Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,789)

Search Parameters:
Keywords = slope cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4005 KiB  
Article
Analysis of Temporal and Spatial Variations in Cropland Water-Use Efficiency and Influencing Factors in Xinjiang Based on the XGBoost–SHAP Model
by Qiu Zhao, Fan Gao, Bing He, Ying Li, Hairui Li, Yao Xiao and Ruzhang Lin
Agronomy 2025, 15(8), 1902; https://doi.org/10.3390/agronomy15081902 (registering DOI) - 7 Aug 2025
Abstract
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential [...] Read more.
In arid regions with limited water resources, improving cropland water-use efficiency (WUEc) is crucial for maintaining crop production. This study aims to investigate how changes in meteorological and vegetation factors affect WUEc in drylands and to identify its primary drivers, which are essential for understanding how cropland ecosystems respond to complex environmental changes. Using remote sensing data, we analyzed the spatiotemporal patterns of WUEc in Xinjiang from 2002 to 2022 by applying STL decomposition, Sen’s slope combined with the Mann–Kendall test, and an XGBoost–SHAP model, quantifying its key controlling factors. The results indicate that from 2002 to 2022, WUEc in Xinjiang showed an overall declining trend. Prior to 2007, WUEc increased at 0.05 gC·m−1·m−2·a−1, after which it fluctuated downward at −0.01 gC·m−1·m−2·a−1. Intra-annual peaks consistently occurred in May and during September–October. Spatially, WUEc exhibited significant heterogeneity, increasing from south to north, with 53.26% of the region showing declines. Temperature (T) and leaf area index (LAI) emerged as the primary meteorological and vegetation drivers, respectively, influencing WUEc change in 45.7% and 17.6% of the area. Both variables were negatively correlated with WUEc, with negative correlations covering 60% of the region for T and 83% for LAI. These findings provide scientific guidance for optimizing crop structure and water-resource management strategies in arid regions. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

23 pages, 11564 KiB  
Article
Cloud-Based Assessment of Flash Flood Susceptibility, Peak Runoff, and Peak Discharge on a National Scale with Google Earth Engine (GEE)
by Ivica Milevski, Bojana Aleksova, Aleksandar Valjarević and Pece Gorsevski
Atmosphere 2025, 16(8), 945; https://doi.org/10.3390/atmos16080945 - 7 Aug 2025
Abstract
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, [...] Read more.
Flash floods, exacerbated by climate change and land use alterations, are among the most destructive natural hazards globally, leading to significant damage and loss of life. In this context, the Flash Flood Potential Index (FFPI), which is a terrain and land surface-based model, and Google Earth Engine (GEE) were used to assess flood-prone zones across North Macedonia’s watersheds. The presented GEE-based assessment was accomplished by a custom script that automates the FFPI calculation process by integrating key factors derived from publicly available sources. These factors, which define susceptibility to torrential floods, include slope (Copernicus GLO-30 DEM), land cover (Copernicus GLO-30 DEM), soil type (SoilGrids), vegetation (ESA World Cover), and erodibility (CHIRPS). The spatial distribution of average FFPI values across 1396 small catchments (10–100 km2) revealed that a total of 45.4% of the area exhibited high to very high susceptibility, with notable spatial variability. The CHIRPS rainfall data (2000–2024) that combines satellite imagery and in situ measurements was used to estimate peak 24 h runoff and discharge. To improve the accuracy of CHIRPS, the data were adjusted by 30–50% to align with meteorological station records, along with normalized FFPI values as runoff coefficients. Validation against 328 historical river flood and flash flood records confirmed that 73.2% of events aligned with moderate to very high flash flood susceptibility catchments, underscoring the model’s reliability. Thus, the presented cloud-based scenario highlights the potential of the GEE’s efficacy in scalability and robustness for flash flood modeling and regional risk management at national scale. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

21 pages, 5063 KiB  
Article
Flood Susceptibility Assessment Based on the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS): A Case Study of the Broader Area of Megala Kalyvia, Thessaly, Greece
by Nikolaos Alafostergios, Niki Evelpidou and Evangelos Spyrou
Information 2025, 16(8), 671; https://doi.org/10.3390/info16080671 - 6 Aug 2025
Abstract
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused [...] Read more.
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused significant flooding and many damages and fatalities. The southeastern areas of Trikala were among the many areas of Thessaly that suffered the effects of these rainfalls. In this research, a flood susceptibility assessment (FSA) of the broader area surrounding the settlement of Megala Kalyvia is carried out through the analytical hierarchy process (AHP) as a multicriteria analysis method, using Geographic Information Systems (GIS). The purpose of this study is to evaluate the prolonged flood susceptibility indicated within the area due to the past floods of 2018, 2020, and 2023. To determine the flood-prone areas, seven factors were used to determine the influence of flood susceptibility, namely distance from rivers and channels, drainage density, distance from confluences of rivers or channels, distance from intersections between channels and roads, land use–land cover, slope, and elevation. The flood susceptibility was classified as very high and high across most parts of the study area. Finally, a comparison was made between the modeled flood susceptibility and the maximum extent of past flood events, focusing on that of 2023. The results confirmed the effectiveness of the flood susceptibility assessment map and highlighted the need to adapt to the changing climate patterns observed in September 2023. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Figure 1

30 pages, 4529 KiB  
Article
Rainwater Harvesting Site Assessment Using Geospatial Technologies in a Semi-Arid Region: Toward Water Sustainability
by Ban AL- Hasani, Mawada Abdellatif, Iacopo Carnacina, Clare Harris, Bashar F. Maaroof and Salah L. Zubaidi
Water 2025, 17(15), 2317; https://doi.org/10.3390/w17152317 - 4 Aug 2025
Viewed by 118
Abstract
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote [...] Read more.
Rainwater harvesting for sustainable agriculture (RWHSA) offers a viable and eco-friendly strategy to alleviate water scarcity in semi-arid regions, particularly for agricultural use. This study aims to identify optimal sites for implementing RWH systems in northern Iraq to enhance water availability and promote sustainable farming practices. An integrated geospatial approach was adopted, combining Remote Sensing (RS), Geographic Information Systems (GIS), and Multi-Criteria Decision Analysis (MCDA). Key thematic layers, including soil type, land use/land cover, slope, and drainage density were processed in a GIS environment to model runoff potential. The Soil Conservation Service Curve Number (SCS-CN) method was used to estimate surface runoff. Criteria were weighted using the Analytical Hierarchy Process (AHP), enabling a structured and consistent evaluation of site suitability. The resulting suitability map classifies the region into four categories: very high suitability (10.2%), high (26.6%), moderate (40.4%), and low (22.8%). The integration of RS, GIS, AHP, and MCDA proved effective for strategic RWH site selection, supporting cost-efficient, sustainable, and data-driven agricultural planning in water-stressed environments. Full article
20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Viewed by 182
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

23 pages, 28189 KiB  
Article
Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
by Manel Mersni, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli and Hans-Balder Havenith
Geosciences 2025, 15(8), 297; https://doi.org/10.3390/geosciences15080297 - 3 Aug 2025
Viewed by 467
Abstract
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. [...] Read more.
Landslide susceptibility modelling represents an efficient approach to enhance disaster management and mitigation strategies. The focus of this paper lies in the development of a landslide susceptibility evaluation in northwestern Tunisia using the Analytical Hierarchy Process (AHP) and Artificial Neural Network (ANN) approaches. The used database covers 286 landslides, including ten landslide factor maps: rainfall, slope, aspect, topographic roughness index, lithology, land use and land cover, distance from streams, drainage density, lineament density, and distance from roads. The AHP and ANN approaches were applied to classify the factors by analyzing the correlation relationship between landslide distribution and the significance of associated factors. The Landslide Susceptibility Index result reveals five susceptible zones organized from very low to very high risk, where the zones with the highest risks are associated with the combination of extreme amounts of rainfall and steep slope. The performance of the models was confirmed utilizing the area under the Relative Operating Characteristic (ROC) curves. The computed ROC curve (AUC) values (0.720 for ANN and 0.651 for AHP) convey the advantage of the ANN method compared to the AHP method. The overlay of the landslide inventory data locations of historical landslides and susceptibility maps shows the concordance of the results, which is in favor of the established model reliability. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 235
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 152
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 136
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 - 1 Aug 2025
Viewed by 151
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

27 pages, 18566 KiB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 216
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Anthropogenic Activities Dominate Vegetation Improvement in Arid Areas of China
by Yu Guo, Xinwei Wang, Hongying Cao, Qin Peng, Yunshe Dong, Yunchun Qi, Jian Liu, Ning Lv, Feihu Yin, Xiujin Yuan and Mei Zeng
Remote Sens. 2025, 17(15), 2634; https://doi.org/10.3390/rs17152634 - 29 Jul 2025
Viewed by 165
Abstract
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation [...] Read more.
Arid regions, while providing essential ecosystem services, are among the most ecologically vulnerable worldwide. Understanding and monitoring their long-term vegetation dynamics is essential for accurate environmental assessment and climate adaptation strategies. This study examined the spatiotemporal variations and driving forces of the vegetation dynamics in arid Northwestern China during 2000 to 2020, using the annual peak fractional vegetation cover (FVC) as the primary indicator. The Sen’s slope estimator with the Mann–Kendall test and the coefficient of variation were employed to assess the spatiotemporal variations in FVC, while the Pearson correlation, geographic detector model and random forest model were applied to identify the dominant driving factors for FVC. The results indicated that (1) overall vegetation cover was low (averaged peak FVC = 0.191), showing a spatial pattern of higher values in the northwest and lower values in the southeast; high FVC values were primarily observed in mountainous areas and river corridors; (2) the annual peak FVC increased significantly at a rate of 0.0508 yr−1, with 33.72% of the region showing significant improvements and 5.49% degradation; (3) the spatial pattern of FVC was shaped by the distribution of land use types (59.46%), while the temporal dynamics of FVC were driven by land use changes (16.37%) and the land use intensity (37.56%); (4) both the spatial pattern and the temporal dynamics were limited by the environmental conditions. These findings highlight the critical role of anthropogenic activities in shaping the spatiotemporal variations in FVC, particularly emphasizing the distinct contributions of changes in land use types and land use intensity. This study could provide a scientific basis for sustainable land management and restoration strategies in arid regions facing global changes. Full article
Show Figures

Figure 1

21 pages, 11816 KiB  
Article
The Dual Effects of Climate Change and Human Activities on the Spatiotemporal Vegetation Dynamics in the Inner Mongolia Plateau from 1982 to 2022
by Guangxue Guo, Xiang Zou and Yuting Zhang
Land 2025, 14(8), 1559; https://doi.org/10.3390/land14081559 - 29 Jul 2025
Viewed by 190
Abstract
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This [...] Read more.
The Inner Mongolia Plateau (IMP), situated in the arid and semi-arid ecological transition zone of northern China, is particularly vulnerable to both climate change and human activities. Understanding the spatiotemporal vegetation dynamics and their driving forces is essential for regional ecological management. This study employs Sen’s slope estimation, BFAST analysis, residual trend method and Geodetector to analyze the spatial patterns of Normalized Difference Vegetation Index (NDVI) variability and distinguish between climatic and anthropogenic influences. Key findings include the following: (1) From 1982 to 2022, vegetation cover across the IMP exhibited a significant greening trend. Zonal analysis showed that this spatial heterogeneity was strongly regulated by regional hydrothermal conditions, with varied responses across land cover types and pronounced recovery observed in high-altitude areas. (2) In the western arid regions, vegetation trends were unstable, often marked by interruptions and reversals, contrasting with the sustained greening observed in the eastern zones. (3) Vegetation growth was primarily temperature-driven in the eastern forested areas, precipitation-driven in the central grasslands, and severely limited in the western deserts due to warming-induced drought. (4) Human activities exerted dual effects: significant positive residual trends were observed in the Hetao Plain and southern Horqin Sandy Land, while widespread negative residuals emerged across the southern deserts and central grasslands. (5) Vegetation change was driven by climate and human factors, with recovery mainly due to climate improvement and degradation linked to their combined impact. These findings highlight the interactive mechanisms of climate change and human disturbance in regulating terrestrial vegetation dynamics, offering insights for sustainable development and ecosystem education in climate-sensitive systems. Full article
Show Figures

Figure 1

14 pages, 4169 KiB  
Article
The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China
by Maosen Lin, Yifeng Liu, Wei Xu, Bihao Gao, Xiaoyi Wang, Cuirong Wang and Dali Guo
Sustainability 2025, 17(15), 6840; https://doi.org/10.3390/su17156840 - 28 Jul 2025
Viewed by 236
Abstract
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay [...] Read more.
Land cover, topography, precipitation, and socio-economic factors exert both direct and indirect influences on urban land surface temperatures. Within the broader context of global climate change, these influences are magnified by the escalating intensity of the urban heat island effect. However, the interplay and underlying mechanisms of natural and socio-economic determinants of land surface temperatures remain inadequately explored, particularly in the context of cold-region cities located in the northern temperate zone of China. This study focuses on Changchun City, employing multispectral remote sensing imagery to derive and spatially map the distribution of land surface temperatures and topographic attributes. Through comprehensive analysis, the research identifies the principal drivers of temperature variations and delineates their seasonal dynamics. The findings indicate that population density, night-time light intensity, land use, GDP (Gross Domestic Product), relief, and elevation exhibit positive correlations with land surface temperature, whereas slope demonstrates a negative correlation. Among natural factors, the correlations of slope, relief, and elevation with land surface temperature are comparatively weak, with determination coefficients (R2) consistently below 0.15. In contrast, socio-economic factors exert a more pronounced influence, ranked as follows: population density (R2 = 0.4316) > GDP (R2 = 0.2493) > night-time light intensity (R2 = 0.1626). The overall hierarchy of the impact of individual factors on the temperature model, from strongest to weakest, is as follows: population, night-time light intensity, land use, GDP, slope, relief, and elevation. In examining Changchun and analogous cold-region cities within the northern temperate zone, the research underscores that socio-economic factors substantially outweigh natural determinants in shaping urban land surface temperatures. Notably, human activities catalyzed by population growth emerge as the most influential factor, profoundly reshaping the urban thermal landscape. These activities not only directly escalate anthropogenic heat emissions, but also alter land cover compositions, thereby undermining natural cooling mechanisms and exacerbating the urban heat island phenomenon. Full article
Show Figures

Figure 1

20 pages, 9605 KiB  
Article
Future Modeling of Urban Growth Using Geographical Information Systems and SLEUTH Method: The Case of Sanliurfa
by Songül Naryaprağı Gülalan, Fred Barış Ernst and Abdullah İzzeddin Karabulut
Sustainability 2025, 17(15), 6833; https://doi.org/10.3390/su17156833 - 28 Jul 2025
Viewed by 440
Abstract
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in [...] Read more.
This study was conducted using Geographic Information Systems (GISs), Remote Sensing (RS) techniques, and the SLEUTH model based on Cellular Automata (CA) to analyze the spatial and temporal dynamics of urban growth in Sanliurfa Province and to create future projections. The model in question simulates urban sprawl by using Slope, Land Use/Land Cover (LULC), Excluded Areas, urban areas, transportation, and hill shade layers as inputs. In addition, disaster risk areas and public policies that will affect the urbanization of the city were used as input layers. In the study, the spatial pattern of urbanization in Sanliurfa was determined by using Landsat satellite images of six different periods covering the years 1985–2025. The Analytical Hierarchy Process (AHP) method was applied within the scope of Multi-Criteria Decision Analysis (MCDA). Weighting was made for each parameter. Spatial analysis was performed by combining these values with data in raster format. The results show that the SLEUTH model successfully reflects past growth trends when calibrated at different spatial resolutions and can provide reliable predictions for the future. Thus, the proposed model can be used as an effective decision support tool in the evaluation of alternative urbanization scenarios in urban planning. The findings contribute to the sustainability of land management policies. Full article
(This article belongs to the Special Issue Advanced Studies in Sustainable Urban Planning and Urban Development)
Show Figures

Figure 1

Back to TopTop