieve better overall grid performance. Full article
Show Figures

Figure 1

15 pages, 1572 KiB  
Article
AI-Driven Optimization Framework for Smart EV Charging Systems Integrated with Solar PV and BESS in High-Density Residential Environments
by Md Tanjil Sarker, Marran Al Qwaid, Siow Jat Shern and Gobbi Ramasamy
World Electr. Veh. J. 2025, 16(7), 385; https://doi.org/10.3390/wevj16070385 - 9 Jul 2025
Viewed by 624
Abstract
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), [...] Read more.
The rapid growth of electric vehicle (EV) adoption necessitates advanced energy management strategies to ensure sustainable, reliable, and efficient operation of charging infrastructure. This study proposes a hybrid AI-based framework for optimizing residential EV charging systems through the integration of Reinforcement Learning (RL), Linear Programming (LP), and real-time grid-aware scheduling. The system architecture includes smart wall-mounted chargers, a 120 kWp rooftop solar photovoltaic (PV) array, and a 60 kWh lithium-ion battery energy storage system (BESS), simulated under realistic load conditions for 800 residential units and 50 charging points rated at 7.4 kW each. Simulation results, validated through SCADA-based performance monitoring using MATLAB/Simulink and OpenDSS, reveal substantial technical improvements: a 31.5% reduction in peak transformer load, voltage deviation minimized from ±5.8% to ±2.3%, and solar utilization increased from 48% to 66%. The AI framework dynamically predicts user demand using a non-homogeneous Poisson process and optimizes charging schedules based on a cost-voltage-user satisfaction reward function. The study underscores the critical role of intelligent optimization in improving grid reliability, minimizing operational costs, and enhancing renewable energy self-consumption. The proposed system demonstrates scalability, resilience, and cost-effectiveness, offering a practical solution for next-generation urban EV charging networks. Full article
Show Figures

Figure 1

23 pages, 5228 KiB  
Article
From Conventional to Electrified Pavements: A Structural Modeling Approach for Spanish Roads
by Gustavo Boada-Parra, Ronny Romero, Federico Gulisano, Freddy Apaza-Apaza, Damaris Cubilla, Andrea Serpi, Rafael Jurado-Piña and Juan Gallego
Coatings 2025, 15(7), 801; https://doi.org/10.3390/coatings15070801 - 9 Jul 2025
Viewed by 364
Abstract
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% [...] Read more.
The accelerated growth of the transport sector has increased oil consumption and greenhouse gas (GHG) emissions, intensifying global environmental challenges. The electrification of transportation has emerged as a key strategy to achieve sustainability targets, with electric vehicles (EVs) expected to account for 50% of global car sales by 2035. However, widespread adoption requires smart infrastructure capable of enabling dynamic in-motion charging. In this context, Electric Road Systems (ERSs), particularly those based on Wireless Power Transfer (WPT) technologies, offer a promising solution by transferring energy between road-embedded transmitters and vehicle-mounted receivers. This study assesses the structural response and service life of conventional and electrified asphalt pavement sections representative of the Spanish road network. Several standard pavement configurations were analyzed under heavy traffic (dual axles, 13 tons) using a hybrid approach combining mechanistic–empirical multilayer modeling and three-dimensional Finite Element Method (FEM) simulations. The electrified designs integrate prefabricated charging units (CUs) placed at a 9 cm depth, disrupting the structural continuity of the pavement. The results reveal stress concentrations at the CU–asphalt interface and service life reductions of up to 50% in semiflexible pavements. Semirigid sections performed better, with average reductions close to 40%. These findings are based on numerical simulations of standard Spanish sections and do not include experimental validation. Full article
(This article belongs to the Special Issue Recent Research in Asphalt and Pavement Materials)
Show Figures

Graphical abstract

16 pages, 4237 KiB  
Article
Solid-State Circuit Breaker Topology Design Methodology for Smart DC Distribution Grids with Millisecond-Level Self-Healing Capability
by Baoquan Wei, Haoxiang Xiao, Hong Liu, Dongyu Li, Fangming Deng, Benren Pan and Zewen Li
Energies 2025, 18(14), 3613; https://doi.org/10.3390/en18143613 - 9 Jul 2025
Viewed by 327
Abstract
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing [...] Read more.
To address the challenges of prolonged current isolation times and high dependency on varistors in traditional flexible short-circuit fault isolation schemes for DC systems, this paper proposes a rapid fault isolation circuit design based on an adaptive solid-state circuit breaker (SSCB). By introducing an adaptive current-limiting branch topology, the proposed solution reduces the risk of system oscillations induced by current-limiting inductors during normal operation and minimizes steady-state losses in the breaker. Upon fault occurrence, the current-limiting inductor is automatically activated to effectively suppress the transient current rise rate. An energy dissipation circuit (EDC) featuring a resistor as the primary energy absorber and an auxiliary varistor (MOV) for voltage clamping, alongside a snubber circuit, provides an independent path for inductor energy release after faults. This design significantly alleviates the impact of MOV capacity constraints on the fault isolation process compared to traditional schemes where the MOV is the primary energy sink. The proposed topology employs a symmetrical bridge structure compatible with both pole-to-pole and pole-to-ground fault scenarios. Parameter optimization ensures the IGBT voltage withstand capability and energy dissipation efficiency. Simulation and experimental results demonstrate that this scheme achieves fault isolation within 0.1 ms, reduces the maximum fault current-to-rated current ratio to 5.8, and exhibits significantly shorter isolation times compared to conventional approaches. This provides an effective solution for segment switches and tie switches in millisecond-level self-healing systems for both low-voltage (LVDC, e.g., 750 V/1500 V DC) and medium-voltage (MVDC, e.g., 10–35 kV DC) smart DC distribution grids, particularly in applications demanding ultra-fast fault isolation such as data centers, electric vehicle (EV) fast-charging parks, and shipboard power systems. Full article
(This article belongs to the Special Issue AI Solutions for Energy Management: Smart Grids and EV Charging)
Show Figures

Figure 1

26 pages, 8474 KiB  
Article
Centralised Smart EV Charging in PV-Powered Parking Lots: A Techno-Economic Analysis
by Mattia Secchi, Jan Martin Zepter and Mattia Marinelli
Smart Cities 2025, 8(4), 112; https://doi.org/10.3390/smartcities8040112 - 4 Jul 2025
Viewed by 580
Abstract
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up [...] Read more.
The increased uptake of Electric Vehicles (EVs) requires the installation of charging stations in parking lots, both to facilitate charging while running daily errands and to support EV owners with no access to home charging. Photovoltaic (PV) generation is ideal for powering up EVs, both for environmental reasons and for the benefit it creates for Charging Point Operators (CPOs). In this paper, we propose a centralised V1G Smart Charging (SC) algorithm for EV parking lots, considering real EV charging dynamics, which minimises both the EV charging costs for their owners and the CPO electricity provision costs or the related CO2 emissions. We also introduce an innovative SC benefit-splitting algorithm that makes sure SC savings are fairly split between EV owners. Eight scenarios are described, considering costs or emissions minimisation, with and without a PV system. The centralised algorithm is benchmarked against a decentralised one, and tested in an exemplary workplace parking lot in Denmark, that includes includes 12 charging stations and one PV system, owned by the same entity. Reductions of up to 11% in EV charging costs, 67% in electricity provision costs for the CPO, and 8% in CO2 emissions are achieved by making smart use of a 35 kWp rooftop PV system. Additionally, the SC benefit-splitting algorithm successfully ensures that EV owners save money when adopting SC. Full article
(This article belongs to the Section Energy and ICT)
Show Figures

Figure 1

16 pages, 3186 KiB  
Article
AI-Driven Framework for Secure and Efficient Load Management in Multi-Station EV Charging Networks
by Md Sabbir Hossen, Md Tanjil Sarker, Marran Al Qwaid, Gobbi Ramasamy and Ngu Eng Eng
World Electr. Veh. J. 2025, 16(7), 370; https://doi.org/10.3390/wevj16070370 - 2 Jul 2025
Viewed by 488
Abstract
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load [...] Read more.
This research introduces a comprehensive AI-driven framework for secure and efficient load management in multi-station electric vehicle (EV) charging networks, responding to the increasing demand and operational difficulties associated with widespread EV adoption. The suggested architecture has three main parts: a Smart Load Balancer (SLB), an AI-driven intrusion detection system (AIDS), and a Real-Time Analytics Engine (RAE). These parts use advanced machine learning methods like Support Vector Machines (SVMs), autoencoders, and reinforcement learning (RL) to make the system more flexible, secure, and efficient. The framework uses federated learning (FL) to protect data privacy and make decisions in a decentralized way, which lowers the risks that come with centralizing data. The framework makes load distribution 23.5% more efficient, cuts average wait time by 17.8%, and predicts station-level demand with 94.2% accuracy, according to simulation results. The AI-based intrusion detection component has precision, recall, and F1-scores that are all over 97%, which is better than standard methods. The study also finds important gaps in the current literature and suggests new areas for research, such as using graph neural networks (GNNs) and quantum machine learning to make EV charging infrastructures even more scalable, resilient, and intelligent. Full article
Show Figures

Figure 1

30 pages, 6733 KiB  
Article
Forecasting Electric Vehicle Charging Demand in Smart Cities Using Hybrid Deep Learning of Regional Spatial Behaviours
by Muhammed Cavus, Huseyin Ayan, Dilum Dissanayake, Anurag Sharma, Sanchari Deb and Margaret Bell
Energies 2025, 18(13), 3425; https://doi.org/10.3390/en18133425 - 29 Jun 2025
Viewed by 410
Abstract
This study presents a novel predictive framework for estimating electric vehicle (EV) charging demand in smart cities, contributing to the advancement of data-driven infrastructure planning through behavioural and spatial data analysis. Motivated by the accelerating regional demand accompanying EV adoption, this work introduces [...] Read more.
This study presents a novel predictive framework for estimating electric vehicle (EV) charging demand in smart cities, contributing to the advancement of data-driven infrastructure planning through behavioural and spatial data analysis. Motivated by the accelerating regional demand accompanying EV adoption, this work introduces HCB-Net: a hybrid deep learning model that combines Convolutional Neural Networks (CNNs) for spatial feature extraction with Extreme Gradient Boosting (XGBoost) for robust regression. The framework is trained on user-level survey data from two demographically distinct UK regions, the West Midlands and the North East, incorporating user demographics, commute distance, charging frequency, and home/public charging preferences. HCB-Net achieved superior predictive performance, with a Root Mean Squared Error (RMSE) of 0.1490 and an R2 score of 0.3996. Compared to the best-performing traditional model (Linear Regression, R2=0.3520), HCB-Net improved predictive accuracy by 13.5% in terms of R2, and outperformed other deep learning models such as LSTM (R2=0.3756) and GRU (R2=0.6276), which failed to capture spatial patterns effectively. The hybrid model also reduced RMSE by approximately 23% compared to the standalone CNN (RMSE = 0.1666). While the moderate R2 indicates scope for further refinement, these results demonstrate that meaningful and interpretable demand forecasts can be generated from survey-based behavioural data, even in the absence of high-resolution temporal inputs. The model contributes a lightweight and scalable forecasting tool suitable for early-stage smart city planning in contexts where telemetry data are limited, thereby advancing the practical capabilities of EV infrastructure forecasting. Full article
(This article belongs to the Special Issue Sustainable and Low Carbon Development in the Energy Sector)
Show Figures

Figure 1

31 pages, 11216 KiB  
Article
An Optimal Integral Fast Terminal Synergetic Control Scheme for a Grid-to-Vehicle and Vehicle-to-Grid Battery Electric Vehicle Charger Based on the Black-Winged Kite Algorithm
by Ishak Aris, Yanis Sadou and Abdelbaset Laib
Energies 2025, 18(13), 3397; https://doi.org/10.3390/en18133397 - 27 Jun 2025
Viewed by 444
Abstract
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement [...] Read more.
The utilization of electric vehicles (EVs) has grown significantly and continuously in recent years, encouraging the creation of new implementation opportunities. The battery electric vehicle (BEV) charging system can be effectively used during peak load periods, for voltage regulation, and for the improvement of power system stability within the smart grid. It provides an efficient bidirectional interface for charging the battery from the grid and discharging the battery into the grid. These two operation modes are referred to as grid-to-vehicle (G2V) and vehicle-to-grid (V2G), respectively. The management of power flow in both directions is highly complex and sensitive, which requires employing a robust control scheme. In this paper, an Integral Fast Terminal Synergetic Control Scheme (IFTSC) is designed to control the BEV charger system through accurately tracking the required current and voltage in both G2V and V2G system modes. Moreover, the Black-Winged Kite Algorithm is introduced to select the optimal gains of the proposed IFTS control scheme. The system stability is checked using the Lyapunov stability method. Comprehensive simulations using MATLAB/Simulink are conducted to assess the safety and efficacy of the suggested optimal IFTSC in comparison with IFTSC, optimal integral synergetic, and conventional PID controllers. Furthermore, processor-in-the-loop (PIL) co-simulation is carried out for the studied system using the C2000 launchxl-f28379d digital signal processing (DSP) board to confirm the practicability and effectiveness of the proposed OIFTS. The analysis of the obtained quantitative comparison proves that the proposed optimal IFTSC provides higher control performance under several critical testing scenarios. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

33 pages, 5150 KiB  
Systematic Review
Optimization and Trends in EV Charging Infrastructure: A PCA-Based Systematic Review
by Javier Alexander Guerrero-Silva, Jorge Ivan Romero-Gelvez, Andrés Julián Aristizábal and Sebastian Zapata
World Electr. Veh. J. 2025, 16(7), 345; https://doi.org/10.3390/wevj16070345 - 23 Jun 2025
Viewed by 1025
Abstract
The development of a robust and efficient electric vehicle (EV) charging infrastructure is essential for accelerating the transition to sustainable transportation. This systematic review analyzes recent research on EV charging network planning, with a particular focus on optimization techniques, machine learning applications, and [...] Read more.
The development of a robust and efficient electric vehicle (EV) charging infrastructure is essential for accelerating the transition to sustainable transportation. This systematic review analyzes recent research on EV charging network planning, with a particular focus on optimization techniques, machine learning applications, and sustainability integration. Using bibliometric methods and Principal Component Analysis (PCA), we identify key thematic clusters, including smart grid integration, strategic station placement, renewable energy integration, and public policy impacts. This study reveals a growing trend toward hybrid models that combine artificial intelligence and optimization methods to address challenges such as grid constraints, range anxiety, and economic feasibility. We provide a taxonomy of computational approaches—ranging from classical optimization to deep reinforcement learning—and synthesize practical insights for researchers, policymakers, and urban planners. The findings highlight the critical role of coordinated strategies and data-driven tools in designing scalable and resilient EV charging infrastructures, and point to future research directions involving intelligent, adaptive, and sustainable charging solutions. Full article
Show Figures

Figure 1

Back to TopTop