Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Landslide Inventory Map
2.2.2. Landslide Factors
2.3. Method
2.3.1. Background of the Method
2.3.2. Weightage Calculation
2.3.3. Analytical Hierarchy Process (AHP)
2.3.4. Artificial Neural Network (ANN)
2.3.5. Model Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pareek, N.; Sharma, M.L.; Arora, M.K. Impact of seismic factors on landslide susceptibility zonation: A case study in part of Indian Himalayas. Landslides 2010, 7, 191–201. [Google Scholar] [CrossRef]
- Huang, Y.; Xu, C.; Zhang, X.; Li, L. Bibliometric analysis of landslide research based on the WOS database. Nat. Hazards Res. 2022, 2, 49–61. [Google Scholar] [CrossRef]
- Saro, L.; Woo, J.S.; Kwan-Young, O.; Moung-Jin, L. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea. Open Geosci. 2016, 8, 117–132. [Google Scholar] [CrossRef]
- Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [Google Scholar] [CrossRef]
- Kumar, M.; Krishnaveni, V.; Muthukumar, S. Geotechnical Investigation and Numerical Analysis of Slope Failure: A Case Study of Landslide Vulnerability Zone in Kolli Hills, Tamil Nadu. J. Geol. Soc. India 2021, 97, 513–519. [Google Scholar] [CrossRef]
- Benchelha, S.; Aoudjehane, H.C.; Hakdaoui, M.; Hamdouni, R.E.; Mansouri, H.; Benchelha, T.; Layelmam, M.; Alaoui, M. Landslide susceptibility mapping in the municipality of oudka, northern morocco: A comparison between logistic regression and artificial neural networks models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 41–49. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Sim, K.B.; Lee, M.L.; Wong, S.Y. A review of landslide acceptable risk and tolerable risk. Geoenviron. Disasters 2022, 9, 3. [Google Scholar] [CrossRef]
- Tiranti, D.; Cremonini, R. Editorial: Landslide Hazard in a Changing Environment. Front. Earth Sci. 2019, 7, 3. [Google Scholar] [CrossRef]
- United Nations International Strategy for Disaster Reduction (UNISDR); United Nations Development Programme (UNDP). City Profile, Progress and Action Plan—Case of Ain Drahem; United Nations International Strategy for Disaster Reduction: Geneva, Switzerland; United Nations Development Programme: New York, NY, USA, 2015; p. 23. [Google Scholar]
- Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; Melesse, M.A. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. [Google Scholar] [CrossRef]
- Aldiansyah, S.; Wardani, F. Assessment of resampling methods on performance of landslide susceptibility predictions using machine learning in Kendari City, Indonesia. Water Pract. Technol. 2024, 19, 52–81. [Google Scholar] [CrossRef]
- El Jazouli, A.; Barakat, A.; Khellouk, R. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron. Disasters 2019, 6, 3. [Google Scholar] [CrossRef]
- Sonker, I.; Tripathi, J.N.; Singh, A.K. Landslide susceptibility zonation using geospatial technique and analytical hierarchy process in Sikkim Himalaya. Quat. Sci. Adv. 2021, 4, 100039. [Google Scholar] [CrossRef]
- Liu, X.; Shao, S.; Shao, S. Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Sci. Rep. 2024, 14, 2941. [Google Scholar] [CrossRef] [PubMed]
- Thapa, D.; Bhandari, B.P. GIS-Based Frequency Ratio Method for Identification of Potential Landslide Susceptible Area in the Siwalik Zone of Chatara-Barahakshetra Section, Nepal. Open J. Geol. 2019, 9, 873–896. [Google Scholar] [CrossRef]
- Youssef, B.; Bouskri, I.; Brahim, B.; Kader, S.; Brahim, I.; Abdelkrim, B.; Spalević, V. The contribution of the frequency ratio model and the prediction rate for the analysis of landslide risk in the Tizi N’tichka area on the national road (RN9) linking Marrakech and Ouarzazate. Catena 2023, 232, 107464. [Google Scholar] [CrossRef]
- Al-Najjar, H.A.H.; Pradhan, B. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci. Front. 2021, 12, 625–637. [Google Scholar] [CrossRef]
- Huang, J.; Zeng, X.; Ding, L.; Yin, Y.; Li, Y. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Comput. Intell. Neurosci. 2022, 2022, 9923775. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, H.; Ahmadi, R.; Alizadeh, M.; Hashim, M.; Al-Ansari, N.; Shirzadi, A.; Wolf, I.D.; Ariffin, E.H. Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms. Remote Sens. 2023, 15, 3112. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, Y.-T.; Lee, S.-R. Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions. Remote Sens. 2020, 12, 1194. [Google Scholar] [CrossRef]
- Selamat, S.N.; Majid, N.A.; Taha, M.R.; Osman, A. Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia. Land 2022, 11, 833. [Google Scholar] [CrossRef]
- Jennifer, J.J.; Saravanan, S. Artificial neural network and sensitivity analysis in the landslide susceptibility mapping of Idukki district, India. Geocarto Int. 2022, 37, 5693–5715. [Google Scholar] [CrossRef]
- Tien Bui, D.; Ho, T.C.; Revhaug, I.; Pradhan, B.; Nguyen, D.B. Landslide Susceptibility Mapping Along the National Road 32 of Vietnam Using GIS-Based J48 Decision Tree Classifier and Its Ensembles. In Cartography from Pole to Pole; Buchroithner, M., Prechtel, N., Burghardt, D., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2014; pp. 303–317. ISBN 978-3-642-32617-2. [Google Scholar]
- Park, S.-J.; Lee, C.-W.; Lee, S.; Lee, M.-J. Landslide Susceptibility Mapping and Comparison Using Decision Tree Models: A Case Study of Jumunjin Area, Korea. Remote Sens. 2018, 10, 1545. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.-M.; Jung, H.-S. A Support Vector Machine for Landslide Susceptibility Mapping in Gangwon Province, Korea. Sustainability 2017, 9, 48. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 520–529. [Google Scholar] [CrossRef]
- Akinci, H.; Kilicoglu, C.; Dogan, S. Random Forest-Based Landslide Susceptibility Mapping in Coastal Regions of Artvin, Turkey. ISPRS Int. J. Geo-Inf. 2020, 9, 553. [Google Scholar] [CrossRef]
- Riestu, I.; Hidayat, H. Landslide Susceptibility Mapping Using Random Forest Algorithm and Its Correlation With Land Use In Batu City, Jawa Timur. IOP Conf. Ser. Earth Environ. Sci. 2023, 1127, 12017. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Rostamzadeh, H.; Blaschke, T.; Gholaminia, K.; Aryal, J. A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat. Hazards 2018, 94, 497–517. [Google Scholar] [CrossRef]
- Mehrabi, M.; Pradhan, B.; Moayedi, H.; Alamri, A. Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques. Sensors 2020, 20, 1723. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, J.; Bao, Y.; Han, X.; Zhan, J.; Peng, W. Landslide Susceptibility Mapping Using Logistic Regression Analysis along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern China. ISPRS Int. J. Geo. Inf. 2018, 7, 438. [Google Scholar] [CrossRef]
- Puente-Sotomayor, F.; Mustafa, A.; Teller, J. Landslide Susceptibility Mapping of Urban Areas: Logistic Regression and Sensitivity Analysis applied to Quito, Ecuador. Geoenviron. Disasters 2021, 8, 19. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Chen, W.; Xie, X.; Peng, J.; Wang, J.; Duan, Z.; Hong, H. GIS-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomat. Nat. Hazards Risk 2017, 8, 950–973. [Google Scholar] [CrossRef]
- Bueechi, E.; Klimeš, J.; Frey, H.; Huggel, C.; Strozzi, T.; Cochachin, A. Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—A comparison of different approaches. Landslides 2019, 16, 395–407. [Google Scholar] [CrossRef]
- Anis, Z.; Wissem, G.; Vali, V.; Smida, H.; Mohamed Essghaier, G. GIS-based landslide susceptibility mapping using bivariate statistical methods in North-western Tunisia. Open Geosci. 2019, 11, 708–726. [Google Scholar] [CrossRef]
- Klai, A.; Haddad, R.; Bouzid, M.K.; Rabia, M.C. Landslide susceptibility mapping by fuzzy gamma operator and GIS, a case study of a section of the national road n°11 linking Mateur to Béja (Nortshern Tunisia). Arab. J. Geosci. 2020, 13, 58. [Google Scholar] [CrossRef]
- Mansour, R.; Zouaoui, N.; El Ghali, A. Quantitative assessment of landslide risk in northwestern Tunisia using probabilistic approaches. Arab. J. Geosci. 2022, 15, 1608. [Google Scholar] [CrossRef]
- Klai, A.; Katlane, R.; Haddad, R.; Rabia, M.C. Landslide susceptibility mapping by frequency ratio and fuzzy logic approach: A case study of Mogods and Hedil (Northern Tunisia). Appl. Geomat. 2024, 16, 91–109. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Mahalingam, R.; Olsen, M.J. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping. Geomat. Nat. Hazards Risk 2016, 7, 1835–1855. [Google Scholar] [CrossRef]
- Brock, J.; Schratz, P.; Petschko, H.; Muenchow, J.; Micu, M.; Brenning, A. The performance of landslide susceptibility models critically depends on the quality of digital elevation models. Geomat. Nat. Hazards Risk 2020, 11, 1075–1092. [Google Scholar] [CrossRef]
- Rouvier, H. Géologie de l’Extrême-Nord Tunisien: Tectoniques et Paléogéographies Superposées à l’Extrémité Orientale de la Chaîne Nord-Maghrébine. Ph.D. Thesis, University of Paris VI, Paris, France, 1977. [Google Scholar]
- Ali, S.A.; Parvin, F.; Vojteková, J.; Costache, R.; Linh, N.T.T.; Pham, Q.B.; Vojtek, M.; Gigović, L.; Ahmad, A.; Ghorbani, M.A. GIS-based landslide susceptibility modeling: A comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 2021, 12, 857–876. [Google Scholar] [CrossRef]
- Dahim, M.; Alqadhi, S.; Mallick, J. Enhancing landslide management with hyper-tuned machine learning and deep learning models: Predicting susceptibility and analyzing sensitivity and uncertainty. Front. Ecol. Evol. 2023, 11, 1108924. [Google Scholar] [CrossRef]
- Wang, F.; Xu, P.; Wang, C.; Wang, N.; Jiang, N. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping along the Longzi River, Southeastern Tibetan Plateau, China. ISPRS Int. J. Geo-Inf. 2017, 6, 172. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.C.; Hu, H.Y. A Study on Relationship of Landslide Occurrence and Rainfall. Appl. Mech. Mater. 2013, 438–439, 1200–1204. [Google Scholar] [CrossRef]
- Lee, M.-J. Rainfall and Landslide Correlation Analysis and Prediction of Future Rainfall Base on Climate Change. In Geohazards Caused by Human Activity; Farid, A., Ed.; InTechOpen: London, UK, 2016; ISBN 978-953-51-2801-4. [Google Scholar]
- Silalahi, F.E.S.; Pamela; Arifianti, Y.; Hidayat, F. Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geosci. Lett. 2019, 6, 10. [Google Scholar] [CrossRef]
- Nakileza, B.R.; Nedala, S. Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenviron. Disasters 2020, 7, 27. [Google Scholar] [CrossRef]
- Meten, M.; PrakashBhandary, N.; Yatabe, R. Effect of Landslide Factor Combinations on the Prediction Accuracy of Landslide Susceptibility Maps in the Blue Nile Gorge of Central Ethiopia. Geoenviron. Disasters 2015, 2, 9. [Google Scholar] [CrossRef]
- Achour, Y.; Boumezbeur, A.; Hadji, R.; Chouabbi, A.; Cavaleiro, V.; Bendaoud, E.A. Landslide susceptibility mapping using analytic hierarchy process and information value methods along a highway road section in Constantine, Algeria. Arab. J. Geosci. 2017, 10, 194. [Google Scholar] [CrossRef]
- Cellek, S. The Effect of Aspect on Landslide and Its Relationship with Other Parameters. In Landslides; Zhang, Y., Cheng, Q., Eds.; IntechOpen: London, UK, 2022; ISBN 978-1-83969-023-5. [Google Scholar]
- Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena 2017, 152, 144–162. [Google Scholar] [CrossRef]
- Kalantar, B.; Pradhan, B.; Naghibi, S.A.; Motevalli, A.; Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat. Nat. Hazards Risk 2018, 9, 49–69. [Google Scholar] [CrossRef]
- Pawluszek, K.; Borkowski, A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat. Hazards 2017, 86, 919–952. [Google Scholar] [CrossRef]
- Regmi, N.R.; Walter, J.I. Detailed mapping of shallow landslides in eastern Oklahoma and western Arkansas and potential triggering by Oklahoma earthquakes. Geomorphology 2020, 366, 106806. [Google Scholar] [CrossRef]
- Wubalem, A. Landslide Inventory, Susceptibility, Hazard and Risk Mapping. In Landslides; Zhang, Y., Cheng, Q., Eds.; IntechOpen: London, UK, 2022; ISBN 978-1-83969-023-5. [Google Scholar]
- Trisnawati, D.; Najib; Hidayatillah, A.S. The Relationship of Lithology with Landslide Occurrences in Banyumanik and Tembalang Districts, Semarang City. IOP Conf. Ser. Earth Environ. Sci. 2022, 1047, 012026. [Google Scholar] [CrossRef]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Morshed Varzandeh, M.H. A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Bourenane, H.; Guettouche, M.S.; Bouhadad, Y.; Braham, M. Landslide hazard mapping in the Constantine city, Northeast Algeria using frequency ratio, weighting factor, logistic regression, weights of evidence, and analytical hierarchy process methods. Arab. J. Geosci. 2016, 9, 154. [Google Scholar] [CrossRef]
- Shafique, M.; Van Der Meijde, M.; Khan, M.A. A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. J. Asian Earth Sci. 2016, 118, 68–80. [Google Scholar] [CrossRef]
- Masruroh, H.; Leksono, A.S.; Kurniawan, S.; Soemarno, S. Developing landslide susceptibility map using Artificial Neural Network (ANN) method for mitigation of land degradation. J. Degrade. Min. Land Manage. 2023, 10, 4479. [Google Scholar] [CrossRef]
- Çellek, S. Effect of Stream Distance on Landslide. In Proceedings of the SETSCI Conference Proceedings,3rd International Symposium on Innovative Approaches in Scientific Studies (Engineering and Natural Sciences) (ISAS2019-ENS), Ankara, Turkey, 19 April 2019; pp. 268–275. [Google Scholar]
- Tadesse, L.; Uncha, A.; Toma, T. Landslide vulnerability mapping using multi-criteria decision-making approaches: In Gacho Babba District, Gamo Highlands Southern Ethiopia. Discov. Appl. Sci. 2024, 6, 31. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, R.K.; Bansal, V.K. Landslide hazard zonation using analytical hierarchy process along National Highway-3 in mid Himalayas of Himachal Pradesh, India. Env. Earth Sci. 2018, 77, 719. [Google Scholar] [CrossRef]
- Yamusa, B.I.; Ismail, S.M. Integration of lineament and strain analysis to assess landslide vulnerability along taiping to Ipoh Highway, Malaysia. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 57–74. [Google Scholar] [CrossRef]
- Zhao, P.; Masoumi, Z.; Kalantari, M.; Aflaki, M.; Mansourian, A. A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sens. 2022, 14, 211. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, R.; Jiang, Y.; Liu, H.; Wei, Z. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng. Geol. 2019, 259, 105147. [Google Scholar] [CrossRef]
- Khalil, U.; Imtiaz, I.; Aslam, B.; Ullah, I.; Tariq, A.; Qin, S. Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district. Front. Environ. Sci. 2022, 10, 1028373. [Google Scholar] [CrossRef]
- Khan, Z.; Nawazuzzoha, M.; Abdelrahman, K.; Ali, S.A.; Fnais, M.S.; Kausar Shamim, S.; Ahmad, A.; Andráš, P. Mapping landslide susceptibility and risk assessment on fragile ecosystem of Himalayan River basins. All Earth 2025, 37, 1–22. [Google Scholar] [CrossRef]
- Liu, X.; Shao, S.; Zhang, C.; Shao, S. Landslide susceptibility prediction in the loess tableland considering geomorphic evolution. Catena 2025, 249, 108668. [Google Scholar] [CrossRef]
- Semih, T.; Seyhan, S. A multi-criteria factor evaluation model for gas station site selection. J. Glob. Manag. 2011, 2, 12–21. [Google Scholar]
- Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; MacGraw-Hill: New York, NY, USA, 1980; p. 287. [Google Scholar]
- Saaty, T.L.; Vargas, L.G. The possibility of group choice: Pairwise comparisons and merging functions. Soc. Choice Welf. 2012, 38, 481–496. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, R.; Barrett, D.; Gao, L.; Zhou, M.; Renzullo, L.; Emelyanova, I. A spatial assessment framework for evaluating flood risk under extreme climates. Sci. Total Environ. 2015, 538, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Souissi, D.; Souie, A.; Sebei, A.; Mahfoudhi, R.; Zghibi, A.; Zouhri, L.; Amiri, W.; Ghanmi, M. Flood hazard mapping and assessment using fuzzy analytic hierarchy process and GIS techniques in Takelsa, Northeast Tunisia. Arab. J. Geosci. 2022, 15, 1405. [Google Scholar] [CrossRef]
- Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [Google Scholar] [CrossRef]
- Lee, S.; Ryu, J.; Min, K.; Won, J. Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf. Process. Landf. 2003, 28, 1361–1376. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591. [Google Scholar]
- Fritsch, S.; Günther, F.; Wright, M. Neuralnet: Training of Neural Networks; R Package Version 1.44.2; 2019. Available online: https://cran.r-project.org/web/packages/neuralnet/index.html (accessed on 30 November 2021).
- Gholami, M.; Ghachkanlu, E.N.; Khosravi, K.; Pirasteh, S. Landslide prediction capability by comparison of frequency ratio, fuzzy gamma and landslide index method. J. Earth Syst. Sci. 2019, 128, 42. [Google Scholar] [CrossRef]
- Yong, C.; Jinlong, D.; Fei, G.; Bin, T.; Tao, Z.; Hao, F.; Li, W.; Qinghua, Z. Review of landslide susceptibility assessment based on knowledge mapping. Stoch. Environ. Res. Risk Assess. 2022, 36, 2399–2417. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Koukouvelas, I.K.; Skilodimou, H.D.; Nikolakopoulos, K.G.; Vgenopoulos, A.-L. Landslide causative factors evaluation using GIS in the tectonically active Glafkos River area, northwestern Peloponnese, Greece. Geomorphology 2024, 461, 109285. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomat. Nat. Hazards Risk 2018, 9, 249–266. [Google Scholar] [CrossRef]
- Anis, Z.; Wissem, G.; Riheb, H.; Biswajeet, P.; Mohamed Essghaier, G. Effects of clay properties in the landslides genesis in flysch massif: Case study of Aïn Draham, North Western Tunisia. J. Afr. Earth Sci. 2019, 151, 146–152. [Google Scholar] [CrossRef]
- Salleh, S.A.; Abd Rahman, A.S.A.; Othman, A.N.; Wan Mohd, W.M.N. Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN). IOP Conf. Ser. Earth Environ. Sci. 2018, 117, 12035. [Google Scholar] [CrossRef]
- Quan, H.-C.; Lee, B.-G. GIS-based landslide susceptibility mapping using analytic hierarchy process and artificial neural network in Jeju (Korea). KSCE J. Civ. Eng. 2012, 16, 1258–1266. [Google Scholar] [CrossRef]
- Saha, A.; Villuri, V.G.K.; Bhardwaj, A. Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India. Land 2022, 11, 1711. [Google Scholar] [CrossRef]
- Young, O.C.; Cheung, K.; Choi, C.U. The Comparative Research of Landslide Susceptibility Mapping Using FR, AHP, LR, ANN. In Proceedings of the proceedings.esri.com, 2003. Available online: https://scholar.google.com/scholar?cluster=12686636575347739558&hl=fr&as_sdt=0,5 (accessed on 20 June 2024).
Input Data Type | Reference | Derivative Maps |
---|---|---|
Landslide location | Historical records, Google Earth, and previous studies | Landslide inventory map |
TanDEM-X DEM 12m | The German Aerospace Center (DLR) | Maps of slope, aspect, TRI, distance from streams, drainage density |
Sentinel 2A | The Copernicus Scientific Hub (https://scihub.copernicus.eu/dhus accessed on 1 October 2023) | LULC map Lineament density map |
Geological map (5 maps) five geological maps 1/50.000 | National Office of Mines (NOM) | Lithology map |
Roads data | Open street map | Distance from roads map |
Meteorological data | Regional Commissariat for Agricultural Development of Jendouba (RCADJ) | Rainfall map |
Machine Learning Method | Hyperparameter | Range |
---|---|---|
ANN | Algorithm | Backprop, RPROP+, RPROP-, SLR, SAG, GRPROP |
Activation function | [TanH, Relu, Logistic] | |
Optimization method | [SGD, Adam, Nadam, Adamax, Adadelta, Adagrad, RMSprop] | |
Neurons in hidden layers | one hidden layer with three neurons | |
Layer | 3 | |
Batch size | (4, 128) | |
Momentum coefficient | (0.5, 1) |
Factor | AHP | ANN | Classes | Reclassify | Description of the Landslide Potential |
---|---|---|---|---|---|
Rainfall (mm/y) | 22.37 | 23.96 | 970–1100 | 1 | Very low |
1200–1300 | 2 | Low | |||
1400–1400 | 3 | Moderate | |||
1500–1600 | 4 | High | |||
1700–1700 | 5 | Very high | |||
Slope (%) | 22.37 | 23.96 | 0–7.3 | 1 | Very low |
7.4–13 | 2 | Low | |||
14–21 | 3 | Moderate | |||
22–30 | 4 | High | |||
31–78 | 5 | Very high | |||
Aspect | 13.07 | 14.02 | North | 1 | Very low |
Northeast | 3 | Moderate | |||
East | 3 | Moderate | |||
Southeast | 5 | Very high | |||
South | 4 | High | |||
Southwest | 3 | Moderate | |||
West | 3 | Moderate | |||
Northwest | 2 | Low | |||
TRI (%) | 13.07 | 14.02 | 0.11–0.3 | 1 | Very low |
0.31–0.43 | 2 | Low | |||
0.44–0.56 | 3 | Moderate | |||
0.57–0.71 | 4 | High | |||
0.72–0.89 | 5 | Very high | |||
Lithology | 8.34 | 7.39 | Clay and marl | 5 | Very high |
Clay and sandstone | 4 | High | |||
Clay gypsum dolomites and silts | 5 | Very high | |||
Conglomerates sand silt marl and clay | 2 | Low | |||
Gypsum marls clay and sandstone | 4 | High | |||
Limestone clay and marl | 3 | Moderate | |||
Sandstone | 1 | Very low | |||
LULC | 6.12 | 5.13 | Water area | 5 | Very high |
Forest | 1 | Very low | |||
Built up | 2 | Low | |||
Cultivated area | 4 | High | |||
Bare soil | 5 | Very high | |||
Distance from Streams (m) | 4.57 | 3.715 | 0–500 | 5 | Very High |
500–1000 | 4 | High | |||
1000–1500 | 3 | Moderate | |||
1500–2000 | 2 | Low | |||
2000–2500 | 1 | Very low | |||
Drainage density (km/km2) | 3.59 | 3.715 | 0.1–0.83 | 1 | Very low |
0.84–1.2 | 2 | Low | |||
1.3–1.6 | 3 | Moderate | |||
1.7–2 | 4 | High | |||
2.1–2.9 | 5 | Very high | |||
Lineament density (km/km2) | 3.25 | 2.045 | 0–1.5 | 1 | Very low |
1.6–3 | 2 | Low | |||
3.1–4.5 | 3 | Moderate | |||
4.6–6.4 | 4 | High | |||
6.5–12 | 5 | Very high | |||
Distance from roads (m) | 3.25 | 2.045 | 0–200 | 5 | Very high |
200–400 | 4 | High | |||
400–600 | 3 | Moderate | |||
600–800 | 2 | Low | |||
800–1000 | 1 | Very low |
AHP 1 | AHP 2 | AHP 3 | Total | |
---|---|---|---|---|
ANN 1 | 6374 | 1055 | 590 | 8019 |
ANN 2 | 3067 | 6111 | 2125 | 11,303 |
ANN 3 | 0 | 3501 | 2191 | 5692 |
Total | 9441 | 10,667 | 4906 | 25,014 |
Class | Area (%) | Observed Landslide (%) | |
---|---|---|---|
AHP | Very low to Low | 49.04 | 28.00 |
Moderate | 26.48 | 32.73 | |
High to Very high | 24.48 | 39.27 | |
ANN | Very low to Low | 41.50 | 24.50 |
Moderate | 27.29 | 26.85 | |
High to Very high | 31.22 | 48.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mersni, M.; Souissi, D.; Amiri, A.; Sebei, A.; Inoubli, M.H.; Havenith, H.-B. Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia. Geosciences 2025, 15, 297. https://doi.org/10.3390/geosciences15080297
Mersni M, Souissi D, Amiri A, Sebei A, Inoubli MH, Havenith H-B. Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia. Geosciences. 2025; 15(8):297. https://doi.org/10.3390/geosciences15080297
Chicago/Turabian StyleMersni, Manel, Dhekra Souissi, Adnen Amiri, Abdelaziz Sebei, Mohamed Hédi Inoubli, and Hans-Balder Havenith. 2025. "Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia" Geosciences 15, no. 8: 297. https://doi.org/10.3390/geosciences15080297
APA StyleMersni, M., Souissi, D., Amiri, A., Sebei, A., Inoubli, M. H., & Havenith, H.-B. (2025). Landslide Susceptibility Prediction Using GIS, Analytical Hierarchy Process, and Artificial Neural Network in North-Western Tunisia. Geosciences, 15(8), 297. https://doi.org/10.3390/geosciences15080297