Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = single-molecule fluorescence detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1247 KB  
Review
Imaging Flow Cytometry as a Molecular Biology Tool: From Cell Morphology to Molecular Mechanisms
by Yoshikazu Matsuoka
Int. J. Mol. Sci. 2025, 26(19), 9261; https://doi.org/10.3390/ijms26199261 - 23 Sep 2025
Viewed by 149
Abstract
Insights into the state of individual cells within a living organism are essential for identifying diseases and abnormalities. The internal state of a cell is reflected in its morphological features and changes in the localization of intracellular molecules. Using this information, it is [...] Read more.
Insights into the state of individual cells within a living organism are essential for identifying diseases and abnormalities. The internal state of a cell is reflected in its morphological features and changes in the localization of intracellular molecules. Using this information, it is possible to infer the state of the cells with high precision. In recent years, technological advancements and improvements in instrument specifications have made large-scale analyses, such as single-cell analysis, more widely accessible. Among these technologies, imaging flow cytometry (IFC) is a high-throughput imaging platform that can simultaneously acquire information from flow cytometry (FCM) and cellular images. While conventional FCM can only obtain fluorescence intensity information corresponding to each detector, IFC can acquire multidimensional information, including cellular morphology and the spatial arrangement of proteins, nucleic acids, and organelles for each imaging channel. This enables the discrimination of cell types and states based on the localization of proteins and organelles, which is difficult to assess accurately using conventional FCM. Because IFC can acquire a large number of single-cell morphological images in a short time, it is well suited for automated classification using machine learning. Furthermore, commercial instruments that combine integrated imaging and cell sorting capabilities have recently become available, enabling the sorting of cells based on their image information. In this review, we specifically highlight practical applications of IFC in four representative areas: cell cycle analysis, protein localization analysis, immunological synapse formation, and the detection of leukemic cells. In addition, particular emphasis is placed on applications that directly contribute to elucidating molecular mechanisms, thereby distinguishing this review from previous general overviews of IFC. IFC enables the estimation of cell cycle phases from large numbers of acquired cellular images using machine learning, thereby allowing more precise cell cycle analysis. Moreover, IFC has been applied to investigate intracellular survival and differentiation signals triggered by external stimuli, to monitor DNA damage responses such as γH2AX foci formation, and more recently, to detect immune synapse formation among interacting cells within large populations and to analyze these interactions at the molecular level. In hematological malignancies, IFC combined with fluorescence in situ hybridization (FISH) enables high-throughput detection of chromosomal abnormalities, such as BCR-ABL1 translocations. These advances demonstrate that IFC provides not only morphological and functional insights but also clinically relevant genomic information at the single-cell level. By summarizing these unique applications, this review aims to complement existing publications and provide researchers with practical insights into how IFC can be implemented in both basic and translational research. Full article
Show Figures

Figure 1

15 pages, 3123 KB  
Article
Inverse Design of Multi-Wavelength Achromatic Metalens Integrated On-Chip with Planar Waveguide
by Mikhail Podobrii, Elena Barulina and Aleksandr Barulin
Nanomaterials 2025, 15(17), 1337; https://doi.org/10.3390/nano15171337 - 31 Aug 2025
Viewed by 728
Abstract
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical [...] Read more.
Waveguide-integrated metasurfaces offer a promising platform for ultracompact on-chip optical systems, enabling applications such as fluorescence sensing, holography, and near-eye displays. In particular, integrated achromatic metalenses that couple guided modes to free-space radiation are highly desirable for single-molecule fluorescence sensing, where high numerical aperture (NA), efficient light focusing, and consistent focal volume overlap across excitation and emission wavelengths are critical. However, designing integrated high-NA metalenses with multi-wavelength operation remains fundamentally challenging due to the wavelength-dependent propagation of guided modes. Here, we present an inverse design framework that simultaneously optimizes the geometries and positions of silicon nitride nanofins atop a slab waveguide to achieve diffraction-limited focusing at three wavelengths with unity NA. The resulting metalens outperforms conventional segmented designs in focusing efficiency and sidelobe suppression, particularly at wavelengths corresponding to the excitation and emission bands of the model fluorophore Alexa Fluor 647. Numerical analysis shows that the design yields a high molecule detection efficiency suitable for epi-fluorescence single-molecule sensing. This work highlights the potential of inverse-designed metalenses as a versatile on-chip platform for advanced applications in fluorescence spectroscopy, augmented reality, or optical trapping. Full article
Show Figures

Graphical abstract

18 pages, 5972 KB  
Review
Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures
by Renjie Niu, Jintian Shao, Mingnan Wu, Chang Liu and Jie Chao
Biosensors 2025, 15(7), 398; https://doi.org/10.3390/bios15070398 - 20 Jun 2025
Viewed by 1328
Abstract
Single-molecule optical signal detection provides high sensitivity and specificity for the detection of biomolecules and chemical substances, which is of significant importance in fields such as biomedicine, environmental monitoring, and materials science. In recent years, DNA-based plasmonic nanostructures have emerged as powerful tools [...] Read more.
Single-molecule optical signal detection provides high sensitivity and specificity for the detection of biomolecules and chemical substances, which is of significant importance in fields such as biomedicine, environmental monitoring, and materials science. In recent years, DNA-based plasmonic nanostructures have emerged as powerful tools for achieving single-molecule optical signal detection due to their unique self-assembly properties and excellent optical performance. In particular, DNA origami technology enables the precise construction of metallic nanostructures with specific shapes and functions, which can effectively enhance the interaction between light and matter, thereby significantly increasing signal intensity and detection sensitivity. Furthermore, the programmability of DNA not only simplifies the implementation of single-molecule operations but also allows researchers to design and optimize nanostructures according to specific detection requirements. This review will explore the applications of DNA-based plasmonic nanostructures in single-molecule optical signal detection, including surface-enhanced Raman spectroscopy and enhanced fluorescence for single-molecule signal detection. We will analyze their working principles, advantages, current research progress, and future research directions. By summarizing the work in this field, we hope to provide references and insights for researchers, contributing to the advancement of biomedicine and environmental monitoring. Full article
(This article belongs to the Special Issue Advanced Optical Methods for Biosensing)
Show Figures

Figure 1

13 pages, 3110 KB  
Article
Intraoperative Confocal Laser Endomicroscopy Detects Prostate Cancer at the Single-Cell Level with High Specificity and in Real Time: A Preclinical Proof of Concept
by Ann-Christin Eder, Jessica Matthias, Francois Lacombe, Lisa-Charlotte Domogalla, Antoine Jacques, Nils Steinacker, Gaetan Christien, Elodie Martin, Aline Criton and Matthias Eder
Pharmaceuticals 2025, 18(6), 841; https://doi.org/10.3390/ph18060841 - 4 Jun 2025
Viewed by 912
Abstract
In prostate cancer (PCa) surgery, precise tumor margin identification remains challenging despite advances in surgical techniques. This study evaluates the combination of tumor-specific near-infrared imaging with the PSMA-targeting molecule PSMA-914 and optical endomicroscopy (NIR-pCLE) for single-cell-level tumor identification in a preclinical proof of [...] Read more.
In prostate cancer (PCa) surgery, precise tumor margin identification remains challenging despite advances in surgical techniques. This study evaluates the combination of tumor-specific near-infrared imaging with the PSMA-targeting molecule PSMA-914 and optical endomicroscopy (NIR-pCLE) for single-cell-level tumor identification in a preclinical proof of concept. Methods: NIR-pCLE imaging of varying PSMA-914 concentrations was performed on PSMA-positive LNCaP and PSMA-negative PC-3 cells using Cellvizio® 100 with pCLE Confocal Miniprobes™. To identify optimal PSMA-914 dosing for in vivo imaging, different doses (0–10 nmol) were evaluated using NIR-pCLE, Odyssey CLx imaging, and confocal microscopy in an LNCaP tumor-bearing xenograft model. A proof of concept mimicking a clinical workflow was performed using 5 nmol [68Ga]Ga-PSMA-914 in LNCaP and PC-3 tumor xenografts, including PET/MRI, in/ex vivo NIR-pCLE imaging, and microscopic/macroscopic imaging. Results: NIR-pCLE detected PSMA-specific fluorescence at concentrations above 30 nM in vitro. The optimal dose was identified as 5 nmol PSMA-914 for NIR-pCLE imaging with cellular resolution in LNCaP xenografts. PET/MRI confirmed high tumor uptake and a favorable distribution profile of PSMA-914. NIR-pCLE imaging enabled real-time, single-cell-level detection of PSMA-positive tissue, visualizing tumor heterogeneity, confirmed by ex vivo microscopy and imaging. Conclusions: This preclinical proof of concept demonstrates the potential of intraoperative PSMA-specific NIR-pCLE imaging to visualize tissue structures in real time at cellular resolution. Clinical implementation could provide surgeons with valuable additional information, potentially advancing PCa patient care through improved surgical precision. Full article
Show Figures

Graphical abstract

16 pages, 3110 KB  
Article
A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+
by Jiabin Su, Kaixin Chen, Ping Zhou and Nan Li
Molecules 2025, 30(10), 2188; https://doi.org/10.3390/molecules30102188 - 16 May 2025
Viewed by 660
Abstract
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing [...] Read more.
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing and bioimaging. Loading a large amount of Raman molecules with signal in the silent region on the hotspots of the electromagnetic field of the SERS substrate can effectively avoid severe background noise signals and significantly improve the signal intensity, making the sensitivity and specificity of SERS detection remarkably improved. To achieve this goal, a new SERS signal-amplification strategy is herein reported for background-free detection of Cu2+ by using Raman-silent probes loaded on cabbage-like gold microparticles (AuMPs) with high enhancement capabilities and single-particle detection feasibility. In this work, carboxyl-modified AuMPs were used to enable Cu2+ adsorption via electrostatic interactions, followed by ferricyanide coordination with Cu2+ to introduce cyano groups, therefore generating a stable SERS signal with nearly zero background signals owing to the Raman-silent fingerprint of cyano at 2137 cm−1. Based on the signal intensity of cyano groups correlated with Cu2+ concentration resulting from the specific coordination between Cu2+ and cyanide, a novel SERS method for Cu2+ detection with high sensitivity and selectivity is proposed. It is noted that benefiting from per ferricyanide possessing six cyano groups, the established method with the advantage of signal amplification can significantly enhance the sensing sensitivity beyond conventional approaches. Experimental results demonstrated this SERS sensor possesses significant merits towards the determination of Cu2+ in terms of high selectivity, broad linear range from 1 nM to 1 mM, and low limit of detection (0.1 nM) superior to other reported colorimetric, fluorescence, and electrochemical methods. Moreover, algorithm data processing for optimization of SERS original data was further used to improve the SERS signal reliability. As the proof-of-concept demonstrations, this work paves the way for improving SERS sensing capability through the silent-range fingerprint and signal amplification strategy, and reveals SERS as an effective tool for trace detection in complex biological and environmental matrices. Full article
Show Figures

Figure 1

23 pages, 2993 KB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Cited by 2 | Viewed by 981
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

33 pages, 4183 KB  
Review
Recent Advances on Fluorescent Sensors for Detection of Pathogenic Bacteria
by Xu Tang, Qi Qi, Binrong Li, Zhi Zhu, Jian Lu and Lei Liu
Chemosensors 2025, 13(5), 182; https://doi.org/10.3390/chemosensors13050182 - 13 May 2025
Viewed by 4037
Abstract
Pathogenic bacteria are one of the main causes of diseases and have become an important public health problem threatening human health and socio-economic development. Therefore, it is particularly important to develop an efficient and convenient detection method. Fluorescence detection has become a highly [...] Read more.
Pathogenic bacteria are one of the main causes of diseases and have become an important public health problem threatening human health and socio-economic development. Therefore, it is particularly important to develop an efficient and convenient detection method. Fluorescence detection has become a highly concerned analytical technology, which has gradually emerged in the aspect of pathogen detection, and is favored by researchers. In this review, we summarized a series of sensing strategies for pathogen detection based on fluorescence response signals in recent years, including single molecule fluorescent probes, biosensors, nanocomposite sensors and strategies for integrating different recognition elements with nanomaterials, along with the advantages and disadvantages of various design strategies. Based on the existing research reports, the existing problems and future research challenges of fluorescent sensor technology are proposed. Full article
Show Figures

Figure 1

24 pages, 4460 KB  
Review
Advancements in Single-Molecule Fluorescence Detection Techniques and Their Expansive Applications in Drug Discovery and Neuroscience
by Jing Yan, Lin Cheng, Yitong Li, Ru Wang and Jie Wang
Biosensors 2025, 15(5), 283; https://doi.org/10.3390/bios15050283 - 30 Apr 2025
Cited by 1 | Viewed by 1863
Abstract
Single-molecule fluorescence technology stands at the forefront of scientific research as a sophisticated tool, pushing the boundaries of our understanding. This review comprehensively summarizes the technological advancements in single-molecule fluorescence detection, highlighting the latest achievements in the development of single-molecule fluorescent probes, imaging [...] Read more.
Single-molecule fluorescence technology stands at the forefront of scientific research as a sophisticated tool, pushing the boundaries of our understanding. This review comprehensively summarizes the technological advancements in single-molecule fluorescence detection, highlighting the latest achievements in the development of single-molecule fluorescent probes, imaging systems, and biosensors. It delves into the applications of these cutting-edge tools in drug discovery and neuroscience research, encompassing the design and monitoring of complex drug delivery systems, the elucidation of pharmacological mechanisms and pharmacokinetics, the intricacies of neuronal signaling and synaptic function, and the molecular underpinnings of neurodegenerative diseases. The exceptional sensitivity demonstrated in these applications underscores the vast potential of single-molecule fluorescence technology in modern biomedical research, heralding its expansion into other scientific domains. Full article
(This article belongs to the Special Issue Advanced Fluorescence Biosensors)
Show Figures

Figure 1

16 pages, 2897 KB  
Article
Ultrasensitive CRISPR/Cas12a-Based System for Detection of BlaOXA-1 Gene in Antibiotic-Resistant Microorganisms
by Marina Tyumentseva, Aleksandr Tyumentsev, Anna Prelovskaya, Andrey Akinin, Yulia Mikhailova, Andrey Shelenkov, Anna Panevina and Vasiliy Akimkin
Curr. Issues Mol. Biol. 2025, 47(4), 238; https://doi.org/10.3390/cimb47040238 - 29 Mar 2025
Cited by 2 | Viewed by 1052
Abstract
The blaOXA-1 gene encodes an oxacillin-hydrolyzing beta-lactamase of extended-spectrum beta-lactamase (ESBL)-producing microorganisms. The blaOXA-1 gene is found in the resistomes of some Enterobacteriaceae, Morganellaceae, Pasteurellaceae, Moraxellaceae, Aeromonadaceae, Pseudomonadaceae, Yersiniaceae, and Vibrionaceae. Most ESBL [...] Read more.
The blaOXA-1 gene encodes an oxacillin-hydrolyzing beta-lactamase of extended-spectrum beta-lactamase (ESBL)-producing microorganisms. The blaOXA-1 gene is found in the resistomes of some Enterobacteriaceae, Morganellaceae, Pasteurellaceae, Moraxellaceae, Aeromonadaceae, Pseudomonadaceae, Yersiniaceae, and Vibrionaceae. Most ESBL detection methods, including those to detect OXA-1-producing microorganisms, are time-consuming, and require specialized equipment and qualified personnel. Here, we report a new CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas12a-based detection assay coupled with polymerase chain reaction (PCR) to sensitively detect OXA-1-bearing microorganisms. The PCR-coupled CRISPR/Cas12a-based fluorescence assay includes (i) a pre-amplification step and (ii) a nucleic acid detection step. The pre-amplification step is based on a commonly used PCR, and the detection step is based on the CRISPR/Cas12a property to nonspecifically hydrolyze single-stranded DNA fluorescent reporter molecules. The pre-amplification step takes 65 min, and the detection step is shortened and takes only 5 min. The developed assay can easily detect single (1.25) copies of the blaOXA-1 gene in a reaction and is efficient not only in the detection of a blaOXA-1 model matrix but also in the detection of blaOXA-1-positive microorganisms. We hope that our assay has the potential to improve the monitoring of OXA-1-producing microorganisms and therefore contribute to mitigating the deadly global threat of antibiotic-resistant microorganisms. Full article
Show Figures

Figure 1

13 pages, 3304 KB  
Article
Using Nano-Luciferase Binary (NanoBiT) Technology to Assess the Interaction Between Viral Spike Protein and Angiotensin-Converting Enzyme II by Aptamers
by Meng-Wei Lin, Cheng-Han Lin, Hua-Hsin Chiang, Irwin A. Quintela, Vivian C. H. Wu and Chih-Sheng Lin
BioTech 2025, 14(1), 20; https://doi.org/10.3390/biotech14010020 - 15 Mar 2025
Viewed by 1588
Abstract
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is [...] Read more.
Nano-luciferase binary technology (NanoBiT)-based pseudoviral sensors are innovative tools for monitoring viral infection dynamics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells via its trimeric surface spike protein, which binds to the human angiotensin-converting enzyme II (hACE2) receptor. This interaction is crucial for viral entry and serves as a key target for therapeutic interventions against coronavirus disease 2019 (COVID-19). Aptamers, short single-stranded DNA (ssDNA) or RNA molecules, are highly specific, high-affinity biorecognition elements for detecting infective pathogens. Despite their potential, optimizing viral infection assays using traditional protein–protein interaction (PPI) methods often face challenges in optimizing viral infection assays. In this study, we selected and evaluated aptamers for their ability to interact with viral proteins, enabling the dynamic visualization of infection progression. The NanoBiT-based pseudoviral sensor demonstrated a rapid increase in luminescence within 3 h, offering a real-time measure of viral infection. A comparison of detection technologies, including green fluorescent protein (GFP), luciferase, and NanoBiT technologies for detecting PPI between the pseudoviral spike protein and hACE2, highlighted NanoBiT’s superior sensitivity and performance, particularly in aptamer selection. This bioluminescent system provides a robust, sensitive, and early-stage quantitative approach to studying viral infection dynamics. Full article
Show Figures

Figure 1

23 pages, 7697 KB  
Review
Recent Advances in Aptamer-Based Microfluidic Biosensors for the Isolation, Signal Amplification and Detection of Exosomes
by Jessica Hu and Dan Gao
Sensors 2025, 25(3), 848; https://doi.org/10.3390/s25030848 - 30 Jan 2025
Cited by 8 | Viewed by 3917
Abstract
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical [...] Read more.
Exosomes carry diverse tumor-associated molecular information that can reflect real-time tumor progression, making them a promising tool for liquid biopsy. However, traditional methods for exosome isolation and detection often rely on large, expensive equipment and are time-consuming, limiting their practical applicability in clinical settings. Microfluidic technology offers a versatile platform for exosome analysis, with advantages such as seamless integration, portability and reduced sample volumes. Aptamers, which are single-stranded oligonucleotides with high affinity and specificity for target molecules, have been frequently employed in the development of aptamer-based microfluidics for the isolation, signal amplification, and quantitative detection of exosomes. This review summarizes recent advances in aptamer-based microfluidic strategies for exosome analysis, including (1) strategies for on-chip exosome capture mediated by aptamers combined with nanomaterials or nanointerfaces; (2) aptamer-based on-chip signal amplification techniques, such as enzyme-free hybridization chain reaction (HCR), rolling circle amplification (RCA), and DNA machine-assisted amplification; and (3) various aptamer-assisted detection methods, such as fluorescence, electrochemistry, surface-enhanced Raman scattering (SERS), and magnetism. The limitations and advantages of these methods are also summarized. Finally, future challenges and directions for the clinical analysis of exosomes based on aptamer-based microfluidics are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

18 pages, 2344 KB  
Review
The Research Progress of Single-Molecule Sequencing and Its Significance in Nucleic Acid Metrology
by Yajun Wang, Jingjing Liu, Zhendong Wang, Mei Zhang and Yongzhuo Zhang
Biosensors 2025, 15(1), 4; https://doi.org/10.3390/bios15010004 - 25 Dec 2024
Viewed by 2681
Abstract
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, [...] Read more.
Single-molecule sequencing technology, a novel method for gene sequencing, utilizes nano-sized materials to detect electrical and fluorescent signals. Compared to traditional Sanger sequencing and next-generation sequencing technologies, it offers significant advantages, including ultra-long read lengths, rapid sequencing, and the absence of amplification steps, making it widely applicable across various fields. By examining the development and components of single-molecule sequencing technology, it becomes clear that its unique characteristics provide new opportunities for advancing metrological traceability. Notably, its direct detection capabilities offer a novel approach to nucleic acid metrology. This paper provides a detailed overview of library construction, signal generation and detection, and data analysis methods in single-molecule sequencing and discusses its implications for nucleic acid metrology. Full article
(This article belongs to the Special Issue Micro-nano Optic-Based Biosensing Technology and Strategy)
Show Figures

Figure 1

32 pages, 8535 KB  
Review
Nanopipettes as a Potential Diagnostic Tool for Selective Nanopore Detection of Biomolecules
by Regina M. Kuanaeva, Alexander N. Vaneev, Petr V. Gorelkin and Alexander S. Erofeev
Biosensors 2024, 14(12), 627; https://doi.org/10.3390/bios14120627 - 19 Dec 2024
Cited by 3 | Viewed by 2965
Abstract
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for [...] Read more.
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples. Moreover, the ease of manufacturing nanopipettes, coupled with their compatibility with fluorescence and electrochemical methods, makes them ideal for portable point-of-care diagnostic devices. This review summarized the latest progress in nanopipette-based nanopore technology for the detection of biomarkers, DNA, RNA, proteins, and peptides, in particular β-amyloid or α-synuclein, emphasizing the impact of technology on molecular diagnostics. By addressing key challenges in single-molecule detection and expanding applications in diverse biological areas, nanopipettes are poised to play a transformative role in the future of personalized medicine. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

11 pages, 6735 KB  
Article
Dual-Wavelength On-Chip Integrated Metalens for Epi-Fluorescence Single-Molecule Sensing
by Elena Barulina, Dang Du Nguyen, Fedor Shuklin, Mikhail Podobrii, Sergey Novikov, Alexander Chernov, Inki Kim and Aleksandr Barulin
Sensors 2024, 24(23), 7781; https://doi.org/10.3390/s24237781 - 5 Dec 2024
Cited by 2 | Viewed by 2018
Abstract
Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical [...] Read more.
Single-molecule fluorescence spectroscopy offers unique capabilities for the low-concentration sensing and probing of molecular dynmics. However, employing such a methodology for versatile sensing and diagnostics under point-of-care demands device miniaturization to lab-on-a-chip size. In this study, we numerically design metalenses with high numerical aperture (NA = 1.1), which are composed of silicon nitride nanostructures deposited on a waveguide and can selectively focus guided light into an aqueous solution at two wavelengths of interest in the spectral range of 500–780 nm. Despite the severe chromatic focal shift in the lateral directions owing to the wavelength-dependent propagation constant in a waveguide, segmented on-chip metalenses provide perfectly overlapping focal volumes that meet the requirements for epi-fluorescence light collection. We demonstrate that the molecule detection efficiencies of metalenses designed for the excitation and emission wavelengths of ATTO 490LS, Alexa 555, and APC-Cy7 tandem fluorophores are sufficient to collect several thousand photons per second per molecule at modest excitation rate constants. Such sensitivity provides reliable diffusion fluorescence correlation spectroscopy analysis of single molecules on a chip to extract their concentration and diffusion properties in the nanomolar range. Achromatic on-chip metalenses open new avenues for developing ultra-compact and sensitive devices for precision medicine and environmental monitoring. Full article
Show Figures

Figure 1

23 pages, 6163 KB  
Review
Recent Advance in Single-Molecule Fluorescent Biosensors for Tumor Biomarker Detection
by Jie Zhang, Jiawen Liu, Lixue Qiao, Qian Zhang, Juan Hu and Chun-yang Zhang
Biosensors 2024, 14(11), 540; https://doi.org/10.3390/bios14110540 - 7 Nov 2024
Cited by 1 | Viewed by 2941
Abstract
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, [...] Read more.
The construction of biosensors for specific, sensitive, and rapid detection of tumor biomarkers significantly contributes to biomedical research and early cancer diagnosis. However, conventional assays often involve large sample consumption and poor sensitivity, limiting their further application in real samples. In recent years, single-molecule biosensing has emerged as a robust tool for detecting and characterizing biomarkers due to its unique advantages including simplicity, low sample consumption, ultra-high sensitivity, and rapid assay time. This review summarizes the recent advances in the construction of single-molecule biosensors for the measurement of various tumor biomarkers, including DNAs, DNA modifications, RNAs, and enzymes. We give a comprehensive review about the working principles and practical applications of these single-molecule biosensors. Additionally, we discuss the challenges and limitations of current single-molecule biosensors, and highlight the future directions. Full article
(This article belongs to the Special Issue Single-Molecule Biosensing: Recent Advances and Future Challenges)
Show Figures

Figure 1

Back to TopTop