Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (842)

Search Parameters:
Keywords = small molecule compounds/drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 7003 KiB  
Review
Phthalocyanines Conjugated with Small Biologically Active Compounds for the Advanced Photodynamic Therapy: A Review
by Kyrylo Chornovolenko and Tomasz Koczorowski
Molecules 2025, 30(15), 3297; https://doi.org/10.3390/molecules30153297 - 6 Aug 2025
Abstract
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, [...] Read more.
Phthalocyanines (Pcs) are well-established photosensitizers in photodynamic therapy, valued for their strong light absorption, high singlet oxygen generation, and photostability. Recent advances have focused on covalently conjugating Pcs, particularly zinc phthalocyanines (ZnPcs), with a wide range of small bioactive molecules to improve selectivity, efficacy, and multifunctionality. These conjugates combine light-activated reactive oxygen species (ROS) production with targeted delivery and controlled release, offering enhanced treatment precision and reduced off-target toxicity. Chemotherapeutic agent conjugates, including those with erlotinib, doxorubicin, tamoxifen, and camptothecin, demonstrate receptor-mediated uptake, pH-responsive release, and synergistic anticancer effects, even overcoming multidrug resistance. Beyond oncology, ZnPc conjugates with antibiotics, anti-inflammatory drugs, antiparasitics, and antidepressants extend photodynamic therapy’s scope to antimicrobial and site-specific therapies. Targeting moieties such as folic acid, biotin, arginylglycylaspartic acid (RGD) and epidermal growth factor (EGF) peptides, carbohydrates, and amino acids have been employed to exploit overexpressed receptors in tumors, enhancing cellular uptake and tumor accumulation. Fluorescent dye and porphyrinoid conjugates further enrich these systems by enabling imaging-guided therapy, efficient energy transfer, and dual-mode activation through pH or enzyme-sensitive linkers. Despite these promising strategies, key challenges remain, including aggregation-induced quenching, poor aqueous solubility, synthetic complexity, and interference with ROS generation. In this review, the examples of Pc-based conjugates were described with particular interest on the synthetic procedures and optical properties of targeted compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 - 3 Aug 2025
Viewed by 312
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

21 pages, 2399 KiB  
Review
Various Approaches Employed to Enhance the Bioavailability of Antagonists Interfering with the HMGB1/RAGE Axis
by Harbinder Singh
Int. J. Transl. Med. 2025, 5(3), 35; https://doi.org/10.3390/ijtm5030035 - 2 Aug 2025
Viewed by 230
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. [...] Read more.
High-mobility group box 1 (HMGB1) is a nuclear protein that can interact with a transmembrane cell surface receptor for advanced glycation end products (RAGEs) and mediates the inflammatory pathways that lead to various pathological conditions like cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders. Blocking the HMGB1/RAGE axis using various small synthetic or natural molecules has been proven to be an effective therapeutic approach to treating these inflammatory conditions. However, the low water solubility of these pharmacoactive molecules limits their clinical use. Pharmaceutically active molecules with low solubility and bioavailability in vivo convey a higher risk of failure for drug development and drug innovation. The pharmacokinetic and pharmacodynamics parameters of these compounds are majorly affected by their solubility. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. This review mainly describes various technologies utilized to improve the bioavailability of synthetic or natural molecules which have been particularly used in various inflammatory conditions acting specifically through the HMGB1/RAGE pathway. Full article
Show Figures

Figure 1

14 pages, 556 KiB  
Review
Animal Venom in Modern Medicine: A Review of Therapeutic Applications
by Euikyung Kim, Du Hyeon Hwang, Ramachandran Loganathan Mohan Prakash, Ravi Deva Asirvatham, Hyunkyoung Lee, Yunwi Heo, Al Munawir, Ramin Seyedian and Changkeun Kang
Toxins 2025, 17(8), 371; https://doi.org/10.3390/toxins17080371 - 28 Jul 2025
Viewed by 395
Abstract
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of [...] Read more.
Animal venoms are complex biochemical secretions rich in highly potent and selective bioactive molecules, including peptides, enzymes, and small organic compounds. Once associated primarily with toxicity, these venoms are now recognized as a promising source of therapeutic agents for a wide range of medical conditions. This review provides a comprehensive analysis of the pharmacological potential of venom-derived compounds, highlighting their mechanisms of action, such as ion channel modulation, receptor targeting, and enzyme inhibition. Successful venom-derived drugs like captopril and ziconotide exemplify the translational potential of this biological arsenal. We discuss therapeutic applications in cardiovascular diseases, chronic pain, cancer, thrombosis, and infectious diseases, as well as emerging peptide candidates in clinical development. Technological advancements in omics, structural biology, and synthetic peptide engineering have significantly enhanced the discovery and optimization of venom-based therapeutics. Despite challenges related to stability, immunogenicity, and ecological sustainability, the integration of AI-driven drug discovery and personalized medicine is expected to accelerate progress in this field. By synthesizing current findings and future directions, this review underscores the transformative potential of animal venoms in modern pharmacotherapy and drug development. We also discuss current therapeutic limitations and how venom-derived compounds may address unmet needs in specific disorders. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

23 pages, 4774 KiB  
Article
Chlorogenic Acid and Cinnamaldehyde in Breast Cancer Cells: Predictive Examination of Pharmacokinetics and Binding Thermodynamics with the Key Mediators of PI3K/Akt Signaling
by Yusuff Olayiwola and Lauren Gollahon
Biomedicines 2025, 13(8), 1810; https://doi.org/10.3390/biomedicines13081810 - 24 Jul 2025
Viewed by 346
Abstract
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed [...] Read more.
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed the pharmacokinetic profiles, thermodynamics, and binding affinity of chlorogenic acid and cinnamaldehyde with the upstream mediators of the Akt pathway implicated in breast cancer cells. Methods: Various software and online tools were used to conduct molecular docking of the small molecules with the proteins PI3K, Akt, and PDK1, and to examine their absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile. Results: The results show strong binding energy (all within the range of those of FDA-approved drugs) and thermostability between the compounds and the proteins. The phytochemicals were predicted to have moderate oral bioavailability and tissue distribution, and were identified as substrates of drug metabolizing enzymes, but not deactivated. Conclusion: Although these predictive data warrant confirmation in a biological system, they suggest that the compounds have good pharmacokinetics and are strong inhibitors of the Akt pathway, with great potential to shut down breast cancer cell invasion and migration. These data also inform more efficient experimental designs for our planned in vivo studies. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

20 pages, 1292 KiB  
Review
AI-Driven Polypharmacology in Small-Molecule Drug Discovery
by Mena Abdelsayed
Int. J. Mol. Sci. 2025, 26(14), 6996; https://doi.org/10.3390/ijms26146996 - 21 Jul 2025
Viewed by 562
Abstract
Polypharmacology, the rational design of small molecules that act on multiple therapeutic targets, offers a transformative approach to overcome biological redundancy, network compensation, and drug resistance. This review outlines the scientific rationale for polypharmacology, highlighting its success across oncology, neurodegeneration, metabolic disorders, and [...] Read more.
Polypharmacology, the rational design of small molecules that act on multiple therapeutic targets, offers a transformative approach to overcome biological redundancy, network compensation, and drug resistance. This review outlines the scientific rationale for polypharmacology, highlighting its success across oncology, neurodegeneration, metabolic disorders, and infectious diseases. Emphasis is placed on how polypharmacological agents can synergize therapeutic effects, reduce adverse events, and improve patient compliance compared to combination therapies. We also explore how computational methods—spanning ligand-based modeling, structure-based docking, network pharmacology, and systems biology—enable target selection and multi-target ligand prediction. Recent advances in artificial intelligence (AI), particularly deep learning, reinforcement learning, and generative models, have further accelerated the discovery and optimization of multi-target agents. These AI-driven platforms are capable of de novo design of dual and multi-target compounds, some of which have demonstrated biological efficacy in vitro. Finally, we discuss the integration of omics data, CRISPR functional screens, and pathway simulations in guiding multi-target design, as well as the challenges and limitations of current AI approaches. Looking ahead, AI-enabled polypharmacology is poised to become a cornerstone of next-generation drug discovery, with potential to deliver more effective therapies tailored to the complexity of human disease. Full article
(This article belongs to the Special Issue Techniques and Strategies in Drug Design and Discovery, 3rd Edition)
Show Figures

Figure 1

19 pages, 1058 KiB  
Article
A Brand-New Metal Complex Catalyst-Free Approach to the Synthesis of 2,8-Dimethylimidazo[1,2-b]pyridazine-6-Carboxylic Acid—A Key Intermediate in Risdiplam Manufacturing Process
by Georgiy Korenev, Alexey A. Gutenev, Fyodor V. Antipin, Vladimir V. Chernyshov, Maria P. Korobkina, Maxim B. Nawrozkij and Roman A. Ivanov
Molecules 2025, 30(14), 3011; https://doi.org/10.3390/molecules30143011 - 18 Jul 2025
Viewed by 675
Abstract
In this study, we report for the first time a brand-new protocol for the multigram-scale synthesis of 5-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylic and 2,8-dimethylimidazo[1,2-b]pyridazine-6-carboxylic acids, without the utilization of metal-complex catalysts. The developed technology for the production of the aforementioned acids is of great importance [...] Read more.
In this study, we report for the first time a brand-new protocol for the multigram-scale synthesis of 5-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylic and 2,8-dimethylimidazo[1,2-b]pyridazine-6-carboxylic acids, without the utilization of metal-complex catalysts. The developed technology for the production of the aforementioned acids is of great importance for two reasons. Firstly, these acids serve as intermediates in the synthesis of risdiplam, the first small-molecule drug approved for the treatment of spinal muscular atrophy. Secondly, they themselves are valuable building blocks right from a broader medicinal chemistry perspective. The synthesis of risdiplam was carried out using a modified synthetic protocol, utilizing the acids indicated above as the key intermediates. The protocols presented in this study enable the production of target compounds with high purity and an acceptable yield. Full article
Show Figures

Graphical abstract

21 pages, 3149 KiB  
Article
Network Theory Analysis of Allosteric Drug-Rescue Mechanisms in the Tumor Suppressor Protein p53 Y220C Mutant
by Benjamin S. Cowan and Kelly M. Thayer
Int. J. Mol. Sci. 2025, 26(14), 6884; https://doi.org/10.3390/ijms26146884 - 17 Jul 2025
Viewed by 606
Abstract
Network theory analysis has emerged as a powerful approach for investigating the complex behavior of dynamic and interactive systems, including proteomic systems. One key application of these methods is the study of long-range signaling dynamics in proteins, a phenomenon known as allostery. In [...] Read more.
Network theory analysis has emerged as a powerful approach for investigating the complex behavior of dynamic and interactive systems, including proteomic systems. One key application of these methods is the study of long-range signaling dynamics in proteins, a phenomenon known as allostery. In this study, we applied computational models using network theory analysis to explore long-range electrostatic interactions and allosteric drug rescue mechanisms in the DNA-binding domain (DBD) of the p53 protein, a critical tumor suppressor whose dysfunction, often caused by missense mutations, is implicated in over 50% of human cancers. Using heat kernel and Wasserstein distance-based analyses, we explored the allosteric behavior of p53-DBD constructs with the Y220C mutation in the presence or absence of allosteric effector drugs. Our results demonstrated that these network theory-based protocols effectively detected the differential efficacies of small molecule allosteric effector drug compounds in restoring long-range electrostatic dynamics in the Y220C mutant. Furthermore, our approach identified key long-range electrostatic interactions critical to both the nominal and drug-rescued functionality of the p53-DBD, providing valuable insights into allosteric modulation and its therapeutic potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

19 pages, 1277 KiB  
Review
What a Modern Physician Should Know About microRNAs in the Diagnosis and Treatment of Diabetic Kidney Disease
by Małgorzata Rodzoń-Norwicz, Patryk Kogut, Magdalena Sowa-Kućma and Agnieszka Gala-Błądzińska
Int. J. Mol. Sci. 2025, 26(14), 6662; https://doi.org/10.3390/ijms26146662 - 11 Jul 2025
Viewed by 384
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene [...] Read more.
Diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease (ESKD) globally. Despite advances in our understanding of its pathophysiology, current therapies are often insufficient to stop its progression. In recent years, microRNAs (miRNAs)—small, non-coding RNA molecules involved in post-transcriptional gene regulation—have emerged as critical modulators of key pathogenic mechanisms in DKD, including fibrosis, inflammation, oxidative stress, and apoptosis. Numerous studies have identified specific miRNAs that either exacerbate or mitigate renal injury in DKD. Among them, miR-21, miR-192, miR-155, and miR-34a are associated with disease progression, while miR-126-3p, miR-29, miR-146a, and miR-215 demonstrate protective effects. These molecules are also detectable in plasma, urine, and renal tissue, making them attractive candidates for diagnostic and prognostic biomarkers. Advances in therapeutic technologies such as antagomiRs, mimics, locked nucleic acids, and nanoparticle-based delivery systems have opened new possibilities for targeting miRNAs in DKD. Additionally, conventional drugs, including SGLT2 inhibitors, metformin, and GLP-1 receptor agonists, as well as dietary compounds like polyphenols and sulforaphane, may exert nephroprotective effects by modulating miRNA expression. Recent evidence also highlights the role of gut microbiota in regulating miRNA activity, linking metabolic and immune pathways relevant to DKD progression. Further research is needed to define stage-specific miRNA signatures, improve delivery systems, and develop personalized therapeutic approaches. Modulation of miRNA expression represents a promising strategy to slow DKD progression and improve patient outcomes. Full article
Show Figures

Figure 1

17 pages, 11082 KiB  
Article
Design, Synthesis, and Study of Protective Activity Against Stroke for Novel Water-Soluble Aldehyde Dehydrogenase 2 Activators
by Fengping Zhao, Zhenming Yu, Wei Tian, Xinhui Huang, Qingsen Zhang, Ruolan Zhou, Jian Hu, Shichong Yu, Xin Chen and Canhui Zheng
Molecules 2025, 30(14), 2924; https://doi.org/10.3390/molecules30142924 - 10 Jul 2025
Viewed by 379
Abstract
Stroke poses a serious threat to human health, while there are very few drugs that can directly alleviate ischemia/reperfusion injury and improve the prognosis. Studies have shown that small-molecule activators of aldehyde dehydrogenase 2 (ALDH2) have the potential to become novel therapeutic drugs [...] Read more.
Stroke poses a serious threat to human health, while there are very few drugs that can directly alleviate ischemia/reperfusion injury and improve the prognosis. Studies have shown that small-molecule activators of aldehyde dehydrogenase 2 (ALDH2) have the potential to become novel therapeutic drugs for ischemic stroke. In this study, through the systematic structural optimization of novel N-benzylaniline-based ALDH2 activators obtained from our previous virtual screening, ALDH2 activators with improved water solubility and activity were obtained. Among them, compound D10 exhibits the best activity, with a maximum activation fold reaching 114% relative to Alda-1. And the water solubility of its hydrochloride salt D27 was increased by more than 200-fold. The intravenous injection of this compound can significantly reduce the infarct area in the rat model of cerebral infarction compared with the model group. This study lays a good foundation for the future research on ALDH2 activators used in the treatment of stroke. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

15 pages, 2039 KiB  
Article
Homoharringtonine Inhibits CVS-11 and Clinical Isolates of Rabies Virus In Vitro: Identified via High-Throughput Screening of an FDA-Approved Drug Library
by Kalenahalli Rajappa Harisha, Varun Kailaje, Ravinder Reddy Kondreddi, Chandra Sekhar Gudla, Shraddha Singh, Sharada Ramakrishnaiah, Shrikrishna Isloor, Shridhar Narayanan, Radha Krishan Shandil and Gudepalya Renukaiah Rudramurthy
Viruses 2025, 17(7), 945; https://doi.org/10.3390/v17070945 - 4 Jul 2025
Viewed by 592
Abstract
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, [...] Read more.
Rabies, a viral encephalitis caused by rabies virus (RABV), is 100% fatal upon the onset of symptoms. Effective post-exposure prophylaxis (PEP) measures are available, but they are often difficult to access in low-income countries. WHO estimates about 59,000 deaths due to rabies globally, and the majority are contributed by developing countries. Hence, developing drugs for the treatment of post-symptomatic rabies is an urgent and unmet demand. It is worth noting that previous efforts regarding antiviral strategies, such as small-interfering RNA, antibodies and small-molecule inhibitors, against the rabies virus have failed to show efficacy in pre-clinical studies, especially when the virus has reached the central nervous system (CNS). Therefore, drug repurposing seems to be an alternative tool for the development of new anti-rabies drugs. We validated and used a high-throughput, FITC-conjugated antibody-based flow cytometry assay to expedite the identification of repurposable new drug candidates against the RABV. The assay was validated using ribavirin and salinomycin as reference compounds, which showed EC50 values of 10.08 µM and 0.07 µM, respectively. We screened a SelleckChem library comprising 3035 FDA-approved compounds against RABV (CVS-11) at 10 µM concentration. Five compounds (clofazimine, tiamulin, difloxacin, harringtonine and homoharringtonine) were active against RABV, with greater than 90% inhibition. Homoharringtonine (HHT) identified in the present study is active against laboratory-adapted RABV (CVS-11) and clinical isolates of RABV, with an average EC50 of 0.3 µM in both BHK-21 and Neuro-2a cell lines and exhibits post-entry inhibition. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

18 pages, 1602 KiB  
Review
Mechanisms Operating in the Use of Transition Metal Complexes to Combat Antimicrobial Resistance
by Shiming Wu, Meishu Wang, Ziyi Liu and Chen Fu
Microorganisms 2025, 13(7), 1570; https://doi.org/10.3390/microorganisms13071570 - 3 Jul 2025
Viewed by 446
Abstract
The increasing diversity and escalating drug resistance of bacterial pathogens have significantly compromised the efficacy of conventional antimicrobial agents, creating formidable challenges in modern infection control. These developments underscore the critical need for innovative therapeutic strategies to address the persistent global health burden [...] Read more.
The increasing diversity and escalating drug resistance of bacterial pathogens have significantly compromised the efficacy of conventional antimicrobial agents, creating formidable challenges in modern infection control. These developments underscore the critical need for innovative therapeutic strategies to address the persistent global health burden posed by microbial resistance. While metal-based compounds have been extensively studied for their anticancer properties in clinical applications, their potential in antimicrobial contexts remains relatively underexplored. This review systematically elaborates on the structure-activity relationship of metal complexes, with a focus on the unique characteristics of metal drugs that differ from organic small molecules. These drugs can overcome drug resistance through various mechanisms (such as generation of reactive oxygen species and penetration of biological membranes). Understanding these mechanisms provides a crucial basis for guiding ligand design and the development of delivery systems. Full article
(This article belongs to the Special Issue New Strategies for Antimicrobial Treatment)
Show Figures

Figure 1

18 pages, 1197 KiB  
Article
Precision Enhanced Bioactivity Prediction of Tyrosine Kinase Inhibitors by Integrating Deep Learning and Molecular Fingerprints Towards Cost-Effective and Targeted Cancer Therapy
by Fatma Hilal Yagin, Yasin Gormez, Cemil Colak, Abdulmohsen Algarni, Fahaid Al-Hashem and Luca Paolo Ardigò
Pharmaceuticals 2025, 18(7), 975; https://doi.org/10.3390/ph18070975 - 28 Jun 2025
Viewed by 820
Abstract
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning [...] Read more.
Background and Objective: Dysregulated tyrosine kinase signaling is a central driver of tumorigenesis, metastasis, and therapeutic resistance. While tyrosine kinase inhibitors (TKIs) have revolutionized targeted cancer treatment, identifying compounds with optimal bioactivity remains a critical bottleneck. This study presents a robust machine learning framework—leveraging deep artificial neural networks (dANNs), convolutional neural networks (CNNs), and structural molecular fingerprints—to accurately predict TKI bioactivity, ultimately accelerating the preclinical phase of drug development. Methods: A curated dataset of 28,314 small molecules from the ChEMBL database targeting 11 tyrosine kinases was analyzed. Using Morgan fingerprints and physicochemical descriptors (e.g., molecular weight, LogP, hydrogen bonding), ten supervised models, including dANN, SVM, CatBoost, and CNN, were trained and optimized through a randomized hyperparameter search. Model performance was evaluated using F1-score, ROC–AUC, precision–recall curves, and log loss. Results: SVM achieved the highest F1-score (87.9%) and accuracy (85.1%), while dANNs yielded the lowest log loss (0.25096), indicating superior probabilistic reliability. CatBoost excelled in ROC–AUC and precision–recall metrics. The integration of Morgan fingerprints significantly improved bioactivity prediction across all models by enhancing structural feature recognition. Conclusions: This work highlights the transformative role of machine learning—particularly dANNs and SVM—in rational drug discovery. By enabling accurate bioactivity prediction, our model pipeline can effectively reduce experimental burden, optimize compound selection, and support personalized cancer treatment design. The proposed framework advances kinase inhibitor screening pipelines and provides a scalable foundation for translational applications in precision oncology. By enabling early identification of bioactive compounds with favorable pharmacological profiles, the results of this study may support more efficient candidate selection for clinical drug development, particularly in regards to cancer therapy and kinase-associated disorders. Full article
Show Figures

Figure 1

15 pages, 2600 KiB  
Article
Substituted Triazole-3,5-Diamine Compounds as Novel Human Topoisomerase III Beta Inhibitors
by Yasir Mamun, Somaia Haque Chadni, Ramanjaneyulu Rayala, Hasham Shafi, Shomita Ferdous, Rudramani Pokhrel, Adel Nefzi, Prem Chapagain and Yuk-Ching Tse-Dinh
Int. J. Mol. Sci. 2025, 26(13), 6193; https://doi.org/10.3390/ijms26136193 - 27 Jun 2025
Viewed by 469
Abstract
Human topoisomerase III beta (hTOP3B) is a unique and important enzyme in human cells that plays a role in maintaining genome stability, affecting cellular aging, and potentially impacting viral replication. Its dual activity on both DNA and RNA makes it a valuable target [...] Read more.
Human topoisomerase III beta (hTOP3B) is a unique and important enzyme in human cells that plays a role in maintaining genome stability, affecting cellular aging, and potentially impacting viral replication. Its dual activity on both DNA and RNA makes it a valuable target for therapeutic interventions. hTOP3B has been shown to be required for the efficient replication of certain positive-sense ssRNA viruses including Dengue. We performed in silico screening of a library comprising drugs that are FDA-approved or undergoing clinical trials as potential drugs to identify potential inhibitors of hTOP3B. The topoisomerase activity assay of the identified virtual hits showed that bemcentinib, a compound known to target the AXL receptor tyrosine kinase, can inhibit hTOP3B relaxation activity. This is the first small molecule shown to inhibit the complete catalytic cycle of hTOP3B for the potential interference of the function of hTOP3B in antiviral application. Additional small molecules that share the N5,N3-1H-1,2,4-triazole-3,5-diamine moiety of bemcentinib were synthesized and tested for the inhibition of hTOP3B relaxation activity. Five compounds with comparable IC50 to that of bemcentinib for the inhibition of hTOP3B were identified. These results suggest that the exploration of tyrosine kinase inhibitors and their analogs may allow the identification of novel potential topoisomerase inhibitors. Full article
(This article belongs to the Special Issue Small Molecule Drug Design and Research: 3rd Edition)
Show Figures

Figure 1

14 pages, 3018 KiB  
Article
Fractional Coprecipitation of Drugs and Natural Extracts with Zinc Hydroxide
by Andrea Franzese and Luca Regazzoni
Molecules 2025, 30(13), 2699; https://doi.org/10.3390/molecules30132699 - 23 Jun 2025
Viewed by 327
Abstract
Zinc hydroxide has been reported as an effective precipitating reagent for removing proteins in biological samples. This procedure is quite effective for removing interfering proteins before the chromatographic separation of small organic compounds. However, preliminary data suggested that also some small molecules could [...] Read more.
Zinc hydroxide has been reported as an effective precipitating reagent for removing proteins in biological samples. This procedure is quite effective for removing interfering proteins before the chromatographic separation of small organic compounds. However, preliminary data suggested that also some small molecules could precipitate together with proteins and zinc hydroxide. Therefore, herein it is reported a study on a panel of drugs having different chemical structures. The results suggest that the common trait of organic molecules coprecipitating with zinc hydroxide is to have acidic groups, while neutral or basic molecules are not affected by zinc hydroxide precipitation. Such observations were consistent with some analyses conducted on hydroalcoholic extracts prepared from natural edible materials such as green tea. In such matrices, a quantitative coprecipitation of polyphenols was obtained upon inducing the precipitation of zinc hydroxide, while alkaloids such as caffeine remained selectively isolated in the supernatants. Interestingly, the compounds coprecipitated with zinc hydroxide can be easily and quantitatively recovered as well, just by redissolving the precipitate. These findings open potential applications for the isolation of specific classes of compounds from crude natural extracts and for the use of zinc hydroxide to remove interfering compounds before chromatographic analyses. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop