Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,850)

Search Parameters:
Keywords = short-term properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2076 KiB  
Article
Numerical Modeling of Gentamicin Transport in Agricultural Soils: Implications for Environmental Pollution
by Nami Morales-Durán, Sebastián Fuentes, Jesús García-Gallego, José Treviño-Reséndez, Josué D. García-Espinoza, Rubén Morones-Ramírez and Carlos Chávez
Antibiotics 2025, 14(8), 786; https://doi.org/10.3390/antibiotics14080786 (registering DOI) - 2 Aug 2025
Abstract
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of [...] Read more.
Background/Objectives: In recent years, the discharge of antibiotics into rivers and irrigation canals has increased. However, few studies have addressed the impact of these compounds on agricultural fields that use such water to meet crop demands. Methods: In this study, the transport of two types of gentamicin (pure gentamicin and gentamicin sulfate) was modeled at concentrations of 150 and 300 μL/L, respectively, in a soil with more than 60 years of agricultural use. Infiltration tests under constant head conditions and gentamicin transport experiments were conducted in acrylic columns measuring 14 cm in length and 12.7 cm in diameter. The scaling parameters for the Richards equation were obtained from experimental data, while those for the advection–dispersion equation were estimated using inverse methods through a nonlinear optimization algorithm. In addition, a fractal-based model for saturated hydraulic conductivity was employed. Results: It was found that the dispersivity of gentamicin sulfate is 3.1 times higher than that of pure gentamicin. Based on the estimated parameters, two simulation scenarios were conducted: continuous application of gentamicin and soil flushing after antibiotic discharge. The results show that the transport velocity of gentamicin sulfate in the soil may have short-term consequences for the emergence of resistant microorganisms due to the destination of wastewater containing antibiotic residues. Conclusions: Finally, further research is needed to evaluate the impact of antibiotics on soil physical properties, as well as their effects on irrigated crops, animals that consume such water, and the soil microbiota. Full article
(This article belongs to the Special Issue Impact of Antibiotic Residues in Wastewater)
19 pages, 1889 KiB  
Article
Infrared Thermographic Signal Analysis of Bioactive Edible Oils Using CNNs for Quality Assessment
by Danilo Pratticò and Filippo Laganà
Signals 2025, 6(3), 38; https://doi.org/10.3390/signals6030038 (registering DOI) - 1 Aug 2025
Abstract
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed [...] Read more.
Nutrition plays a fundamental role in promoting health and preventing chronic diseases, with bioactive food components offering a therapeutic potential in biomedical applications. Among these, edible oils are recognised for their functional properties, which contribute to disease prevention and metabolic regulation. The proposed study aims to evaluate the quality of four bioactive oils (olive oil, sunflower oil, tomato seed oil, and pumpkin seed oil) by analysing their thermal behaviour through infrared (IR) imaging. The study designed a customised electronic system to acquire thermographic signals under controlled temperature and humidity conditions. The acquisition system was used to extract thermal data. Analysis of the acquired thermal signals revealed characteristic heat absorption profiles used to infer differences in oil properties related to stability and degradation potential. A hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) units was used to classify and differentiate the oils based on stability, thermal reactivity, and potential health benefits. A signal analysis showed that the AI-based method improves both the accuracy (achieving an F1-score of 93.66%) and the repeatability of quality assessments, providing a non-invasive and intelligent framework for the validation and traceability of nutritional compounds. Full article
Show Figures

Figure 1

33 pages, 799 KiB  
Review
The Ten Dietary Commandments for Patients with Irritable Bowel Syndrome: A Narrative Review with Pragmatic Indications
by Nicola Siragusa, Gloria Baldassari, Lorenzo Ferrario, Laura Passera, Beatrice Rota, Francesco Pavan, Fabrizio Santagata, Mario Capasso, Claudio Londoni, Guido Manfredi, Danilo Consalvo, Giovanni Lasagni, Luca Pozzi, Vincenza Lombardo, Federica Mascaretti, Alice Scricciolo, Leda Roncoroni, Luca Elli, Maurizio Vecchi and Andrea Costantino
Nutrients 2025, 17(15), 2496; https://doi.org/10.3390/nu17152496 - 30 Jul 2025
Viewed by 341
Abstract
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This [...] Read more.
Irritable bowel syndrome (IBS) is a gut–brain axis chronic disorder, characterized by recurrent abdominal pain and altered bowel habits in the absence of organic pathology. Nutrition plays a central role in symptom management, yet no single dietary strategy has demonstrated universal effectiveness. This narrative review critically evaluates current nutritional approaches to IBS. The low-Fermentable Oligo-, Di-, Mono-saccharides and Polyols (FODMAP) diet is the most extensively studied and provides short-term symptom relief, but its long-term effects on microbiota diversity remain concerning. The Mediterranean diet, due to its anti-inflammatory and prebiotic properties, offers a sustainable, microbiota-friendly option; however, it has specific limitations in the context of IBS, particularly due to the adverse effects of certain FODMAP-rich foods. A gluten-free diet may benefit individuals with suspected non-celiac gluten sensitivity, although improvements are often attributed to fructan restriction and placebo and nocebo effects. Lactose-free diets are effective in patients with documented lactose intolerance, while a high-soluble-fiber diet is beneficial for constipation-predominant IBS. IgG-based elimination diets are emerging but remain controversial and require further validation. In this review, we present the 10 dietary commandments for IBS, pragmatic and easily retained recommendations. It advocates a personalized, flexible, and multidisciplinary management approach, avoiding rigidity and standardized protocols, with the aim of optimizing adherence, symptom mitigation, and health-related quality of life. Future research should aim to evaluate, in real-world clinical settings, the impact and applicability of the 10 dietary commandments for IBS in terms of symptom improvement and quality of life Full article
(This article belongs to the Special Issue Dietary Interventions for Functional Gastrointestinal Disorders)
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 212
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

17 pages, 1482 KiB  
Review
Dietary Fiber as Prebiotics: A Mitigation Strategy for Metabolic Diseases
by Xinrui Gao, Sumei Hu, Ying Liu, S. A. Sanduni Samudika De Alwis, Ying Yu, Zhaofeng Li, Ziyuan Wang and Jie Liu
Foods 2025, 14(15), 2670; https://doi.org/10.3390/foods14152670 - 29 Jul 2025
Viewed by 280
Abstract
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of [...] Read more.
Dietary fiber (DF) is one type of carbohydrate that cannot be digested by the gastrointestinal tract. It is widely recognized as an essential ingredient for health due to its remarkable prebiotic properties. Studies have shown that DF is important in the management of metabolic diseases, such as obesity and diabetes, by regulating the balance of gut microbiota and slowing down the absorption of glucose. It is worth noting that patients with metabolic diseases might suffer from intestinal dysfunction (such as constipation), which is triggered by factors such as the disease itself or medication. This increases the complexity of chronic disease treatment. Although medications are the most common treatment for chronic disease, long-term use might increase the financial and psychological burden. DF as a prebiotic has received significant attention not only in the therapy for constipation but also as an adjunctive treatment in metabolic disease. This review focuses on the application of DF in modulating metabolic diseases with special attention on the effect of DF on intestinal dysfunction. Furthermore, the molecular mechanisms through which DF alleviates intestinal disorders are discussed, including modulating the secretion of gastrointestinal neurotransmitters and hormones, the expression of aquaporins, and the production of short-chain fatty acids. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

37 pages, 5345 KiB  
Article
Synthesis of Sources of Common Randomness Based on Keystream Generators with Shared Secret Keys
by Dejan Cizelj, Milan Milosavljević, Jelica Radomirović, Nikola Latinović, Tomislav Unkašević and Miljan Vučetić
Mathematics 2025, 13(15), 2443; https://doi.org/10.3390/math13152443 - 29 Jul 2025
Viewed by 122
Abstract
Secure autonomous secret key distillation (SKD) systems traditionally depend on external common randomness (CR) sources, which often suffer from instability and limited reliability over long-term operation. In this work, we propose a novel SKD architecture that synthesizes CR by combining a keystream of [...] Read more.
Secure autonomous secret key distillation (SKD) systems traditionally depend on external common randomness (CR) sources, which often suffer from instability and limited reliability over long-term operation. In this work, we propose a novel SKD architecture that synthesizes CR by combining a keystream of a shared-key keystream generator KSG(KG) with locally generated binary Bernoulli noise. This construction emulates the statistical properties of the classical Maurer satellite scenario while enabling deterministic control over key parameters such as bit error rate, entropy, and leakage rate (LR). We derive a closed-form lower bound on the equivocation of the shared-secret key  KG from the viewpoint of an adversary with access to public reconciliation data. This allows us to define an admissible operational region in which the system guarantees long-term secrecy through periodic key refreshes, without relying on advantage distillation. We integrate the Winnow protocol as the information reconciliation mechanism, optimized for short block lengths (N=8), and analyze its performance in terms of efficiency, LR, and final key disagreement rate (KDR). The proposed system operates in two modes: ideal secrecy, achieving secret key rates up to 22% under stringent constraints (KDR < 10−5, LR < 10−10), and perfect secrecy mode, which approximately halves the key rate. Notably, these security guarantees are achieved autonomously, without reliance on advantage distillation or external CR sources. Theoretical findings are further supported by experimental verification demonstrating the practical viability of the proposed system under realistic conditions. This study introduces, for the first time, an autonomous CR-based SKD system with provable security performance independent of communication channels or external randomness, thus enhancing the practical viability of secure key distribution schemes. Full article
Show Figures

Figure 1

24 pages, 2620 KiB  
Review
Formiguer Fertilization: Historical Agricultural Biochar Use in Catalonia and Its Modern-Day Resource Implications
by Nicolas Sesson Farré and Aaron Kinyu Hoshide
Resources 2025, 14(8), 120; https://doi.org/10.3390/resources14080120 - 28 Jul 2025
Viewed by 152
Abstract
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, [...] Read more.
Biochar is an amendment that can enhance both soil fertility and sequester carbon. However, its historical applications continue to be underexplored. In this overview, we investigate the formiguer method of burning woody biomass to create agricultural biochar for use as fertilizer in Catalonia, Spain, within the context of historical biochar use. A literature review targeted searches of scholarly databases to compare the formiguer method to Amazonian terra preta and other traditional biochar use. We identified sources covering biochar properties, soil impacts, and historical agricultural practices within the Iberian Peninsula and briefly described the main methods or treatments used during this process. Past research demonstrates that the formiguer method, which involves pyrolytic combustion of biomass within soil mounds, improves microbial activity, increases soil phosphorus and potassium availability from soil structure, and leads to long-term carbon stabilization, even though it can result in short-term decreases in soil organic carbon and nitrogen losses. Despite being abandoned in Europe with the rise of chemical fertilizers, the use of formiguers exemplifies a decentralized approach to nutrient and agroecosystem management. The literature highlights the relevance that these traditional biochar practices can have in informing modern soil management and sustainable agricultural strategies. Understanding the formiguer can offer critical insights to optimize contemporary biochar applications and historical techniques into future sustainability frameworks. Full article
(This article belongs to the Special Issue Resource Extraction from Agricultural Products/Waste: 2nd Edition)
Show Figures

Figure 1

26 pages, 3489 KiB  
Article
Techno-Economic Analysis of Hydrogen Hybrid Vehicles
by Dapai Shi, Jiaheng Wang, Kangjie Liu, Chengwei Sun, Zhenghong Wang and Xiaoqing Liu
World Electr. Veh. J. 2025, 16(8), 418; https://doi.org/10.3390/wevj16080418 - 24 Jul 2025
Viewed by 188
Abstract
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine [...] Read more.
Driven by carbon neutrality and peak carbon policies, hydrogen energy, due to its zero-emission and renewable properties, is increasingly being used in hydrogen fuel cell vehicles (H-FCVs). However, the high cost and limited durability of H-FCVs hinder large-scale deployment. Hydrogen internal combustion engine hybrid electric vehicles (H-HEVs) are emerging as a viable alternative. Research on the techno-economics of H-HEVs remains limited, particularly in systematic comparisons with H-FCVs. This paper provides a comprehensive comparison of H-FCVs and H-HEVs in terms of total cost of ownership (TCO) and hydrogen consumption while proposing a multi-objective powertrain parameter optimization model. First, a quantitative model evaluates TCO from vehicle purchase to disposal. Second, a global dynamic programming method optimizes hydrogen consumption by incorporating cumulative energy costs into the TCO model. Finally, a genetic algorithm co-optimizes key design parameters to minimize TCO. Results show that with a battery capacity of 20.5 Ah and an H-FC peak power of 55 kW, H-FCV can achieve optimal fuel economy and hydrogen consumption. However, even with advanced technology, their TCO remains higher than that of H-HEVs. H-FCVs can only become cost-competitive if the unit power price of the fuel cell system is less than 4.6 times that of the hydrogen engine system, assuming negligible fuel cell degradation. In the short term, H-HEVs should be prioritized. Their adoption can also support the long-term development of H-FCVs through a complementary relationship. Full article
Show Figures

Figure 1

23 pages, 2056 KiB  
Article
Nanoceria Coated with Maltodextrin or Chitosan: Effects on Key Genes of Oxidative Metabolism, Proliferation, and Autophagy in Human Embryonic Lung Fibroblasts
by Elena V. Proskurnina, Madina M. Sozarukova, Elizaveta S. Ershova, Ekaterina A. Savinova, Larisa V. Kameneva, Natalia N. Veiko, Vladimir P. Saprykin, Khamzat K. Vyshegurov, Vladimir K. Ivanov and Svetlana V. Kostyuk
Molecules 2025, 30(15), 3078; https://doi.org/10.3390/molecules30153078 - 23 Jul 2025
Viewed by 233
Abstract
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we [...] Read more.
Nanoceria is a multifaceted enzyme-like catalyst of ROS-mediated (reactive oxygen species) reactions, which results in its multiple biomedical applications. Biodegradable polysaccharide coatings improve biocompatibility, while the effects of these coatings on the ROS-related activity of nanoceria in cells need thorough studies. Here, we used human embryonic lung fibroblasts to study the effects of maltodextrin and chitosan coatings on cellular oxidative metabolism of nanoceria by examining cell viability, mitochondrial potential, accumulation of nanoparticles in cells, intracellular ROS, expression of NOX4 (NADPH oxidase 4), NRF2 (nuclear factor erythroid 2-related factor 2), NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), and STAT3 (signal transducer and activator of transcription 3) proteins as well as the expression of biomarkers of DNA damage/repair, cell proliferation, and autophagy. Both types of polysaccharide-coated nanoceria were non-toxic up to millimolar concentrations. For maltodextrin-coated nano-CeO2, in contrast to bare nanoparticles, there was no oxidative DNA damage/repair with moderate activation of NOX4 expression. Like bare nanoceria, maltodextrin-coated nanoparticles demonstrate the proliferative impact and do not activate autophagy. However, maltodextrin-coated nanoparticles have an activating impact on mitochondrial potential and the NF-κB pathway. Chitosan-coated nanoceria causes short-term intracellular oxidative stress, activation of the expression of NOX4, STAT3, and NRF2, oxidative DNA damage, and double-strand breaks accompanied by activation of DNA repair systems. In contrast to maltodextrin-coated nanoparticles, chitosan-coated nanoceria inhibits the NF-κB pathway and activates autophagy. These findings would be useful in the development of advanced nanoceria-based pharmaceuticals and contribute to the understanding of the biochemical properties of nanoceria as a modulator of ROS-dependent signaling pathways. Full article
Show Figures

Figure 1

25 pages, 1072 KiB  
Review
EEG-Based Biometric Identification and Emotion Recognition: An Overview
by Miguel A. Becerra, Carolina Duque-Mejia, Andres Castro-Ospina, Leonardo Serna-Guarín, Cristian Mejía and Eduardo Duque-Grisales
Computers 2025, 14(8), 299; https://doi.org/10.3390/computers14080299 - 23 Jul 2025
Viewed by 387
Abstract
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview [...] Read more.
This overview examines recent advancements in EEG-based biometric identification, focusing on integrating emotional recognition to enhance the robustness and accuracy of biometric systems. By leveraging the unique physiological properties of EEG signals, biometric systems can identify individuals based on neural responses. The overview discusses the influence of emotional states on EEG signals and the consequent impact on biometric reliability. It also evaluates recent emotion recognition techniques, including machine learning methods such as support vector machines (SVMs), convolutional neural networks (CNNs), and long short-term memory networks (LSTMs). Additionally, the role of multimodal EEG datasets in enhancing emotion recognition accuracy is explored. Findings from key studies are synthesized to highlight the potential of EEG for secure, adaptive biometric systems that account for emotional variability. This overview emphasizes the need for future research on resilient biometric identification that integrates emotional context, aiming to establish EEG as a viable component of advanced biometric technologies. Full article
(This article belongs to the Special Issue Multimodal Pattern Recognition of Social Signals in HCI (2nd Edition))
Show Figures

Figure 1

31 pages, 345 KiB  
Article
The Limits of a Success Story: Rethinking the Shenzhen Metro “Rail Plus Property” Model for Planning Sustainable Urban Transit in China
by Congcong Li and Natacha Aveline-Dubach
Land 2025, 14(8), 1508; https://doi.org/10.3390/land14081508 - 22 Jul 2025
Viewed by 424
Abstract
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + [...] Read more.
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + P)” model, drawing inspiration from the Hong Kong experience. The Shenzhen Metro’s “R + P” strategy has been widely acclaimed as the key to its reputation as “the only profitable transit company in mainland China without subsidies.” This paper questions this assumption and argues that the Shenzhen model is neither sustainable nor replicable, as its past performance depended on two exceptional conditions: an ascending phase of a real-estate cycle and unique institutional concessions from the central state. To substantiate this argument, we contrast Shenzhen’s value capture strategy with that of Nanjing—a provincial capital operating under routine institutional conditions, with governance and spatial structures broadly reflecting the prevailing urban development model in China. Using a comparative framework structured around three key dimensions of LVC—urban governance, risk management, and the transit company’s shift toward real estate—this paper reveals how distinct urban political economies give rise to contrasting value capture approaches: one expansionary, prioritizing short-term profit and rapid scale-up while downplaying risk management (Shenzhen); the other conservative, shaped by institutional constraints and characterized by reactive, incremental adjustments (Nanjing). These findings suggest that while LVC instruments offer valuable potential as a funding source for public transit, their long-term viability depends on early institutional embedding that aligns spatial, fiscal, and political interests, alongside well-developed project planning and capacity support in real estate expertise. Full article
12 pages, 1336 KiB  
Review
Bisphosphonates in the Management of Patients with Postmenopausal Osteoporosis; Back to the Future
by Socrates E. Papapoulos and Polyzois Makras
Pharmaceuticals 2025, 18(7), 1068; https://doi.org/10.3390/ph18071068 - 20 Jul 2025
Viewed by 286
Abstract
Osteoporosis is a chronic disease associated with significant morbidity and mortality and requires long-term therapy. Efficacious and well-tolerated treatments are available, but their effect is either short-lived or lost following their discontinuation. The exception is bisphosphonates that reduce bone resorption and turnover, can [...] Read more.
Osteoporosis is a chronic disease associated with significant morbidity and mortality and requires long-term therapy. Efficacious and well-tolerated treatments are available, but their effect is either short-lived or lost following their discontinuation. The exception is bisphosphonates that reduce bone resorption and turnover, can be administered in regimens ranging from once-daily to once-yearly, and have been shown in randomized clinical trials to reduce the incidence of all osteoporotic fractures, but their effect persists following their discontinuation. This is due to their property of being taken-up selectively by the skeleton and being slowly released following treatment arrest. This property allows the discontinuation of bisphosphonate treatment for different periods of time, the so-called drug holiday, which reduces the risk of rare adverse events while maintaining the effect; an action particularly important for patients at very high risk of fractures for whom sequential therapy with different agents is currently advised. Thus, bisphosphonates, apart from being the treatment of choice for certain groups of patients, are also indispensable for the consolidation and maintenance of the gains of all other treatments, providing, in addition, the opportunity of temporary treatment arrest. Most patients with postmenopausal osteoporosis will, therefore, receive bisphosphonate at some stage during therapy of their disease, regardless of their initial fracture risk. Full article
(This article belongs to the Special Issue The Pharmacology of Bisphosphonates: New Advances)
Show Figures

Figure 1

14 pages, 15062 KiB  
Article
Short-Term Effects of Visceral Manual Therapy on Autonomic Nervous System Modulation in Individuals with Clinically Based Bruxism: A Randomized Controlled Trial
by Cayetano Navarro-Rico, Hermann Fricke-Comellas, Alberto M. Heredia-Rizo, Juan Antonio Díaz-Mancha, Adolfo Rosado-Portillo and Lourdes M. Fernández-Seguín
Dent. J. 2025, 13(7), 325; https://doi.org/10.3390/dj13070325 - 16 Jul 2025
Viewed by 1248
Abstract
Background/Objectives: Bruxism has been associated with dysregulation of the autonomic nervous system (ANS). Visceral manual therapy (VMT) has shown beneficial effects on the vagal tone and modulation of ANS activity. This study aimed to evaluate the immediate and short-term effects of VMT [...] Read more.
Background/Objectives: Bruxism has been associated with dysregulation of the autonomic nervous system (ANS). Visceral manual therapy (VMT) has shown beneficial effects on the vagal tone and modulation of ANS activity. This study aimed to evaluate the immediate and short-term effects of VMT in individuals with clinically based bruxism. Methods: A single-blind randomized controlled trial was conducted including 24 individuals with clinically based bruxism. Participants received two sessions of either VMT or a sham placebo technique. Outcome measures included heart rate variability (HRV), both normal-to-normal intervals (HRV-SDNN), and the root mean square of successive normal-to-normal intervals (HRV-RMSSD), as well as muscle tone and stiffness and pressure pain thresholds (PPTs). Measurements were made at T1 (baseline), T2 (post-first intervention), T3 (pre-second intervention), T4 (post-second intervention), and T5 (4-week follow-up). Results: A significant time*group interaction was observed for HRV-SDNN (p = 0.04, η2 = 0.12). No significant changes were found for muscle tone or stiffness. PPTs significantly increased at C4 after the second session (p = 0.049, η2 = 0.16) and at the left temporalis muscle after the first session (p = 0.01, η2 = 0.07). Conclusions: The findings suggest that two sessions of VMT may lead to significant improvements in HRV-SDNN compared to the placebo, suggesting a modulatory effect on autonomic function. No consistent changes were observed for the viscoelastic properties of the masticatory muscles. Isolated improvements in pressure pain sensitivity were found at C4 and the left temporalis muscle. Further research with larger sample sizes and long-term follow-up is needed to determine the clinical relevance of VMT in the management of signs and symptoms in individuals with bruxism. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

14 pages, 4004 KiB  
Article
Viability and Longevity of Human Miniaturized Living Myocardial Slices
by Ziyu Zhou, Yvar P. van Steenis, Surya Henry, Elisa C. H. van Doorn, Jorik H. Amesz, Pieter C. van de Woestijne, Natasja M. S. de Groot, Olivier C. Manintveld, Beatrijs Bartelds and Yannick J. H. J. Taverne
J. Cardiovasc. Dev. Dis. 2025, 12(7), 269; https://doi.org/10.3390/jcdd12070269 - 15 Jul 2025
Viewed by 282
Abstract
Living myocardial slices (LMSs) have shown great promise in cardiac research, allowing multicellular and complex interplay analyses with disease and patient specificity, yet their wider clinical use is limited by the large tissue sizes usually required. We therefore produced mini-LMSs (<10 mm2 [...] Read more.
Living myocardial slices (LMSs) have shown great promise in cardiac research, allowing multicellular and complex interplay analyses with disease and patient specificity, yet their wider clinical use is limited by the large tissue sizes usually required. We therefore produced mini-LMSs (<10 mm2) from routine human cardiac surgery specimens and compared them with medium (10–30 mm2) and large (>30 mm2) slices. Size effects on biomechanical properties were examined with mathematical modeling, and viability, contraction profiles, and histological integrity were followed for 14 days. In total, 34 mini-, 25 medium, and 30 large LMS were maintained viable, the smallest measuring only 2 mm2. Peak twitch force proved to be size-independent, whereas time-to-peak shortened as slice area decreased. Downsized LMSs displayed excellent contractile behavior for five to six days, after which a gradual functional decline and micro-architectural changes emerged. These findings confirm, for the first time, that mini-LMSs are feasible and viable, enabling short-term, patient-specific functional studies and pharmacological testing when tissue is scarce. Full article
Show Figures

Figure 1

10 pages, 3162 KiB  
Article
High-Sensitivity, Low Detection Limit, and Fast Ammonia Detection of Ag-NiFe2O4 Nanocomposite and DFT Study
by Xianfeng Hao, Yuehang Sun, Zongwei Liu, Gongao Jiao and Dongzhi Zhang
Nanomaterials 2025, 15(14), 1088; https://doi.org/10.3390/nano15141088 - 14 Jul 2025
Viewed by 273
Abstract
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental [...] Read more.
Ammonia (NH3) is one of the characteristic gases used to detect food spoilage. In this study, the 10 wt% Ag-NiFe2O4 nanocomposite was synthesized via the hydrothermal method. Characterization results from SEM, XRD, and XPS analyzed the microstructure, elemental composition, and crystal lattice features of the composite, confirming its successful fabrication. Under the optimal working temperature of 280 °C, the composite exhibited excellent gas-sensing properties towards NH3. The 10 wt% Ag-NiFe2O4 sensor demonstrates rapid response and recovery, as well as high sensitivity, towards 30 ppm NH3, with response and recovery times of merely 3 s and 9 s, respectively, and a response value of 4.59. The detection limit is as low as 0.1 ppm, meeting the standards for food safety detection. Additionally, the sensor exhibits good short-term repeatability and long-term stability. Additionally, density functional theory (DFT) simulations were conducted to investigate the gas-sensing advantages of the Ag-NiFe2O4 composite by analyzing the electron density and density of states, thereby providing theoretical guidance for experimental testing. This study facilitates the rapid detection of food spoilage and promotes the development of portable food safety detection devices. Full article
(This article belongs to the Special Issue Advanced Nanomaterials in Gas and Humidity Sensors: Second Edition)
Show Figures

Figure 1

Back to TopTop