Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures
Abstract
:1. Introduction
2. DNA Nanostructures
3. DNA-Based Single-Molecule SERS Detection
4. DNA-Based Single-Molecule Fluorescence Enhancement Detection
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Cordes, T.; Blum, S.A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 2013, 5, 993–999. [Google Scholar] [CrossRef]
- Huang, C.; Jevric, M.; Borges, A.; Olsen, S.T.; Hamill, J.M.; Zheng, J.T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhou, X.; Shen, H.; Andoy, N.M.; Choudhary, E.; Han, K.S.; Liu, G.; Meng, W. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 2010, 39, 4560–4570. [Google Scholar] [CrossRef]
- Nesvorny, D.; Bottke, W.F., Jr.; Dones, L.; Levison, H.F. The recent breakup of an asteroid in the main-belt region. Nature 2002, 417, 720–771. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Huang, L.; Sangtarash, S.; Noori, M.; Sadeghi, H.; Xia, H.; Hong, W. Reversible switching between destructive and constructive quantum interference using atomically precise chemical gating of single-molecule junctions. J. Am. Chem. Soc. 2021, 143, 9385–9392. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Wang, B.; Zhao, C.; Huo, Y.; Wang, J.; Jia, C.; Guo, X. Multiple-channel and symmetry-breaking effects on molecular conductance via side substituents. Sci. China Mater. 2024, 67, 1994–1999. [Google Scholar] [CrossRef]
- Glembockyte, V.; Grabenhorst, L.; Trofymchuk, K.; Tinnefeld, P. DNA origami nanoantennas for fluorescence enhancement. Acc. Chem. Res. 2021, 54, 3338–3348. [Google Scholar] [CrossRef]
- El-Khoury, P.Z.; Abellan, P.; Chantry, R.L.; Gong, Y.; Joly, A.G.; Novikova, I.V.; Evans, J.E.; Aprà, E.; Hu, D.; Ramasse, Q.M.; et al. The information content in single-molecule Raman nanoscopy. Adv. Phys. X 2016, 1, 35–54. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, Z.; Zhao, C.; Wang, Z.; Huo, Y.; Xiang, D.; Jia, C.; Guo, X. Single-molecule characterization from the perspective of optics, photonics, and optoelectronics: A review. Adv. Photonics 2024, 6, 064002. [Google Scholar] [CrossRef]
- Karim, F.; Smith, T.B.; Zhao, C. Review of optical detection of single molecules beyond the diffraction and diffusion limit using plasmonic nanostructures. J. Nanophotonics 2017, 12, 012504. [Google Scholar] [CrossRef]
- Qiu, Y.; Kuang, C.; Liu, X.; Tang, L. Single-molecule surface-enhanced Raman spectroscopy. Sensors 2022, 22, 4889. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Xiao, T.-H.; Wu, Y.; Li, W.; Zeng, Q.-G.; Long, L.; Li, Z.-Y. Roadmap for single-molecule surface-enhanced Raman spectroscopy. Adv. Photonics 2020, 2, 014002. [Google Scholar] [CrossRef]
- Zrimsek, A.B.; Chiang, N.; Mattei, M.; Zaleski, S.; McAnally, M.O.; Chapman, C.T.; Henry, A.I.; Schatz, G.C.; Van Duyne, R.P. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 2017, 117, 7583–7613. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Mickert, M.J.; Pastucha, M.; Mikusova, Z.; Skladal, P.; Gorris, H.H. Advances in optical single-molecule detection: En route to supersensitive bioaffinity assays. Angew. Chem. Int. Ed. 2020, 59, 10746–10773. [Google Scholar] [CrossRef]
- Akkilic, N.; Geschwindner, S.; Hook, F. Single-molecule biosensors: Recent advances and applications. Biosens. Bioelectron. 2020, 151, 111944. [Google Scholar] [CrossRef]
- Dey, S.; Dolci, M.; Zijlstra, P. Single-molecule optical biosensing: Recent advances and future challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef]
- Subramanian, S.; Wu, H.Y.; Constant, T.; Xavier, J.; Vollmer, F. Label-free optical single-molecule micro- and nanosensors. Adv. Mater. 2018, 30, 1801246. [Google Scholar] [CrossRef]
- Taylor, A.B.; Zijlstra, P. Single-molecule plasmon sensing: Current status and future prospects. ACS Sens. 2017, 2, 1103–1122. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, C.J. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc. Chem. Res. 2017, 50, 22–31. [Google Scholar] [CrossRef]
- Yin, K.; Zeng, X.; Liang, X.; Wei, H.; Zeng, H.; Qi, W.; Ruan, W.; Song, Y.; Yang, C.; Zhu, Z. Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. Sci. China Chem. 2020, 63, 1507–1514. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, Y.; Chen, Y.; Shao, Y.; Feng, J. Etching-engineered low-voltage dielectrophoretic nanotweezers for trapping of single molecules. Anal. Chem. 2021, 93, 12549–12555. [Google Scholar] [CrossRef]
- Ou, J.; Tan, H.; Chen, X.; Chen, Z. DNA-assisted assembly of gold nanostructures and their induced optical properties. Nanomaterials 2018, 8, 994. [Google Scholar] [CrossRef]
- Wang, P.F.; Huh, J.H.; Lee, J.; Kim, K.; Park, K.J.; Lee, S.; Ke, Y. Magnetic plasmon networks programmed by molecular self-assembly. Adv. Mater. 2019, 31, 1901364. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Du, J.; He, W.; Liu, B.; Chao, J. DNA-based plasmonic nanostructures with tailored optical responses. Nano Res. 2025, 18, 94907197. [Google Scholar] [CrossRef]
- Zhou, C.; Duan, X.Y.; Liu, N. DNA-nanotechnology-enabled chiral plasmonics: From static to dynamic. Acc. Chem. Res. 2017, 50, 2906–2914. [Google Scholar] [CrossRef]
- Tapio, K.; Mostafa, A.; Kanehira, Y.; Suma, A.; Dutta, A.; Bald, I. A versatile DNA origami-based plasmonic nanoantenna for label-free single-molecule surface-enhanced Raman spectroscopy. ACS Nano 2021, 15, 7065–7077. [Google Scholar] [CrossRef] [PubMed]
- Kaminska, I.; Bohlen, J.; Mackowski, S.; Tinnefeld, P.; Acuna, G.P. Strong plasmonic enhancement of a single peridinin-chlorophyll a-protein complex on DNA origami-based optical antennas. ACS Nano 2018, 12, 1650–1655. [Google Scholar] [CrossRef] [PubMed]
- Seeman, N.C. Nucleic acid junctions and lattices. J. Theor. Biol. 1982, 99, 237–247. [Google Scholar] [CrossRef]
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef]
- Berengut, J.F.; Berengut, J.C.; Doye, J.P.K.; Presern, D.; Kawamoto, A.; Ruan, J.; Wainwright, M.J.; Lee, L.K. Design and synthesis of pleated DNA origami nanotubes with adjustable diameters. Nucleic Acids Res. 2019, 47, 11963–11975. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.R.; Berengut, J.F.; Bai, C.; Wimberger, L.; Lee, L.K.; Rizzuto, F.J. Light-activated assembly of DNA origami into dissipative fibrils. Angew. Chem. Int. Ed. 2023, 62, e202314458. [Google Scholar] [CrossRef] [PubMed]
- Centola, M.; Poppleton, E.; Ray, S.; Centola, M.; Welty, R.; Valero, J.; Walter, N.G.; Sulc, P.; Famulok, M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. Nat. Nanotechnol. 2024, 19, 226–236. [Google Scholar] [CrossRef]
- Cole, F.; Pfeiffer, M.; Wang, D.; Schroder, T.; Ke, Y.; Tinnefeld, P. Controlled mechanochemical coupling of anti-junctions in DNA origami arrays. Nat. Commun. 2024, 15, 7894. [Google Scholar] [CrossRef]
- Ermatov, A.; Kost, M.; Yin, X.; Butler, P.; Dass, M.; Sharp, I.D.; Liedl, T.; Bein, T.; Posnjak, G. Fabrication of functional 3D nanoarchitectures via atomic layer deposition on DNA origami crystals. J. Am. Chem. Soc. 2025, 147, 9519–9527. [Google Scholar] [CrossRef]
- Fu, D.; Pradeep Narayanan, R.; Prasad, A.; Zhang, F.; Williams, D.; Schreck, J.S.; Yan, H.; Reif, J. Automated design of 3D DNA origami with non-rasterized 2D curvature. Sci. Adv. 2022, 8, eade4455. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, H.; Wang, H.; Xie, Y.; Shang, Y.; Wu, Y.; Guo, X.; Yu, S.; Li, N.; Ding, B. A DNA origami-based enzymatic cascade nanoreactor for chemodynamic cancer therapy and activation of antitumor immunity. Sci. Adv. 2025, 11, eadr9196. [Google Scholar] [CrossRef]
- Kosuri, P.; Altheimer, B.D.; Dai, M.; Yin, P.; Zhuang, X. Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature 2019, 572, 136–140. [Google Scholar] [CrossRef]
- Sarraf, N.; Rodriguez, K.R.; Qian, L. Modular reconfiguration of DNA origami assemblies using tile displacement. Sci. Robot. 2023, 8, eadf1511. [Google Scholar] [CrossRef]
- Schreiber, R.; Do, J.; Roller, E.M.; Zhang, T.; Schuller, V.J.; Nickels, P.C.; Feldmann, J.; Liedl, T. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 2014, 9, 74–78. [Google Scholar] [CrossRef]
- Seitz, I.; Saarinen, S.; Wierzchowiecka, J.; Kumpula, E.P.; Shen, B.; Cornelissen, J.; Linko, V.; Huiskonen, J.T.; Kostiainen, M.A. Folding of mRNA-DNA origami for controlled translation and viral vector packaging. Adv. Mater. 2025, 37, 2417642. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, G.; Franquelim, H.G.; Schwille, P. Engineering modular enzymes using DNA origami. Nat. Nanotechnol. 2024, 19, 1440–1441. [Google Scholar]
- Akbari, E.; Mollica, M.Y.; Lucas, C.R.; Bushman, S.M.; Patton, R.A.; Shahhosseini, M.; Song, J.W.; Castro, C.E. Engineering cell surface function with DNA origami. Adv. Mater. 2017, 29, 1703632. [Google Scholar] [CrossRef]
- Al Abdullatif, S. Dots: DNA origami tension sensors for studying T cell mechanobiology. Nat. Rev. Immunol. 2025, 25, 231. [Google Scholar] [CrossRef]
- Bian, X.; Zhang, Z.; Xiong, Q.; De Camilli, P.; Lin, C. A programmable DNA-origami platform for studying lipid transfer between bilayers. Nat. Chem. Biol. 2019, 15, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Buber, E.; Yaadav, R.; Schroder, T.; Franquelim, H.G.; Tinnefeld, P. DNA origami vesicle sensors with triggered single-molecule cargo transfer. Angew. Chem. Int. Ed. 2024, 63, e202408295. [Google Scholar] [CrossRef]
- Wang, M. DNA origami scavenges ROS in the kidney. Nat. Rev. Nephrol. 2019, 15, 61. [Google Scholar] [CrossRef]
- Douglas, T.R.; Alexander, S.; Chou, L.Y.T. Patterned antigens on DNA origami controls the structure and cellular uptake of immune complexes. ACS Nano 2025, 19, 621–637. [Google Scholar] [CrossRef]
- Fan, S.; Ji, B.; Liu, Y.; Zou, K.; Tian, Z.; Dai, B.; Cui, D.; Zhang, P.; Ke, Y.; Song, J. Spatiotemporal control of molecular cascade reactions by a reconfigurable DNA origami domino array. Angew. Chem. Int. Ed. 2022, 61, e202116324. [Google Scholar] [CrossRef]
- Hu, Y.; Rogers, J.; Duan, Y.; Velusamy, A.; Narum, S.; Al Abdullatif, S.; Salaita, K. Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors. Nat. Nanotechnol. 2024, 19, 1674–1685. [Google Scholar] [CrossRef]
- Huang, J.; Jaekel, A.; van den Boom, J.; Podlesainski, D.; Elnaggar, M.; Heuer-Jungemann, A.; Kaiser, M.; Meyer, H.; Sacca, B. A modular DNA origami nanocompartment for engineering a cell-free, protein unfolding and degradation pathway. Nat. Nanotechnol. 2024, 19, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Shang, Y.; Xie, Y.; Ding, B. DNA origami: From molecular folding art to drug delivery technology. Adv. Mater. 2024, 36, 2301035. [Google Scholar] [CrossRef]
- Xin, L.; Zhou, C.; Duan, X.; Liu, N. A rotary plasmonic nanoclock. Nat. Commun. 2019, 10, 5394. [Google Scholar] [CrossRef]
- Pumm, A.-K.; Engelen, W.; Kopperger, E.; Isensee, J.; Vogt, M.; Kozina, V.; Kube, M.; Honemann, M.N.; Bertosin, E.; Langecker, M.; et al. A DNA origami rotary ratchet motor. Nature 2022, 607, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Seitz, I.; Saarinen, S.; Kumpula, E.-P.; McNeale, D.; Anaya-Plaza, E.; Lampinen, V.; Hytönen, V.P.; Sainsbury, F.; Cornelissen, J.J.L.M.; Linko, V.; et al. DNA-origami-directed virus capsid polymorphism. Nat. Nanotechnol. 2023, 18, 1205–1212. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, Y.; Ling, Y.; Chen, Z.; Wu, X.; Lu, X.; He, Y.; Wang, H.; Dong, F. A dual-response DNA origami platform for imaging and treatment of sepsis-associated acute kidney injury. Adv. Sci. 2025, 12, 2416330. [Google Scholar] [CrossRef]
- Lim, D.K.; Jeon, K.S.; Kim, H.M.; Nam, J.M.; Suh, Y.D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67. [Google Scholar] [CrossRef]
- Lee, K.; Irudayaraj, J. Correct spectral conversion between surface-enhanced Raman and plasmon resonance scattering from nanoparticle dimers for single-molecule detection. Small 2013, 9, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zheng, P.; Zhang, C.; Barman, I. A programmable DNA-silicification-based nanocavity for single-molecule plasmonic sensing. Adv. Mater. 2021, 33, 2005133. [Google Scholar] [CrossRef]
- Lee, H.; Lee, J.H.; Jin, S.M.; Suh, Y.D.; Nam, J.M. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Nano Lett. 2013, 13, 6113–6121. [Google Scholar] [CrossRef]
- Lee, H.M.; Lee, J.H.; Kim, H.M.; Jin, S.M.; Park, H.S.; Nam, J.M.; Suh, Y.D. High-precision measurement-based correlation studies among atomic force microscopy, rayleigh scattering, and surface-enhanced Raman scattering at the single-molecule level. Phys. Chem. Chem. Phys. 2013, 15, 4243–4249. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; You, M.H.; Kim, G.H.; Nam, J.M. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Nano Lett. 2014, 14, 6217–6225. [Google Scholar] [CrossRef]
- Lee, J.H.; Nam, J.M.; Jeon, K.S.; Lim, D.K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y.D. Tuning and maximizing the single-molecule surface-enhanced Raman scattering from DNA-tethered nanodumbbells. ACS Nano 2012, 6, 9574–9584. [Google Scholar] [CrossRef]
- Lee, H.; Kim, G.H.; Lee, J.H.; Kim, N.H.; Nam, J.M.; Suh, Y.D. Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries. Nano Lett. 2015, 15, 4628–4636. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, J.; Dugasani, S.R.; Huh, N.; Park, S.H.; Park, S.C. Surface enhanced Raman scattering based molecule detection using self-assembled DNA nanostructures. Curr. Appl. Phys. 2015, 15, 1032–1035. [Google Scholar] [CrossRef]
- Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity. Nanoscale 2016, 8, 5612–5620. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; Turek, V.A.; Lin, Q.; Griffiths, J.; de Nijs, B.; Keyser, U.F.; Baumberg, J.J. Dynamics of deterministically positioned single-bond surface-enhanced Raman scattering from DNA origami assembled in plasmonic nanogaps. J. Raman Spectrosc. 2020, 52, 348–354. [Google Scholar] [CrossRef]
- Prinz, J.; Schreiber, B.; Olejko, L.; Oertel, J.; Rackwitz, J.; Keller, A.; Bald, I. DNA origami substrates for highly sensitive surface-enhanced Raman scattering. J. Phys. Chem. Lett. 2013, 4, 4140–4145. [Google Scholar] [CrossRef]
- Kuhler, P.; Roller, E.M.; Schreiber, R.; Liedl, T.; Lohmuller, T.; Feldmann, J. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett. 2014, 14, 2914–2919. [Google Scholar] [CrossRef]
- Simoncelli, S.; Roller, E.M.; Urban, P.; Schreiber, R.; Turberfield, A.J.; Liedl, T.; Lohmuller, T. Quantitative single-molecule surface-enhanced Raman scattering by optothermal tuning of DNA origami-assembled plasmonic nanoantennas. ACS Nano 2016, 10, 9809–9815. [Google Scholar] [CrossRef]
- Thacker, V.V.; Herrmann, L.O.; Sigle, D.O.; Zhang, T.; Liedl, T.; Baumberg, J.J.; Keyser, U.F. DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nat. Commun. 2014, 5, 3448. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Song, C.; Gao, F.; Fang, W.; Jiang, X.; Ren, S.; Zhu, D.; Su, S.; Chao, J.; Chen, S.; et al. DNA origami-based nanoprinting for the assembly of plasmonic nanostructures with single-molecule surface-enhanced raman scattering. Angew. Chem. Int. Ed. 2021, 60, 11695–11701. [Google Scholar] [CrossRef]
- Kanehira, Y.; Tapio, K.; Wegner, G.; Kogikoski, S., Jr.; Rustig, S.; Prietzel, C.; Busch, K.; Bald, I. The effect of nanoparticle composition on the surface-enhanced Raman scattering performance of plasmonic DNA origami nanoantennas. ACS Nano 2023, 17, 21227–21239. [Google Scholar] [CrossRef]
- Tanwar, S.; Haldar, K.K.; Sen, T. DNA origami directed au nanostar dimers for single-molecule surface-enhanced Raman scattering. J. Am. Chem. Soc. 2017, 139, 17639–17648. [Google Scholar] [CrossRef] [PubMed]
- Zhan, P.; Wen, T.; Wang, Z.G.; He, Y.; Shi, J.; Wang, T.; Liu, X.; Lu, G.; Ding, B. DNA origami directed assembly of gold bowtie nanoantennas for single-molecule surface-enhanced raman scattering. Angew. Chem. Int. Ed. 2018, 57, 2846–2850. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Gao, F.; Wang, D.; Zhu, D.; Su, S.; Chen, S.; YuWen, L.; Fan, C.; Wang, L.; Chao, J. Pattern recognition directed assembly of plasmonic gap nanostructures for single-molecule SERS. ACS Nano 2022, 16, 14622–14631. [Google Scholar] [CrossRef]
- Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses. Angew. Chem. Int. Ed. 2018, 57, 7444–7447. [Google Scholar] [CrossRef]
- Fang, W.; Jia, S.; Chao, J.; Wang, L.; Duan, X.; Liu, H.; Li, Q.; Zuo, X.; Wang, L.; Wang, L.; et al. Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. Sci. Adv. 2019, 5, eaau4506. [Google Scholar] [CrossRef]
- Heck, C.; Kanehira, Y.; Kneipp, J.; Bald, I. Amorphous carbon generation as a photocatalytic reaction on DNA-assembled gold and silver nanostructures. Molecules 2019, 24, 2324. [Google Scholar] [CrossRef]
- Tanwar, S.; Kaur, V.; Kaur, G.; Sen, T. Broadband SERS enhancement by DNA origami assembled bimetallic nanoantennas with label-free single protein sensing. J. Phys. Chem. Lett. 2021, 12, 8141–8150. [Google Scholar] [CrossRef]
- Dutta, A.; Tapio, K.; Suma, A.; Mostafa, A.; Kanehira, Y.; Carnevale, V.; Bussi, G.; Bald, I. Molecular states and spin crossover of hemin studied by DNA origami enabled single-molecule surface-enhanced Raman scattering. Nanoscale 2022, 14, 16467–16478. [Google Scholar] [CrossRef] [PubMed]
- Schuknecht, F.; Kolataj, K.; Steinberger, M.; Liedl, T.; Lohmueller, T. Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment. Nat. Commun. 2023, 14, 7192. [Google Scholar] [CrossRef]
- Kaur, C.; Kaur, V.; Rai, S.; Sharma, M.; Sen, T. Selective recognition of the amyloid marker single thioflavin t using DNA origami-based gold nanobipyramid nanoantennas. Nanoscale 2023, 15, 6170–6178. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Dutta, P.; Wang, H.; Deng, Z.; Zou, S.; Yan, H.; Liu, Y. Quantum efficiency modification of organic fluorophores using gold nanoparticles on DNA origami scaffolds. J. Phys. Chem. C 2013, 117, 12735–12744. [Google Scholar] [CrossRef]
- Vietz, C.; Lalkens, B.; Acuna, G.P.; Tinnefeld, P. Functionalizing large nanoparticles for small gaps in dimer nanoantennas. New J. Phys. 2016, 18, 045012. [Google Scholar] [CrossRef]
- Vietz, C.; Kaminska, I.; Sanz Paz, M.; Tinnefeld, P.; Acuna, G.P. Broadband fluorescence enhancement with self-assembled silver nanoparticle optical antennas. ACS Nano 2017, 11, 4969–4975. [Google Scholar] [CrossRef]
- Hubner, K.; Pilo-Pais, M.; Selbach, F.; Liedl, T.; Tinnefeld, P.; Stefani, F.D.; Acuna, G.P. Directing single-molecule emission with DNA origami-assembled optical antennas. Nano Lett. 2019, 19, 6629–6634. [Google Scholar] [CrossRef]
- Grabenhorst, L.; Trofymchuk, K.; Steiner, F.; Glembockyte, V.; Tinnefeld, P. Fluorophore photostability and saturation in the hotspot of DNA origami nanoantennas. Methods Appl. Fluoresc. 2020, 8, 024003. [Google Scholar] [CrossRef] [PubMed]
- Schedlbauer, J.; Wilhelm, P.; Grabenhorst, L.; Federl, M.E.; Lalkens, B.; Hinderer, F.; Scherf, U.; Hoger, S.; Tinnefeld, P.; Bange, S.; et al. Ultrafast single-molecule fluorescence measured by femtosecond double-pulse excitation photon antibunching. Nano Lett. 2020, 20, 1074–1079. [Google Scholar] [CrossRef]
- Close, C.; Trofymchuk, K.; Grabenhorst, L.; Lalkens, B.; Glembockyte, V.; Tinnefeld, P. Maximizing the accessibility in DNA origami nanoantenna plasmonic hotspots. Adv. Mater. Interfaces 2022, 9, 2200255. [Google Scholar] [CrossRef]
- Yaadav, R.; Trofymchuk, K.; Gong, F.; Ji, X.; Steiner, F.; Tinnefeld, P.; He, Z. Broad-band fluorescence enhancement of QDs captured in the hotspot of DNA origami nanonantennas. J. Phys. Chem. C 2024, 128, 9154–9160. [Google Scholar] [CrossRef]
- Acuna, G.P.; Moller, F.M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 2012, 338, 506–510. [Google Scholar] [CrossRef]
- Acuna, G.P.; Holzmeister, P.; Moller, F.M.; Beater, S.; Lalkens, B.; Tinnefeld, P. DNA-templated nanoantennas for single-molecule detection at elevated concentrations. J. Biomed. Opt. 2013, 18, 065001. [Google Scholar] [CrossRef]
- Möller, F.M.; Holzmeister, P.; Sen, T.; Acuna, G.P.; Tinnefeld, P. Angular modulation of single-molecule fluorescence by gold nanoparticles on DNA origami templates. Nanophotonics 2013, 2, 167–172. [Google Scholar] [CrossRef]
- Puchkova, A.; Vietz, C.; Pibiri, E.; Wunsch, B.; Sanz Paz, M.; Acuna, G.P.; Tinnefeld, P. DNA origami nanoantennas with over 5000-fold fluorescence enhancement and single-molecule detection at 25 muM. Nano Lett. 2015, 15, 8354–8359. [Google Scholar] [CrossRef] [PubMed]
- Kaur, V.; Kaur, C.; Sen, T. Single-molecule fluorescence enhancement based detection of atp using DNA origami-assembled Au@Ag nanostar optical antennas. J. Phys. Chem. C 2023, 127, 7308–7318. [Google Scholar] [CrossRef]
- Rocchetti, S.; Ohmann, A.; Chikkaraddy, R.; Kang, G.; Keyser, U.F.; Baumberg, J.J. Amplified plasmonic forces from DNA origami-scaffolded single dyes in nanogaps. Nano Lett. 2023, 23, 5959–5966. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Paz, M.; Zhu, F.; Bruder, N.; Kolataj, K.; Fernandez-Dominguez, A.I.; Acuna, G.P. DNA origami assembled nanoantennas for manipulating single-molecule spectral emission. Nano Lett. 2023, 23, 6202–6208. [Google Scholar] [CrossRef] [PubMed]
- Trofymchuk, K.; Kolataj, K.; Glembockyte, V.; Zhu, F.; Acuna, G.P.; Liedl, T.; Tinnefeld, P. Gold nanorod DNA origami antennas for 3 orders of magnitude fluorescence enhancement in NIR. ACS Nano 2023, 17, 1327–1334. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; Turek, V.A.; Kongsuwan, N.; Benz, F.; Carnegie, C.; van de Goor, T.; de Nijs, B.; Demetriadou, A.; Hess, O.; Keyser, U.F.; et al. Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett. 2018, 18, 405–411. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Zuo, J.; Basiri, A.; Choi, S.; Yao, Y.; Liu, Y.; Wang, C. Deterministic assembly of single emitters in sub-5 nanometer optical cavity formed by gold nanorod dimers on three-dimensional DNA origami. Nano Res. 2021, 15, 1327–1337. [Google Scholar] [CrossRef]
- Xin, L.; Lu, M.; Both, S.; Pfeiffer, M.; Urban, M.J.; Zhou, C.; Yan, H.; Weiss, T.; Liu, N.; Lindfors, K. Watching a single fluorophore molecule walk into a plasmonic hotspot. ACS Photonics 2019, 6, 985–993. [Google Scholar] [CrossRef]
- Ochmann, S.E.; Vietz, C.; Trofymchuk, K.; Acuna, G.P.; Lalkens, B.; Tinnefeld, P. Optical nanoantenna for single molecule-based detection of zika virus nucleic acids without molecular multiplication. Anal. Chem. 2017, 89, 13000–13007. [Google Scholar] [CrossRef]
- Francisco, A.P.; Botequim, D.; Prazeres, D.M.F.; Serra, V.V.; Costa, S.M.B.; Laia, C.A.T.; Paulo, P.M.R. Extreme enhancement of single-molecule fluorescence from porphyrins induced by gold nanodimer antennas. J. Phys. Chem. Lett. 2019, 10, 1542–1549. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Trofymchuk, K.; Ranallo, S.; Ricci, F.; Steiner, F.; Cole, F.; Glembockyte, V.; Tinnefeld, P. Single antibody detection in a DNA origami nanoantenna. iScience 2021, 24, 103072. [Google Scholar] [CrossRef] [PubMed]
- Grabenhorst, L.; Sturzenegger, F.; Hasler, M.; Schuler, B.; Tinnefeld, P. Single-molecule fret at 10 mhz count rates. J. Am. Chem. Soc. 2024, 146, 3539–3544. [Google Scholar] [CrossRef]
- Zijlstra, N.; Dingfelder, F.; Wunderlich, B.; Zosel, F.; Benke, S.; Nettels, D.; Schuler, B. Rapid microfluidic dilution for single-molecule spectroscopy of low-affinity biomolecular complexes. Angew. Chem. Int. Ed. 2017, 56, 7126–7129. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Peng, Y.; Long, L.; Li, Y.; Huang, Z.; Long, N.V.; Luo, X.; Liu, J.; Li, Z.; et al. Visualized SERS imaging of single molecule by Ag/black phosphorus nanosheets. Nano-Micro Lett. 2022, 14, 75. [Google Scholar] [CrossRef]
- Zabelina, A.; Trelin, A.; Skvortsova, A.; Zabelin, D.; Burtsev, V.; Miliutina, E.; Svorcik, V.; Lyutakov, O. Bioinspired superhydrophobic SERS substrates for machine learning assisted miRNA detection in complex biomatrix below femtomolar limit. Anal. Chim. Acta 2023, 1278, 341708. [Google Scholar] [CrossRef]
Factors Influencing the SERS Enhancement Factor | Relevant Articles |
---|---|
Structural gap size | [57,58,59,63,64,70,74] |
Structural configuration | [57,64,72,76] |
Structural dimensions | [62,63,68] |
Structural composition (particle material and morphology) | [57,66,73] |
Laser polarization orientation | [57,58,60,61,64,69,75] |
Excitation wavelength | [58,62,63,74] |
Hot-spot geometry | [62] |
Number of dye molecules | [70,78] |
Additional influencing factors | Presence or absence of a silica shell [59]; Specific coupling modes [60]; Molecular resonance of the Raman dye [62]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, R.; Shao, J.; Wu, M.; Liu, C.; Chao, J. Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures. Biosensors 2025, 15, 398. https://doi.org/10.3390/bios15070398
Niu R, Shao J, Wu M, Liu C, Chao J. Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures. Biosensors. 2025; 15(7):398. https://doi.org/10.3390/bios15070398
Chicago/Turabian StyleNiu, Renjie, Jintian Shao, Mingnan Wu, Chang Liu, and Jie Chao. 2025. "Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures" Biosensors 15, no. 7: 398. https://doi.org/10.3390/bios15070398
APA StyleNiu, R., Shao, J., Wu, M., Liu, C., & Chao, J. (2025). Single-Molecule Detection of Optical Signals Using DNA-Based Plasmonic Nanostructures. Biosensors, 15(7), 398. https://doi.org/10.3390/bios15070398