Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,684)

Search Parameters:
Keywords = serum albumin protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1372 KiB  
Article
Risk Factors of Histopathological Crescent Formation in Pediatric IgA Vasculitis Nephritis
by Yanyan Jin, Yi Xie, Qian Lin, Yu Zhu, Limin Huang, Yang He and Haidong Fu
Medicina 2025, 61(8), 1421; https://doi.org/10.3390/medicina61081421 - 6 Aug 2025
Abstract
Background and Objectives: This study aimed to explore the risk factors of histopathological crescent formation in pediatric IgA vasculitis nephritis (IgAVN). Materials and Methods: Enrolled patients with biopsy-proven IgAVN from Zhejiang University’s hospital were split into two groups: 377 with no [...] Read more.
Background and Objectives: This study aimed to explore the risk factors of histopathological crescent formation in pediatric IgA vasculitis nephritis (IgAVN). Materials and Methods: Enrolled patients with biopsy-proven IgAVN from Zhejiang University’s hospital were split into two groups: 377 with no crescents on histopathology (Group 1) and 364 with crescentic nephritis (Group 2). Collected data included clinical features, lab indicators, histopathological grading, and factors causing glomerular sclerosis. Logistic regression was used to assess factors affecting crescent formation in IgAVN. Double-immunofluorescence assay was used to detect TGF-β1, MCP-1, α-SMA, Collagen I, and FN1 in kidney biopsy specimens. The relationship between kidney fibrosis factors and histopathological grade were analyzed using Chi-square and Pearson tests. Results: A total of 741 patients with IgAVN were included in the study. Univariate logistic regression identified potential factors related to crescent formation, including age, gender, clinical classification, hematuria grade, 24 h urine protein level, peripheral white blood cells (WBCs), serum albumin, Cystatin-C, APTT, and PT. Multivariate analysis revealed statistical significance for age, 24 h urine protein, and WBCs across pathological grades (p < 0.05). Mantel–Haenszel Chi-square tests indicated a linear relationship between IgAVN pathological grade and α-SMA, TGF-β1, MCP-1, and FN1. Pearson correlation analysis confirmed a positive correlation between pathological grade and these markers. Conclusions: Age, 24 h urinary protein, and blood WBCs are identified as risk factors for histopathological crescent formation in children with IgAVN. Additionally, a higher pathological grade is associated with more pronounced fibrosis indicators. Full article
(This article belongs to the Section Pediatrics)
Show Figures

Figure 1

16 pages, 1298 KiB  
Article
Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
by Jianzhou Shi, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao and Guirong Sun
Animals 2025, 15(15), 2300; https://doi.org/10.3390/ani15152300 - 6 Aug 2025
Abstract
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), [...] Read more.
The aim was to investigate the genetic effects of a SNP located in the precursor region of gga-miR-3528. (1) Single-nucleotide polymorphisms within precursor regions of microRNAs play crucial biological roles. (2) Utilizing a Gushi–Anka F2 resource population (n = 860), we screened and validated miRNA SNPs. A SNP mutation in the miR-3528 precursor region was identified. Specific primers were designed to amplify the polymorphic fragment. Genotyping was performed for this individual SNP across the population, using the MassArray system. Association analyses were conducted between this SNP and chicken growth and body measurement traits, carcass traits, meat quality traits, and serum enzyme activities. (3) The rs14098602 (+12 bp A > G) was identified within the precursor region of gga-miR-3528. Significant associations (p < 0.05) were observed between this SNP and chicken growth traits (body weight at the age of 0 day, body weight at the age of 2 weeks, and body weight at the age of 4 weeks), carcass traits (evisceration weight), meat quality traits (subcutaneous fat rate and pectoral muscle density), and serum enzyme activities (total protein, albumin, globulin, cholinesterase, and lactate dehydrogenase). (4) These findings suggest that the polymorphism at rs14098602 may influence chicken growth, meat quality, and serum biochemical indices, through specific mechanisms. The gga-miR-3528 gene likely plays an important role in chicken development. Therefore, this SNP can serve as a molecular marker for genetic breeding and auxiliary selection of growth-related traits, facilitating the rapid establishment of elite chicken populations with superior genetic resources. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 1040 KiB  
Article
Alcalase Specificity by Different Substrate Proteins Under Different Conditions: The Enzyme Immobilization on Carrageenan Beads Strongly Affects the pH/Activity Curve Depending on the Substrate Protein
by Alan Portal D’Almeida, Pedro Abellanas-Perez, Luciana Rocha Barros Gonçalves, Tiago Lima de Albuquerque, Ivanildo José da Silva Junior and Roberto Fernandez-Lafuente
Catalysts 2025, 15(8), 750; https://doi.org/10.3390/catal15080750 - 5 Aug 2025
Abstract
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity [...] Read more.
Alcalase was immobilized–stabilized on carrageenan beads following a previously described protocol. Then, the activities of free and immobilized enzymes were compared using different protein substrates (casein, (CS), bovine serum albumin (BSA), or hemoglobin (HG)) at different pH values and temperatures. The observed activity depended on the substrate protein and enzyme formulation used. The highest enzyme activity could be observed at pHs 5, 7, or 10, depending on the substrate protein and the Alcalase formulation. The effect of the temperature at these pHs on the activity versus the different substrate proteins showed a common pattern. At low temperatures, the immobilized enzyme presented higher (mainly at acidic-neutral pH values and using BSA) or similar specific activity than the free enzyme. At temperatures near the optimal for the free enzyme, it became the most active, while at higher temperatures, the immobilized enzyme recovered the lead, although differences in the optimal temperature were not very significant. This may be explained by the lower mobility of the immobilized–stabilized enzyme. The immobilized enzyme could be much more active than the free enzyme or slightly less active, even using mild conditions, depending on the substrate protein, pH, and temperature used to determine the enzyme activity. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

12 pages, 1185 KiB  
Article
Clostridioides difficile Infections: Epidemiological and Laboratory Data from the Internal Medicine Departments of a Tertiary Care Hospital in Athens, Greece, During the Past Decade
by Dimitris Kounatidis, Edison Jahaj, Eleni V. Geladari, Kyriaki Papachristodoulou, Fotis Panagopoulos, Georgios Marakomichelakis, Vasileios Papastamopoulos, Vasilios Sevastianos and Natalia G. Vallianou
Medicina 2025, 61(8), 1416; https://doi.org/10.3390/medicina61081416 - 5 Aug 2025
Abstract
Background and Objectives: Clostridioides difficile infection (CDI) poses a major public health problem worldwide. Materials and Methods: In this retrospective study, we included 274 patients with CDI, who were hospitalized in Internal Medicine Departments in Evangelismos General Hospital in Athens, Greece, [...] Read more.
Background and Objectives: Clostridioides difficile infection (CDI) poses a major public health problem worldwide. Materials and Methods: In this retrospective study, we included 274 patients with CDI, who were hospitalized in Internal Medicine Departments in Evangelismos General Hospital in Athens, Greece, during the past decade. Demographic, clinical and laboratory parameters of the patients were recorded. Statistical analysis revealed an association between older age and mortality as well as heart failure and mortality among patients with CDI. Results: Notably, WBC (white blood count), neutrophils, NLR (neutrophil-to-lymphocyte ratio), dNLR (derived NLR), SII (systemic immune–inflammation index) and hs-CRP (high-sensitivity C-reactive protein) demonstrated a positive association with mortality, whereas serum albumin levels and PNR (platelet-to-neutrophil ratio) exhibited an inverse relationship with mortality. We propose that the aforementioned biomarkers may be used as prognostic parameters regarding mortality from CDI. Conclusions: Large scale studies among patients with CDI with the advent of AI (artificial intelligence) may incorporate demographic, clinical and laboratory features into prognostic scores to further characterize the global CDI threat. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

17 pages, 458 KiB  
Article
Effects of Chestnut Tannin Extract on Enteric Methane Emissions, Blood Metabolites and Lactation Performance in Mid-Lactation Cows
by Radiša Prodanović, Dušan Bošnjaković, Ana Djordjevic, Predrag Simeunović, Sveta Arsić, Aleksandra Mitrović, Ljubomir Jovanović, Ivan Vujanac, Danijela Kirovski and Sreten Nedić
Animals 2025, 15(15), 2238; https://doi.org/10.3390/ani15152238 - 30 Jul 2025
Viewed by 153
Abstract
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), [...] Read more.
Dietary tannin supplementation represents a potential strategy to modulate rumen fermentation and enhance lactation performance in dairy cows, though responses remain inconsistent. A 21-day feeding trial was conducted to evaluate the effect of chestnut tannin (CNT) extract on the enteric methane emissions (EME), blood metabolites, and milk production traits in mid-lactation dairy cows. Thirty-six Holstein cows were allocated to three homogeneous treatment groups: control (CNT0, 0 g/d CNT), CNT40 (40 g/d CNT), and CNT80 (80 g/d CNT). Measurements of EME, dry matter intake (DMI), milk yield (MY), and blood and milk parameters were carried out pre- and post-21-day supplementation period. Compared with the no-additive group, the CNT extract reduced methane production, methane yield, and methane intensity in CNT40 and CNT80 (p < 0.001). CNT40 and CNT80 cows exhibited lower blood urea nitrogen (p = 0.019 and p = 0.002) and elevated serum insulin (p = 0.003 and p < 0.001) and growth hormone concentrations (p = 0.046 and p = 0.034), coinciding with reduced aspartate aminotransferase (p = 0.016 and p = 0.045), and lactate dehydrogenase (p = 0.011 and p = 0.008) activities compared to control. However, CNT80 had higher circulating NEFA and BHBA than CNT0 (p = 0.003 and p = 0.004) and CNT40 (p = 0.035 and p = 0.019). The blood glucose, albumin, and total bilirubin concentrations were not affected. MY and fat- and protein-corrected milk (FPCM), MY/DMI, and FPCM/DMI were higher in both CNT40 (p = 0.004, p = 0.003, p = 0.014, p = 0.010) and CNT80 (p = 0.002, p = 0.003, p = 0.008, p = 0.013) cows compared with controls. Feeding CNT80 resulted in higher protein content (p = 0.015) but lower fat percentage in milk (p = 0.004) compared to CNT0. Milk urea nitrogen and somatic cell counts were significantly lower in both CNT40 (p < 0.001, p = 0.009) and CNT80 (p < 0.001 for both) compared to CNT0, while milk lactose did not differ between treatments. These findings demonstrate that chestnut tannin extract effectively mitigates EME while enhancing lactation performance in mid-lactation dairy cows. Full article
(This article belongs to the Special Issue Advances in Nutrition and Feeding Strategies for Dairy Cows)
Show Figures

Figure 1

27 pages, 2602 KiB  
Article
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines
by Anna V. Bychkova, Maria G. Gorobets, Anna V. Toroptseva, Alina A. Markova, Minh Tuan Nguyen, Yulia L. Volodina, Margarita A. Gradova, Madina I. Abdullina, Oksana A. Mayorova, Valery V. Kasparov, Vadim S. Pokrovsky, Anton V. Kolotaev and Derenik S. Khachatryan
Pharmaceutics 2025, 17(8), 982; https://doi.org/10.3390/pharmaceutics17080982 - 30 Jul 2025
Viewed by 365
Abstract
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: [...] Read more.
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: Composition, stability and integrity of the coating, and peroxidase-like activity of FAMs are characterized using UV/Vis spectrophotometry (colorimetric test using o-phenylenediamine (OPD), Bradford protein assay, etc.), spectrofluorimetry, dynamic light scattering (DLS) and electron magnetic resonance (EMR). The selectivity of the FAMs accumulation in cancer cells is analyzed using flow cytometry and confocal laser scanning microscopy. Results: FAMs (dN~55 nm by DLS) as a drug delivery platform have been administered to cancer cells (human breast adenocarcinoma MCF-7 and MDA-MB-231 cell lines) in vitro. Methylene blue, as a model photosensitizer, has been non-covalently bound to FAMs. An increase in photoinduced cytotoxicity has been found upon excitation of the photosensitizer bound to the coating of FAMs compared to the single photosensitizer at equivalent concentrations. The suitability of the nanosystems for photodynamic therapy has been confirmed. Conclusions: FAMs are able to effectively enter cells with increased folate receptor expression and thus allow antitumor photosensitizers to be delivered to cells without any loss of their in vitro photodynamic efficiency. Therapeutic and diagnostic applications of FAMs in oncology are discussed. Full article
Show Figures

Graphical abstract

20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Viewed by 408
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Tartary Buckwheat Flavonoids and 25-Hydroxyvitamin D3 Mitigate Fatty Liver Syndrome in Laying Hens: Association with Cecal Microbiota Remodeling and Lipid Metabolic Homeostasis
by Dongdong Li, Binlong Chen, Yi Zhang, Zengwen Huang, Zhiqiu Huang, Xi Chen, Caiyun Sun, Yunxia Qi, Yaodong Hu, Ting Chen and Silu Wang
Animals 2025, 15(15), 2210; https://doi.org/10.3390/ani15152210 - 27 Jul 2025
Viewed by 358
Abstract
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five [...] Read more.
The objective of this experiment was to investigate the effects of tartary buckwheat flavonoids (TBF) and 25-hydroxyvitamin D3 (25-OHD) on fatty liver syndrome (FLS) in laying hens. A total of 450 35-wk-old Lohmann laying hens were selected and randomly divided into five groups, with six replicates per treatment and 15 laying hens in each replicate. The control group was fed a corn-soybean meal basal diet. The FLS group was fed a high- energy–low-protein (HELP) diet, and the other three experimental groups were fed HELP diets supplemented with 60 mg/kg TBF, 69 μg/kg 25-OHD, and 60 mg/kg TBF plus 69 μg/kg 25-OHD, respectively. The experiment lasted 8 weeks. The results demonstrated that feeding laying hens with a HELP diet led to a significant accumulation of fat in their livers, liver enlargement and yellowing, as well as a decline in liver antioxidant capacity and an aggravation of inflammation. TBF alone, 25-OHD alone, and their combination had no effect on the laying performance of laying hens fed with a HELP diet. However, 25-OHD significantly enhanced the albumin content, eggshell strength, and eggshell thickness of eggs (p < 0.05). Compared with the HELP group, TBF, 25-OHD, or their combination reduced serum LDL-C and TG (p < 0.05). The combined treatment further lowered serum NEFA and MDA, enhanced liver SOD activity (p < 0.05), and unlike TBF alone (which reduced hepatic TG) or 25-OHD alone (which decreased liver index), reduced both liver index and hepatic TG (p < 0.05). Liver gene expression analysis showed that combined TBF and 25-OHD significantly inhibited the expression of fat synthesis-related genes (ACC, FAS, GPAT1, ChREBP1, LXRα, SREBP-1C, SREBP-2, FABP) as well as inflammation-related genes (IL-6, TNF-α, NF-κB, TLR4) (p < 0.05). At the phylum level of the cecal microbiota, TBF increased the abundance of Bacteroidota (p < 0.05), and combined TBF and 25-OHD tended to increase the abundance of Firmicutes_D. At the genus level, TBF increased the abundance of Phocaeicola_A (p < 0.05). Furthermore, TBF, 25-OHD, or their combination reduced the abundance of Faecalibacterium (p < 0.05). These findings suggest that combined TBF and 25-OHD mitigates FLS in laying hens potentially through remodeling gut microbiota and maintaining lipid metabolic homeostasis. Full article
Show Figures

Figure 1

22 pages, 1822 KiB  
Article
Increased Concentration of Anti-Egg Albumin Antibodies in Cerebrospinal Fluid and Serum of Patients with Alzheimer’s Disease—Discussion on Human Serpins’ Similarity and Probable Involvement in the Disease Mechanism
by Dionysia Amanatidou, Magdalini Tsolaki, Vasileios Fouskas, Ioannis Gavriilidis, Maria Myriouni, Anna Anastasiou, Efthimia Papageorgiou, Diona Porfyriadou, Zoi Parcharidi, Eleftheria Papasavva, Maria Fili and Phaedra Eleftheriou
Biomolecules 2025, 15(8), 1085; https://doi.org/10.3390/biom15081085 - 27 Jul 2025
Viewed by 501
Abstract
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in [...] Read more.
Alzheimer’s Disease (AD) is a multifactorial process. Amyloid plaque formation constitutes the main characteristic of the disease. Despite the identification of numerous factors associated with AD, the mechanism remains unclear in several aspects. Disturbances in intestinal and blood–brain barrier (BBB) penetration, observed in AD, may facilitate immunologic response to food-derived antigens. In the present study, antibodies against egg albumin, bovine-casein, and N-Glycolyl-Neuraminic acid (Neu5Gc) were measured in the cerebrospinal fluid (CSF) and serum of the patients using an enzyme-linked immunosorbent assay (ELISA). Zero anti-Neu5Gc and low concentrations of anti-casein antibodies were detected. Increased anti-native egg albumin antibodies were present in the serum of patients of all stages with 65% positivity (p < 0.001) in mild disease and a higher percentage in females (81.9%, p < 0.001). Lower serum positivity to anti-denatured egg albumin antibodies was observed, showing a gradual increase with severity and higher prevalence also in females. In the CSF, anti-native and anti-denatured egg albumin antibodies were mainly observed in severely ill patients with accumulative positivity to either antigen, reaching 61.8% in severe vs. 15% in mild disease (p < 0.001). Increased values were mainly observed in males. Anti-egg albumin antibodies may be implicated in the disease mechanism through sequence/structural similarity with human proteins, mainly serpins, and it would be worth consideration in further investigations and therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 933 KiB  
Article
A Prospective Interventional Study on the Beneficial Effect of Fish Oil-Enriched High-Protein Oral Nutritional Supplement (FOHP-ONS) on Malnourished Older Cancer Patients
by Hui-Fang Chiu, Shu Ru Zhuang, You-Cheng Shen, Subramanian Thangaleela and Chin-Kun Wang
Nutrients 2025, 17(15), 2433; https://doi.org/10.3390/nu17152433 - 25 Jul 2025
Viewed by 387
Abstract
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a [...] Read more.
Background: Malnutrition and cancer-related fatigue (CRF) are prevalent in cancer patients, significantly impacting prognosis and quality of life. Oral nutritional supplements (ONSs) enriched with protein and ω-3 fatty acids may improve nutritional status and mitigate CRF. This study evaluates the effects of a high-protein, fish oil-enriched ONS (FOHP-ONS) on nutritional intake, body composition, fatigue, and quality of life in malnourished cancer patients. Methods: Cancer patients with malnutrition or inadequate food intake received 8 weeks of FOHP-ONS (2 cans/day, providing 4.2 g/day of ω-3 fatty acids). Dietary intake, body weight, handgrip strength, serum biochemical markers, nutritional status (PG-SGA), fatigue (BFI-T), and quality of life (EORTC QLQ-C30) were assessed at baseline, week 4, and week 8. Results: Of the 33 enrolled patients, 30 completed the study. Energy and protein intake significantly increased (p < 0.05), and body BMI and handgrip strength showed significant improvements (p < 0.05), while muscle mass did not change significantly. Nutritional status, assessed by PG-SGA, improved, with the proportion of severely malnourished patients (Stage C) decreasing from 46.7% to 13.3%, and moderately malnourished patients (Stage B) improving to well-nourished status (Stage A) from 10.0% to 30.0% (p < 0.001). Serum albumin levels increased significantly (p < 0.05), while fasting blood glucose significantly decreased (p < 0.05). Additionally, triglyceride levels significantly decreased (p < 0.05), while total cholesterol and LDL-C showed a downward trend. Cancer-related fatigue scores improved across all domains (p < 0.05), and quality of life significantly increased, particularly in physical and role functioning (p < 0.05). Conclusions: FOHP-ONS supplementation improved nutritional intake, body composition, and muscle strength while alleviating CRF and enhancing quality of life in malnourished cancer patients. These findings support its potential role in nutritional intervention for malnourished cancer patients. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 486 KiB  
Article
Stepwise Incremental Hemodialysis and Low-Protein Diet Supplemented with Keto-Analogues Preserve Residual Kidney Function: A Randomized Controlled Trial
by Piyawan Kittiskulnam, Khajohn Tiranathanagul, Paweena Susantitaphong, Jeerath Phannajit, Yuda Chongpison, Pagaporn Asavapujanamanee, Bongkod Surattichaiyakul, Kullaya Takkavatakarn, Pisut Katavetin, Kamonchanok Metta and Kearkiat Praditpornsilpa
Nutrients 2025, 17(15), 2422; https://doi.org/10.3390/nu17152422 - 24 Jul 2025
Viewed by 342
Abstract
Background: Rapid loss of residual kidney function (RKF) is associated with unfavorable outcomes. We conducted an RCT to compare the effects on RKF preservation of incremental HD between once-weekly HD (1-WHD) and twice-weekly HD (2-WHD). Methods: ESKD patients with an eGFR of 5–10 [...] Read more.
Background: Rapid loss of residual kidney function (RKF) is associated with unfavorable outcomes. We conducted an RCT to compare the effects on RKF preservation of incremental HD between once-weekly HD (1-WHD) and twice-weekly HD (2-WHD). Methods: ESKD patients with an eGFR of 5–10 mL/min/1.73 m2 and urine output of ≥800 mL/day were randomly assigned to receive either once-weekly HD (1-WHD) or twice-weekly HD (2-WHD) for 12 months. Patients in the 1-WHD group were prescribed once-weekly HD combined with low-protein diet (0.6 g/kg/day) supplemented with keto-analogues (KAs) 0.12 g/kg/day. In the 2-WHD group, patients received twice-weekly HD with a regular-protein diet. Primary outcomes were changes in RKF by renal clearance and urine volume. Nutritional status, muscle parameters, and quality of life (QoL) were also assessed. Results: A total of 30 incident HD patients were randomized. Baseline RKF, urine volume, and demographic were not different between groups. After 3 months, urine volume was significantly higher in the 1-WHD group than in the 2-WHD group (1921 ± 767 mL/day vs. 1305 ± 599 mL/day, p = 0.02), and these significant findings persisted throughout the entire study period. For RKF, 1-WHD also had a lesser decline in urinary urea (CUrea) and creatinine clearance (CCr) than 2-WHD, with statistically significant differences observed from months 6–12. By month 6, the 1-WHD group exhibited significantly higher CUrea and CCr compared to the 2-WHD group, with CUrea at 3.2 ± 2.3 vs. 1.7 ± 1.0 mL/min (p = 0.03) and CCr at 5.9 ± 3.6 vs. 3.8 ± 1.4 mL/min (p = 0.04), respectively. Serum albumin levels, skeletal muscle mass, anemia status, metabolic parameters, protein-bound uremic toxins, and QoL scores were comparable between the two groups. Conclusions: Incremental HD, starting with once-weekly HD combined with protein restriction supplemented with KAs, appears to better preserve RKF among incident HD patients compared to twice-weekly HD with a regular-protein diet. This HD regimen was also associated with safety in metabolic and nutritional profiles. Full article
(This article belongs to the Special Issue Protein Diet and Keto-Analogues in Chronic Kidney Disease)
Show Figures

Figure 1

17 pages, 4120 KiB  
Article
Albumin Reduces Hepatic Steatosis and Inflammation in High-Fat-Diet-Fed Mice
by Claire Rennie, Sheila Donnelly and Kristine McGrath
Int. J. Mol. Sci. 2025, 26(15), 7156; https://doi.org/10.3390/ijms26157156 - 24 Jul 2025
Viewed by 220
Abstract
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether [...] Read more.
There are currently no approved therapeutic treatments targeting metabolic dysfunction-associated steatotic liver disease (MASLD). Albumin, a liver-produced plasma protein with anti-inflammatory and antioxidant properties, is reduced in advanced liver disease. Considering the role of chronic obesity-induced inflammation in MASLD pathogenesis, we investigated whether albumin administration could prevent disease progression to metabolic dysfunction-associated steatohepatitis (MASH). MASLD was induced in mice using a high-fat and high-cholesterol (PC) treatment for 8 weeks, followed by treatment with bovine serum albumin (BSA; 0.8 mg/kg) every three days for another 8 weeks. This regimen prevented time-dependent weight gain, regardless of diet, with 57% and 27% reductions in mice fed a standard chow (Std Chow) or PC diet, respectively. Further, supplementation reduced nuclear factor kappa B (NF-κB) activation by 2.8-fold (p = 0.0328) in PC-fed mice, consistent with albumin’s known anti-inflammatory properties. Unexpectedly, albumin also reduced hepatic neutral lipid accumulation and circulating non-esterified fatty acids. While PC-fed mice did not exhibit full progression to MASH, albumin treatment significantly increased hepatic matrix metalloproteinase-2 expression, suggesting the inhibition of early fibrotic signalling. While further studies are needed to elucidate the underlying mechanisms, these findings offer new insight into the potential of albumin, either alone or in combination with other therapies, to reduce hepatic steatosis in MASLD. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

14 pages, 595 KiB  
Review
The Mechanical Properties of Erythrocytes Are Influenced by the Conformational State of Albumin
by Ivana Pajic-Lijakovic, Milan Milivojevic, Gregory Barshtein and Alexander Gural
Cells 2025, 14(15), 1139; https://doi.org/10.3390/cells14151139 - 24 Jul 2025
Viewed by 332
Abstract
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, [...] Read more.
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, membrane integrity, and resistance to hemolysis. However, the precise mechanisms by which albumin exerts these effects remain debated, with some studies indicating a stabilizing role and others suggesting the opposite. This review highlights that under high shear rates, albumin molecules may undergo unfolding due to normal stress differences. Such structural changes can significantly alter albumin’s interactions with the erythrocyte membrane, thereby affecting cell mechanical stability. We discuss two potential scenarios explaining how albumin influences erythrocyte mechanics under shear stress, considering both the viscoelastic properties of blood and those of the erythrocyte membrane. Based on theoretical analyses and experimental evidence from the literature, we propose that albumin’s effect on erythrocyte mechanical stability depends on (i) the transition between unfolded and folded states of the protein and (ii) the impact of shear stress on the erythrocyte membrane’s ζ-potential. Understanding these factors is essential for elucidating the complex relationship between albumin and erythrocyte mechanics in physiological and pathological conditions. Full article
(This article belongs to the Special Issue Cell Behavior Under Blood Flow)
Show Figures

Graphical abstract

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 241
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

16 pages, 1501 KiB  
Article
Effects of Modified Attapulgite on Daily Weight Gain, Serum Indexes and Serum Metabolites in Fattening Beef Cattle
by Jiajie Wang, Hanfang Zeng, Hantong Weng, Haomiao Chang, Yunfei Zhai, Zhihui Huang, Chenchen Chu, Haihui Wang and Zhaoyu Han
Animals 2025, 15(15), 2167; https://doi.org/10.3390/ani15152167 - 23 Jul 2025
Viewed by 257
Abstract
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to [...] Read more.
In this study, we investigated the effects of dietary supplementation with thermally modified attapulgite on the daily weight gain, serum biochemical indices, and serum metabolites of Simmental fattening cattle. A total of 30 healthy Simmental fattening beef calves of similar age (8 to 9 months old) and body weight (370 ± 10 kg) were randomly divided into two groups, each containing 15 animals. A control group was fed the basal diet, and a treatment group was fed the same basal diet with the addition of 4 g/kg of thermally modified attapulgite. After 75 days of formal experiment, the calves in the two groups were weighed, and blood samples were collected by tail vein blood sampling for determinations of the serum biochemical indices and serum metabolites using liquid chromatography–mass spectrometry (LC-MS) analysis. The results indicated that the addition of thermally modified attapulgite to the diet had no significant effects on the daily weight gain of fattening beef cattle. After feeding with modified attapulgite, the glutathione peroxidase and superoxide dismutase activities in the serum of the experimental group were 55.02% (257.26 U·mL−1 to 165.95 U·mL−1, p < 0.05) and 13.11% (18.98 U·mL−1 to 16.78 U·mL−1, p < 0.05) higher than that in the control group. Compared with the control group, the tumor necrosis factor-alpha content was reduced by 14.50% (31.27 pg·mL−1 to 36.57 pg·mL−1, p < 0.01), and the concentration of interleukin-6 and lipopolysaccharide decreased by 17.00% (34.33 pg·mL−1 to 41.36 pg·mL−1, p < 0.001) and 23.05% (51.34 EU·L−1 to 66.72 EU·L−1, p < 0.001) in the serum of the experimental group. Contrastingly, the thermally modified attapulgite had no significant effects on the levels of serum total protein, albumin, or globulin in Simmental fattening cattle (p > 0.05). Furthermore, the results of serum metabolomic analyses revealed that there were a total of 98 differential metabolites, which were mainly enriched with respect to glycerophospholipid metabolism, Th1 and Th2 cell differentiation, autophagy-other, retrograde endogenous cannabinoid signaling, and the NF-κB signaling pathway. Overall, thermally modified attapulgite was found to effectively increase the activity of antioxidant enzymes, reduce serum inflammatory mediators, may suppress oxidative damage, enhance immunity, and have a positive influence on the health of Simmental fattening beef calves. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

Back to TopTop