Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,199)

Search Parameters:
Keywords = shear deformations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4386 KB  
Article
Tribological Performance Under Silica Debris in PAO–Fe Interfaces: An Atomistic Study
by Xiang Jiao, Guochen Huang, Yuyan Zhang, Juan Li, Chenchen Peng and Guoqing Wang
Coatings 2026, 16(1), 91; https://doi.org/10.3390/coatings16010091 (registering DOI) - 11 Jan 2026
Abstract
Silica-rich dust intrusion is a persistent challenge for lubrication systems in agricultural machinery, where abrasive third-body particles can accelerate wear and shorten component service life. Here, molecular dynamics simulations are employed to elucidate how SiO2 nanoparticle contamination degrades polyalphaolefin (PAO) boundary lubrication [...] Read more.
Silica-rich dust intrusion is a persistent challenge for lubrication systems in agricultural machinery, where abrasive third-body particles can accelerate wear and shorten component service life. Here, molecular dynamics simulations are employed to elucidate how SiO2 nanoparticle contamination degrades polyalphaolefin (PAO) boundary lubrication at the atomic scale. Two confined sliding models are compared: a pure PAO film and a contaminated PAO film containing 7 wt% SiO2 nanoparticles between crystalline Fe substrates under a constant normal load and sliding velocity. The contaminated system exhibits a higher steady-state friction force, faster lubricant film disruption and migration, and consistently higher interfacial temperatures, indicating intensified energy dissipation. Substrate analyses reveal deeper and stronger von Mises stress penetration, increased severe plastic shear strain, elevated Fe potential energy associated with defect accumulation, and reduced structural order. Meanwhile, PAO molecules store more intramolecular deformation energy (bond, angle, and dihedral terms), reflecting stress concentration and disturbed shear alignment induced by nanoparticles. These results clarify the multi-pathway mechanisms by which abrasive SiO2 contaminants transform PAO from a protective boundary film into an agent promoting abrasive wear, providing insights for designing wear-resistant lubricants and improved filtration strategies for particle-laden applications. Full article
Show Figures

Figure 1

17 pages, 21797 KB  
Article
Numerical Investigation of Micromechanical Failure Evolution in Rocky High Slopes Under Multistage Excavation
by Tao Zhang, Zhaoyong Xu, Cheng Zhu, Wei Li, Yu Nie, Yingli Gao and Xiangmao Zhang
Appl. Sci. 2026, 16(2), 739; https://doi.org/10.3390/app16020739 - 10 Jan 2026
Viewed by 42
Abstract
High rock slopes are extensively distributed in areas of major engineering constructions, such as transportation infrastructure, hydraulic projects, and mining operations. The stability and failure evolution mechanism during their multi-stage excavation process have consistently been a crucial research topic in geotechnical engineering. In [...] Read more.
High rock slopes are extensively distributed in areas of major engineering constructions, such as transportation infrastructure, hydraulic projects, and mining operations. The stability and failure evolution mechanism during their multi-stage excavation process have consistently been a crucial research topic in geotechnical engineering. In this paper, a series of two-dimensional rock slope models, incorporating various combinations of slope height and slope angle, were established utilizing the Discrete Element Method (DEM) software PFC2D. This systematic investigation delves into the meso-mechanical response of the slopes during multi-stage excavation. The Parallel Bond Model (PBM) was employed to simulate the contact and fracture behavior between particles. Parameter calibration was performed to ensure that the simulation results align with the actual mechanical properties of the rock mass. The research primarily focuses on analyzing the evolution of displacement, the failure modes, and the changing characteristics of the force chain structure under different geometric conditions. The results indicate that as both the slope height and slope angle increase, the inter-particle deformation of the slope intensifies significantly, and the shear band progressively extends deeper into the slope mass. The failure mode transitions from shallow localized sliding to deep-seated overall failure. Prior to instability, the force chain system exhibits an evolutionary pattern characterized by “bundling–reconfiguration–fracturing,” serving as a critical indicator for characterizing the micro-scale failure mechanism of the slope body. Full article
(This article belongs to the Section Civil Engineering)
26 pages, 14589 KB  
Article
Micropore Structure Evolution and Macro-Micro Quantitative Analysis of Dredged Sludge Solidified with Ground Granulated Blast Furnace Slag, Carbide Slag, and Titanium Gypsum
by Yaohui Zang, Chenchen Zhang and Liujiang Wang
Buildings 2026, 16(2), 261; https://doi.org/10.3390/buildings16020261 - 7 Jan 2026
Viewed by 101
Abstract
Revealing the evolution of micropore structure in industrial by-product solidified sludge is essential for elucidating strength development mechanisms and promoting the engineering utilization of industrial wastes. In this study, a series of tests, including unconfined compressive strength (UCS), low-field nuclear magnetic resonance, direct [...] Read more.
Revealing the evolution of micropore structure in industrial by-product solidified sludge is essential for elucidating strength development mechanisms and promoting the engineering utilization of industrial wastes. In this study, a series of tests, including unconfined compressive strength (UCS), low-field nuclear magnetic resonance, direct shear, and scanning electron microscopy coupled with energy-dispersive spectroscopy, were conducted on granulated blast furnace slag–carbide slag–titanium gypsum (GCT)-solidified sludge (GSDS) and cement-solidified sludge (CSDS). The results demonstrate that GSDS exhibits significantly superior compressive strength, deformation resistance, and pore-filling capacity compared with CSDS. With increasing curing age, both materials show logarithmic increases in UCS and mesopore volume fraction, accompanied by power-law decreases in total pore volume and the most probable pore size. On this basis, quantitative relationships between micropore characteristics and macroscopic mechanical properties are established for both solidified sludges. Microscopic analyses reveal that strength development in GSDS is primarily attributed to the formation of abundant C-(A)-S-H gels and expansive ettringite crystals, which effectively cement soil particles and refine interparticle pores. The synergistic solidification mechanism of GCT, involving ion exchange, cementitious bonding, and pore filling, promotes particle aggregation, enhances interparticle bonding, and refines pore structure, thereby markedly improving structural integrity and macroscopic strength in GSDS. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 6704 KB  
Article
Numerical Simulation and Stability Analysis of Highway Subgrade Slope Collapse Induced by Rainstorms—A Case Study
by Pancheng Cen, Boheng Shen, Yong Ding, Jiahui Zhou, Linze Shi, You Gao and Zhibin Cao
Water 2026, 18(2), 144; https://doi.org/10.3390/w18020144 - 6 Jan 2026
Viewed by 278
Abstract
This study investigates rainstorm-induced highway subgrade slope collapses in the coastal areas of Southeast China. By integrating the seepage–stress coupled finite element method with the strength reduction method, we simulate the entire process of seepage, deformation, and slope collapse under rainstorm conditions, analyzing [...] Read more.
This study investigates rainstorm-induced highway subgrade slope collapses in the coastal areas of Southeast China. By integrating the seepage–stress coupled finite element method with the strength reduction method, we simulate the entire process of seepage, deformation, and slope collapse under rainstorm conditions, analyzing the variation in the stability factor. The key findings are as follows: (1) During rainstorms, water infiltration increases soil saturation and pore water pressure, while reducing matrix suction and soil shear strength, leading to soil softening. (2) The toe of the subgrade slope first undergoes plastic deformation under rainstorms, which develops upward, and finally the plastic zone connects completely, causing collapse. The simulated landslide surface is consistent with the actual one, revealing the collapse mechanism of the subgrade slope. Additionally, the simulated displacement at the slope toe when the plastic zone connects provides valuable insights for setting warning thresholds in landslide monitoring. (3) The stability factor of the subgrade slope in the case study decreased from 1.24 before the rainstorm to 0.985 after the rainstorm, indicating a transition from a stable state to an unstable state. (4) Parameter analysis shows that heavy downpour or downpour will cause the case subgrade slope to enter an unstable state. The longer the rainfall duration, the lower the stability factor. Analysis of soil parameters indicates that strength parameters, internal friction angle, and effective cohesion exert a significant influence on slope stability, whereas deformation parameters, elastic modulus, and Poisson’s ratio have a negligible effect. Slope collapse can be timely forecasted by predicting the stability factor. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
Show Figures

Figure 1

20 pages, 1047 KB  
Article
The Influence of One-Time Physical Activity at a Temperature of −10 °C on Erythrocyte Deformability in Young Men
by Aneta Teległów, Konrad Rembiasz, Janusz Pobędza, Iga Wilczyńska, Zygmunt Dziechciowski, Andrzej Czerwiński, Jakub Leśniowski, Jakub Marchewka and Piotr Mika
Appl. Sci. 2026, 16(1), 535; https://doi.org/10.3390/app16010535 - 5 Jan 2026
Viewed by 105
Abstract
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C [...] Read more.
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C in a climatic chamber and a control group exercising under thermoneutral outdoor conditions. Erythrocyte deformability was assessed using the elongation index (EI), reflecting erythrocyte elasticity and the ability to pass through microcirculation vessels. Participants performed an incremental 20 m shuttle run test. Venous blood samples were collected before and immediately after exercise, and erythrocyte deformability was analyzed using a Lorrca analyzer across a shear stress range of 0.30–60.00 Pa. A two-factor repeated-measures analysis of variance was applied. An increase in EI after exercise was observed in both groups, predominantly at higher shear stress values, indicating enhanced erythrocyte deformability under conditions of increased shear forces. However, the magnitude of post-exertion changes differed between groups. At lower shear stress levels (0.30 Pa and 0.58 Pa), EI tended to decrease after exercise. These findings indicate that a single bout of physical effort influences erythrocyte deformability, while the potential effects of cold exposure on this response remain uncertain and warrant further investigation. Full article
(This article belongs to the Special Issue Exercise Physiology and Rheology—New Experience)
Show Figures

Figure 1

20 pages, 20062 KB  
Article
Impact of Diamond Indenter Sliding Velocity on Shear Deformation and Hardening of AISI 304 Steel Surface Layer in Nanostructuring Burnishing: Simulation and Experiment
by Igor Tatarintsev, Viktor Kuznetsov, Igor Smolin, Ayan Akhmetov and Andrey Skorobogatov
Metals 2026, 16(1), 63; https://doi.org/10.3390/met16010063 - 4 Jan 2026
Viewed by 122
Abstract
This paper numerically and experimentally establishes a connection between shear deformation of the AISI 304 steel surface layer and the sliding velocity of a diamond indenter in multi-pass nanostructuring burnishing. Results of finite-element simulation of the process fully correspond to the experimental data [...] Read more.
This paper numerically and experimentally establishes a connection between shear deformation of the AISI 304 steel surface layer and the sliding velocity of a diamond indenter in multi-pass nanostructuring burnishing. Results of finite-element simulation of the process fully correspond to the experimental data obtained when changing the sliding velocity from 40 to 280 m/min after one and five tool passes. The experiment’s burnishing force was assumed to be 150 and 175 N, and feed was 0.025 mm/min. After surface machining, the maximum microhardness reached 400 HV0.05 at the depth of 30 µm from the surface after five indenter passes with the sliding velocity values of 40 and 200 m/min and burnishing force of 175 N. Full article
Show Figures

Graphical abstract

17 pages, 4226 KB  
Article
Dynamic Response of 3D Textiles Imbibed with Shear-Thinning Polyvinyl Alcohol Solutions
by Petrică Turtoi, Ionuț-Răzvan Nechita, Traian Cicone, Edina Rusen and Aurel Diacon
Appl. Sci. 2026, 16(1), 496; https://doi.org/10.3390/app16010496 - 4 Jan 2026
Viewed by 125
Abstract
The primary objective of this work is to provide new solutions to increase impact protection, using a three-dimensional textile imbibed with a shear-thinning fluid. An extensive analysis showed a scarcity of research papers related to the damping capacity of deformable porous materials imbibed [...] Read more.
The primary objective of this work is to provide new solutions to increase impact protection, using a three-dimensional textile imbibed with a shear-thinning fluid. An extensive analysis showed a scarcity of research papers related to the damping capacity of deformable porous materials imbibed with non-Newtonian fluid. No studies were found for shear-thinning fluid flow inside highly compressible foams or other soft, porous materials. The damping capacity of the imbibed material was evaluated using impact with a dropping weight. Polyvinyl alcohol solution mixed with water was used for imbibition of a three-dimensional textile. Hydrophilized carbon nanofibers were also added to the solution to augment the shear-thinning behavior. The measured impact force for imbibed samples showed an important reduction compared to the impact force for the dry material. This research does not focus on flow phenomena at the microstructural level but instead aims to highlight the macroscopic attenuation effect that occurs during the compression of the imbibed material. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 5119 KB  
Article
Experimental Studies of Strain and Stress Fields in a Granular Medium Under Active Pressure Using DIC and Elasto-Optic Methods
by Magdalena Pietrzak
Materials 2026, 19(1), 172; https://doi.org/10.3390/ma19010172 - 3 Jan 2026
Viewed by 274
Abstract
This study presents a novel experimental methodology enabling the synchronous observation of strain and stress evolution in granular backfill subjected to active earth pressure. A physical model of plane deformation was used in which a rigid retaining wall was gradually moved away from [...] Read more.
This study presents a novel experimental methodology enabling the synchronous observation of strain and stress evolution in granular backfill subjected to active earth pressure. A physical model of plane deformation was used in which a rigid retaining wall was gradually moved away from the ground while simultaneously recording, at each step, both displacement-based images for digital image correlation (DIC) and photoelastic pictures of the force-chain rearrangements. The results show that active failure develops gradually through narrow shear bands, initiated near the wall base and propagating towards the ground surface. A consistent inverse relationship between shear-strain location and photoelastic stress concentration was identified: low-strain zones within the shear wedge in the shear and volumetric strain images correspond to strong force-chain development, whereas high-strain zones (strain localization) correspond to local stress release. These findings provide new experimental evidence regarding the micromechanics of active pressure and offer comparative data for calibrating DEM (discrete element method) models and interpreting the reduced active pressures reported in confined granular backfills. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

16 pages, 7504 KB  
Article
Geological Characteristics and a New Simplified Method to Estimate the Long-Term Settlement of Dredger Fill in Tianjin Nangang Region
by Jinke Yuan, Zuan Pei and Jie Chen
J. Mar. Sci. Eng. 2026, 14(1), 92; https://doi.org/10.3390/jmse14010092 - 2 Jan 2026
Viewed by 237
Abstract
Long-term settlement of dredger fill presents substantial challenges to infrastructure stability, particularly in coastal areas such as Tianjin Nangang, where liquefied natural gas (LNG) pipelines are vulnerable to deformation caused by differential settlements. This study investigates the geological properties and long-term settlement characteristics [...] Read more.
Long-term settlement of dredger fill presents substantial challenges to infrastructure stability, particularly in coastal areas such as Tianjin Nangang, where liquefied natural gas (LNG) pipelines are vulnerable to deformation caused by differential settlements. This study investigates the geological properties and long-term settlement characteristics of dredger fill in the Tianjin Nangang coastal zone and develops a simplified predictive model for long-term settlement. Comprehensive laboratory analyses, including field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and mercury intrusion porosimetry (MIP), revealed a porous, flaky microstructure dominated by quartz and calcite, with mesopores (0.03–0.8 µm) constituting over 80% of total pore volume. A centrifuge modelling test conducted at 70 g acceleration simulated accelerated settlement behavior, demonstrating that approximately 70% of settlements occured within the initial year. The study proposes an enhanced hyperbolic model for long-term settlement prediction, which shows excellent correlation with experimental results. The findings underscore the high compressibility and low shear strength of dredger fill, highlighting the necessity for specific mitigation measures to ensure infrastructure integrity. This research establishes a simplified yet reliable methodology for settlement estimation, providing valuable practical guidance for coastal land reclamation projects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

20 pages, 4242 KB  
Article
Internal Force Distribution Characteristics of Top-Chord-Free Vierendeel-Truss Composite Slab
by Jianshe Xu, Shuang Zheng, Wenzhe Song, Haiyan Zhao, Pei Li and Wei Wang
Buildings 2026, 16(1), 200; https://doi.org/10.3390/buildings16010200 - 2 Jan 2026
Viewed by 154
Abstract
In modern construction, there is a growing demand for floor systems that offer high spatial efficiency and easy integration of mechanical, electrical, and plumbing (MEP) services. The top-chord-free Vierendeel-truss composite slab (TVCS), which omits the steel top chord and diagonal webs, presents a [...] Read more.
In modern construction, there is a growing demand for floor systems that offer high spatial efficiency and easy integration of mechanical, electrical, and plumbing (MEP) services. The top-chord-free Vierendeel-truss composite slab (TVCS), which omits the steel top chord and diagonal webs, presents a promising solution by maximizing usable vertical space and accommodating large ducts. Due to the elimination of the steel top chord and diagonal web members, the TVCS differs significantly in structural composition from conventional steel truss–concrete composite floor systems. At present, there is a lack of in-depth research on the mechanical behavior and deformation characteristics of this type of floor system. This study aims to fill this gap by systematically investigating the internal force distribution characteristics of TVCS and establishing a simplified analytical approach for practical engineering. This paper first employs the finite element method to conduct a comprehensive analysis of the bending moments, shear forces, and axial forces in each component of this composite floor system. The results indicate that the internal force distribution in TVCS exhibits substantial differences compared to that in conventional truss-composite floor systems: certain chord members exhibit inflection points; abrupt changes in internal forces occur between adjacent chord segments; and significant differences exist between the internal forces in members near the supports and those near mid-span. For instance, a distinct difference is that chord segments adjacent to the supports contain inflection points, while those near mid-span do not. Subsequently, simplified formulas for calculating the internal forces in the TVCS are proposed and validated against experimental and numerical analysis results. The main technical contribution of this work is providing a practical and efficient calculation tool that simplifies the design process for TVCS, facilitating its safer and wider application. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

16 pages, 2316 KB  
Article
A Temperature-Dependent Visco-Hyperelastic Constitutive Model for Carbon Fiber/Polypropylene Prepreg
by Haochen Zhu and Mingrui Liu
J. Compos. Sci. 2026, 10(1), 12; https://doi.org/10.3390/jcs10010012 - 1 Jan 2026
Viewed by 186
Abstract
This study first heat-treats the surface of plain-woven carbon fibers to remove the surface sizing. The treated carbon fibers were then hot-pressed with polypropylene films to produce a carbon fiber/polypropylene prepreg. The resulting prepreg was subjected to uniaxial and off-axis tensile tests, providing [...] Read more.
This study first heat-treats the surface of plain-woven carbon fibers to remove the surface sizing. The treated carbon fibers were then hot-pressed with polypropylene films to produce a carbon fiber/polypropylene prepreg. The resulting prepreg was subjected to uniaxial and off-axis tensile tests, providing fundamental data for constructing a constitute model for the carbon fiber/polypropylene prepreg. The relative error between the model predictions and experimental data is maintained within ±10%. Based on the experimental results, a temperature-dependent viscoelastic–hyperelastic constitutive model for carbon fiber/polypropylene is proposed. This model decomposes the unit volume strain energy function into four components: matrix isochoric deformation energy, fiber tensile strain energy, fiber–fiber shear strain energy, and fiber-matrix shear strain energy. The matrix energy is strain rate-dependent, exhibiting viscoelastic mechanical behavior. The material parameters of the constitutive model were identified by fitting the experimental data. The model was implemented in MATLABR2024a, and off-axis tensile tests were performed at temperatures ranging from 423 K to 453 K. Numerical simulations were compared with experimental results to validate the model. This work provides guidance for the development and validation of constitutive models for thermoplastic polypropylene prepregs. Full article
Show Figures

Figure 1

30 pages, 15497 KB  
Article
Geological and Social Factors Related to Disasters Caused by Complex Mass Movements: The Quilloturo Landslide in Ecuador (2024)
by Liliana Troncoso, Francisco Javier Torrijo Echarri, Luis Pilatasig, Elías Ibadango, Alex Mateus, Olegario Alonso-Pandavenes, Adans Bermeo, Francisco Javier Robayo and Louis Jost
GeoHazards 2026, 7(1), 4; https://doi.org/10.3390/geohazards7010004 - 1 Jan 2026
Viewed by 310
Abstract
Complex landslides have characteristics and parameters that are difficult to analyze. The landslide on 16 June 2024 in the rural community of Quilloturo (Tungurahua, Ecuador) caused severe damage (14 deaths, 24 injuries, and hundreds of affected families) related to the area’s geological, social, [...] Read more.
Complex landslides have characteristics and parameters that are difficult to analyze. The landslide on 16 June 2024 in the rural community of Quilloturo (Tungurahua, Ecuador) caused severe damage (14 deaths, 24 injuries, and hundreds of affected families) related to the area’s geological, social, and anthropogenic conditions. Its location in the eastern foothills of Ecuador’s Cordillera Real exacerbated the effects of a landslide involving various processes (mud and debris flows, landslides, and rock falls). This event was preceded by intense rainfall lasting more than 10 h, which accumulated and caused natural damming of the streams prior to the event. The lithology of the investigated area includes deformed metamorphic and intrusive rocks overlain by superficial clayey colluvial deposits. The relationship between the geological structures found, such as fractures, joints, schistosity, and shear, favored the formation of blocks within the flow, making mass movement more complex. Geomorphologically, the area features a relief with steep slopes, where ancient landslides or material movements, composed of these colluvial deposits, have already occurred. At the foot of these steep slopes, on plains less than 300 m wide and bordered by the Pastaza River, there are human settlements with less than 60 years of emplacement and a complex history of territorial occupation, characterized by a lack of planning and organization. The memory of the inhabitants identified mass movements that have occurred since the mid-20th century, with the highest frequency of occurrence recorded in the last decade of the present century (2018, 2022, and 2024). Furthermore, it was possible to identify several factors within the knowledge of the inhabitants that can be considered premonitory of a mass movement, specifically a flood, and that must be incorporated as critical elements in decision-making, both individual and collective, for the evacuation of the area. Full article
Show Figures

Figure 1

8 pages, 18297 KB  
Proceeding Paper
Experimental Investigation on the Formation of Adiabatic Shear Bands (ASB) During Dynamic Compression of AISI 1045 Steel at Different Strain Rates
by Konstantina Karantza, Jari Rämö, Mikko Hokka and Dimitrios Manolakos
Eng. Proc. 2025, 119(1), 47; https://doi.org/10.3390/engproc2025119047 - 31 Dec 2025
Viewed by 109
Abstract
This study investigates the development of adiabatic shear bands (ASBs) in AISI 1045 carbon steel under high-strain-rate uniaxial compression, emphasizing the conditions governing their onset and growth. Split Hopkinson pressure bar (SHPB) experiments were carried out at strain rates of 1000, 2000 and [...] Read more.
This study investigates the development of adiabatic shear bands (ASBs) in AISI 1045 carbon steel under high-strain-rate uniaxial compression, emphasizing the conditions governing their onset and growth. Split Hopkinson pressure bar (SHPB) experiments were carried out at strain rates of 1000, 2000 and 4000 s−1 with controlled displacement/strain interruption to capture gradual ASB formation throughout the process. Stress–strain data were analyzed alongside optical microscopy to determine the critical strain for ASB initiation, document ASB morphology, dimensions and type, and connect ASB formulating stages to material macroscopic mechanical behavior. The observations clarify how deformation evolves from homogenous plastic flow to localized shear instability as the strain and strain rate increase, linking mechanical response to microstructural features. Integrating these results, the effects of strain rate and strain progress on ASB formation and evolution characteristics are investigated. These findings enhance our understanding of shear localization phenomena under dynamic loading and provide a basis for predicting failure modes in structural applications. Full article
Show Figures

Figure 1

32 pages, 3111 KB  
Article
Free and Transient Vibration Analysis of Sandwich Piezoelectric Laminated Beam with General Boundary Conditions
by Xiaoshuai Zhang, Wei Fu, Zixin Ning, Ningze Sun, Yang Li, Ziyuan Yang and Sen Jiu
Materials 2026, 19(1), 136; https://doi.org/10.3390/ma19010136 - 30 Dec 2025
Viewed by 248
Abstract
This study comprehensively analyzes the free vibration and transient response for a sandwich piezoelectric laminated beam with elastic boundaries in a thermal environment. Quasi-3D shear deformation beam theory (Q3DBT) and Hamilton’s principle are used to obtain the thermo-electro-mechanical coupling equations, and the method [...] Read more.
This study comprehensively analyzes the free vibration and transient response for a sandwich piezoelectric laminated beam with elastic boundaries in a thermal environment. Quasi-3D shear deformation beam theory (Q3DBT) and Hamilton’s principle are used to obtain the thermo-electro-mechanical coupling equations, and the method of reverberation-ray matrix (MRRM) is utilized to integrate the phase and scattering relationship of the structure in a unified approach. Specifically, the scattering relationship established by the Mixed Rigid-Rod Model (MRRM) via dual coordinate systems describes the general dynamic model of the beam using generalized displacements and generalized forces at the two endpoints. This analytical solution is compared with the finite element numerical results based on Solid5 and Solid45 elements. The similarity of this approach lies in the fact that solid elements can account for the Poisson effect of thick beams, while the difference is that solid elements have a certain width; here, the error is minimized by adopting a single-element division in the width direction. Comparison of the numerical results under different geometric parameters and boundary conditions with the simulation software proves that MRRM has good accuracy and stability in analyzing the dynamic performance of sandwich piezoelectric laminated beams. On this basis, a spring-supported boundary technology is introduced to expand the flexibility of classical boundary conditions, and a detailed parameterization study is conducted on the material properties of the base layer, including the material parameters, geometric property, and the external temperature. The study in this article provides many new results for sandwich-type piezoelectric laminated structures to help further research. Full article
Show Figures

Figure 1

18 pages, 5589 KB  
Article
Research on Unsteady Burgers Creep Constitutive Model and Secondary Development Application
by Ruonan Zhu, Bo Wu, Shixiang Xu, Xi Liu and Heshan Li
Appl. Sci. 2026, 16(1), 424; https://doi.org/10.3390/app16010424 - 30 Dec 2025
Viewed by 167
Abstract
Considering the complexity and diversity of water-rich soft soil strata, indoor triaxial shear tests and creep tests were conducted on soft soil to explore its deformation law and creep characteristics. To address the nonlinear characteristics of soft soil creep, a nonlinear pot element [...] Read more.
Considering the complexity and diversity of water-rich soft soil strata, indoor triaxial shear tests and creep tests were conducted on soft soil to explore its deformation law and creep characteristics. To address the nonlinear characteristics of soft soil creep, a nonlinear pot element was proposed and substituted for the two linear pot elements in the Burgers model, thus establishing an unsteady parametric Burgers model. The one-dimensional creep equation of the unsteady Burgers model was derived, theoretically determining that the unsteady model can describe three stages of creep. Based on this, the creep equation of the unsteady Burgers model was extended to a three-dimensional stress state, and the triaxial compression creep test curves of Ningbo soft soil were fitted and parameters identified. The above model was derived from a three-dimensional finite difference scheme suitable for numerical solution in FLAC3D. A custom constitutive creep model was developed in FLAC3D, and the non-accelerated creep stage and accelerated creep stage of the improved model were analyzed to verify the accuracy and reliability of the constitutive model. The results show that the numerical simulation results and the indoor creep test results are in good agreement in terms of strain increment and the creep change curve, which confirms the effectiveness and applicability of the proposed unsteady Burgers creep constitutive model and its secondary development application. Full article
Show Figures

Figure 1

Back to TopTop