Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Establishment of the Chicken Resource Population
2.2. Measured Traits
2.3. Serum Biochemical Indicators
2.4. Polymorphism Detection
2.5. Genotyping
2.6. Secondary-Structure Prediction of Pre-miR-3528
2.7. Statistical Analysis of the Data
3. Results
3.1. Detection of Gga-miRNA-3528 Gene Polymorphism
3.2. Pre-miR-3528 SNP Genotyping
3.3. Structural Prediction of Pre-miR-3528
3.4. Association Analysis of the Pre-miR-3528 SNP with Multiple Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Ru, J.; Meng, X.; Song, J.; Jiang, Q.; Li, S.; Jiang, J.; Li, Y.; Ali, H.H. Role of SNPs in the Biogenesis of Mature miRNAs. BioMed Res. Int. 2021, 2021, 2403418. [Google Scholar] [CrossRef]
- Bhatia, A.; Upadhyay, A.K.; Sharma, S. Screening and analysis of single nucleotide polymorphism in the 3′-UTR microRNA target regions and its implications for lung tumorigenesis. Pharmacogenomics 2024, 25, 299–314. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Liu, S.; Yang, J.; Shi, L.; Yao, Y. The associations and roles of microRNA single-nucleotide polymorphisms in cervical cancer. Int. J. Med. Sci. 2021, 18, 2347–2354. [Google Scholar] [CrossRef]
- Rykova, E.; Ershov, N.; Damarov, I.; Merkulova, T. SNPs in 3′UTR miRNA Target Sequences Associated with Individual Drug Susceptibility. Int. J. Mol. Sci. 2022, 23, 13725. [Google Scholar] [CrossRef]
- Wu, K.; Kong, F.; Zhang, J.; Tang, Y.; Chen, Y.; Chao, L.; Nie, L.; Huang, Z. Recent Progress in Single-Nucleotide Polymorphism Biosensors. Biosensors 2023, 13, 864. [Google Scholar] [CrossRef]
- Bila, L.; Malatji, D.P.; Tyasi, T.L. Single nucleotide polymorphisms of growth hormone gene in cattle and their association with growth traits: A systematic review. Trop. Anim. Health Prod. 2024, 56, 141. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, Z.; Zhao, X.; Sun, J.; Yue, S.; Li, M.; Chen, Z.; Ma, Z.; Zhao, H. Whole Genome Resequencing Identifies Single-Nucleotide Polymorphism Markers of Growth and Reproduction Traits in Zhedong and Zi Crossbred Geese. Genes 2023, 14, 487. [Google Scholar] [CrossRef]
- Choi, J.S.; Jin, S.K.; Jeong, Y.H.; Jung, Y.C.; Jung, J.H.; Shim, K.S.; Choi, Y.I. Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea. Asian-Australas. J. Anim. Sci. 2016, 29, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Laxmi; Golmei, P.; Srivastava, S.; Kumar, S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur. J. Pharmacol. 2024, 972. [Google Scholar]
- Zhou, H.; Lamont, S.J. Association of transforming growth factor beta genes with quantitative trait loci for antibody response kinetics in hens. Anim. Genet. 2003, 34, 275–282. [Google Scholar] [CrossRef]
- Siwek, M.; Cornelissen, S.J.; Nieuwland, M.G.; Buitenhuis, A.J.; Bovenhuis, H.; Crooijmans, R.P.; Groenen, M.A.; de Vries-Reilingh, G.; Parmentier, H.K.; van der Poel, J.J. Detection of QTL for immune response to sheep red blood cells in laying hens. Anim. Genet. 2003, 34, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Lien, C.Y.; Tixier-Boichard, M.; Wu, S.W.; Chen, C.F. Identification of quantitative trait locus and positional candidate loci influencing chicken egg quality under tropical conditions. Trop. Anim. Health Prod. 2024, 56, 359. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Wei, Y.; Kang, X.; Chen, H.; Sun, G.; Li, G.; Bai, Y.; Tian, Y.; Huang, Y. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens. Mol. Biol. Rep. 2011, 39, 3153–3160. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.Z.; Wang, Y.W.; Wang, T.J.; Ji, J.; Sun, G.R.; Yao, L.G. Association study of polymorphisms in miRNA-1687 with growth traits of chickens. S Afr. J. Anim. Sci. 2024, 53, 413–421. [Google Scholar] [CrossRef]
- Shi, J.; Sun, G. Effect of pre-miRNA-1658 gene polymorphism on chicken growth and carcass traits. Asian Australas. J. Anim. Sci. 2016, 30, 455–461. [Google Scholar] [CrossRef]
- Han, R.L.; Li, Z.J.; Li, M.J.; Li, J.Q.; Lan, X.Y.; Sun, G.R.; Kang, X.T.; Chen, H. Novel 9-bp indel in visfatin gene and its associations with chicken growth. Br. Poult. Sci. 2011, 52, 52–57. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.; Yan, F.; Liu, X.; Jiang, R.; Han, R.; Li, Z.; Li, G.; Tian, Y.; Kang, X.; et al. Effect of polymorphism within miRNA-1606 gene on growth and carcass traits in chicken. Gene 2015, 566, 8–12. [Google Scholar] [CrossRef]
- Wang, Y.C.; Jiang, R.R.; Kang, X.T.; Li, Z.J.; Han, R.L.; Geng, J.; Fu, J.X.; Wang, J.F.; Wu, J.P. Identification of single nucleotide polymorphisms in the ASB15 gene and their associations with chicken growth and carcass traits. Genet. Mol. Res. 2015, 14, 11377–11388. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, D.; Tang, S.; Li, D.; Han, R.; Tian, Y.; Li, H.; Li, G.; Li, W.; Liu, X.; et al. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens. Poult. Sci. 2019, 98, 556–565. [Google Scholar] [CrossRef]
- Du, J.; Xu, Y.; Zhang, P.; Zhao, X.; Gan, M.; Li, Q.; Ma, J.; Tang, G.; Jiang, Y.; Wang, J.; et al. MicroRNA-125a-5p Affects Adipocytes Proliferation, Differentiation and Fatty Acid Composition of Porcine Intramuscular Fat. Int. J. Mol. Sci. 2018, 19, 501. [Google Scholar] [CrossRef]
- Reed, K.M.; Mendoza, K.M.; Kono, T.; Powell, A.A.; Strasburg, G.M.; Velleman, S.G. Expression of miRNAs in turkey muscle satellite cells and differential response to thermal challenge. Front. Physiol. 2023, 14, 1293264. [Google Scholar] [CrossRef]
- Hao, D.; Wang, X.; Yang, Y.; Chen, H.; Thomsen, B.; Holm, L.-E. MicroRNA sequence variation can impact interactions with target mRNA in cattle. Gene 2023, 868, 147373. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, T.F.; Coutinho, L.L.; Bruscadin, J.J.; da Silva Diniz, W.J.; Petrini, J.; Andrade, B.G.N.; de Oliveira, P.S.N.; Poleti, M.D.; Cesar, A.S.M.; da Silveira, J.C.; et al. Multi-Omics Approach Reveals miR-SNPs Affecting Muscle Fatty Acids Profile in Nelore Cattle. Genes 2021, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Chen, J.; Dong, X.; Zhang, X.; Luo, W. Transcriptome Data Revealed the circRNA–miRNA–mRNA Regulatory Network during the Proliferation and Differentiation of Myoblasts in Shitou Goose. Animals 2024, 14, 576. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, B.; Zhang, Z.; Luo, Q.; Nie, Q.; Zhang, X.; Li, H. Detection of CD36 gene polymorphism associated with chicken carcass traits and skin yellowness. Poult. Sci. 2023, 102, 102691. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, X.; Zhang, P.; Cao, Y.; Zhang, K.; Qin, P.; Guo, Y.; Li, Z.; Tian, Y.; Kang, X.; et al. ELOVL gene family plays a virtual role in response to breeding selection and lipid deposition in different tissues in chicken (Gallus gallus). BMC Genom. 2022, 23, 705. [Google Scholar] [CrossRef]
- Yuan, R.; Cai, B.; Ma, M.; Zhao, C.; Xian, Y.; Nie, Q.; Zhang, X.; Zhang, D. LncEDCH1 g.1703613 T>C regulates chicken carcass traits by targeting miR-196-2-3p. Poult. Sci. 2024, 103, 103412. [Google Scholar] [CrossRef]
- Ji, G.; Zhang, M.; Tu, Y.; Liu, Y.; Shan, Y.; Ju, X.; Zou, J.; Shu, J.; Sheng, Z.; Li, H. Molecular regulatory mechanisms in chicken feather follicle morphogenesis. Genes 2023, 14, 1646. [Google Scholar] [CrossRef]
- Song, H.; Li, W.; Li, Y.; Zhai, B.; Guo, Y.; Chen, Y.; Han, R.; Sun, G.; Jiang, R.; Li, Z.; et al. Genome-wide association study of 17 serum biochemical indicators in a chicken F2 resource population. BMC Genom. 2023, 24, 98. [Google Scholar] [CrossRef]
Traits | Mean ± SE | p-Value | ||
---|---|---|---|---|
AA | AG | GG | ||
SEW (g) | 1106.10 ± 182.75 | 1102.39 ± 188.64 | 1139.32 ± 149.89 | 0.429 |
EW (g) | 924.69 ± 156.98 b | 925.65 ± 163.75 b | 951.32 ± 129.55 a | 0.036 * |
BMW (g) | 70.64 ± 15.01 | 72.10 ± 16.69 | 74.13 ± 17.10 | 0.092 |
LMW(g) | 98.00 ± 19.92 | 98.85 ± 19.80 | 102.88 ± 18.48 | 0.234 |
CW (g) | 1218.79 ± 194.66 | 1212.37 ± 199.56 | 1259.62 ± 176.48 | 0.756 |
0BW (g) | 30.85 ± 2.83 b | 30.30 ± 2.76 b | 32.12 ± 2.55 a | 0.002 ** |
2BW (g) | 123.63 ± 20.00 b | 119.87 ± 17.90 b | 128.85 ± 14.71 a | 0.005 ** |
4BW (g) | 324.60 ± 49.57 b | 317.81 ± 45.15 b | 330.07 ± 41.55 a | 0.037 * |
6BW (g) | 567.06 ± 107.64 | 557.39 ± 107.19 | 572.21 ± 105.96 | 0.057 |
8BW (g) | 819.49 ± 140.44 | 814.49 ± 141.48 | 820.88 ± 156.56 | 0.209 |
10BW (g) | 1118.61 ± 182.14 | 1112.18 ± 180.41 | 1123.83 ± 165.40 | 0.214 |
12BW (g) | 1357.20 ± 220.90 | 1344.31 ± 221.32 | 1383.76 ± 196.16 | 0.333 |
Traits | SNP Genotype (Mean ± SE) | p-Value | ||
---|---|---|---|---|
AA | AG | GG | ||
0SL (cm) | 2.598 ± 0.018 | 2.575 ± 0.008 | 2.627 ± 0.026 | 0.578 |
4SL (cm) | 5.502 ± 0.039 | 5.474 ± 0.059 | 5.604 ± 0.163 | 0.755 |
8SL (cm) | 7.910 ± 0.044 | 7.920 ± 0.065 | 8.030 ± 0.136 | 0.834 |
12SL (cm) | 9.359 ± 0.043 | 9.354 ± 0.059 | 9.495 ± 0.153 | 0.771 |
4SG (cm) | 2.698 ± 0.010 | 2.674 ± 0.014 | 2.700 ± 0.050 | 0.393 |
8SG (cm) | 3.418 ± 0.013 | 3.401 ± 0.019 | 3.459 ± 0.065 | 0.530 |
12SG (cm) | 3.841 ± 0.015 | 3.828 ± 0.022 | 3.874 ± 0.066 | 0.752 |
4CD (cm) | 4.840 ± 0.032 | 4.880 ± 0.045 | 4.730 ± 0.148 | 0.502 |
8CD (cm) | 6.530 ± 0.044 | 6.520 ± 0.064 | 6.600 ± 0.185 | 0.931 |
12CD (cm) | 7.862 ± 0.039 | 7.901 ± 0.051 | 8.022 ± 0.092 | 0.558 |
4CB (cm) | 4.085 ± 0.024 | 4.080 ± 0.034 | 4.077 ± 0.065 | 0.989 |
8CB (cm) | 5.671 ± 0.029 | 5.689 ± 0.037 | 5.741 ± 0.104 | 0.817 |
12CB (cm) | 6.330 ± 0.031 | 6.330 ± 0.048 | 6.220 ± 0.132 | 0.732 |
4BBL (cm) | 6.192 ± 0.025 | 6.233 ± 0.038 | 6.277 ± 0.094 | 0.524 |
8BBL (cm) | 8.889 ± 0.036 | 8.956 ± 0.053 | 8.786 ± 0.209 | 0.433 |
12BBL (cm) | 10.969 ± 0.038 | 11.037 ± 0.056 | 10.891 ± 0.154 | 0.504 |
4PA (°) | 74.030 ± 0.245 | 74.180 ± 0.260 | 72.410 ± 0.818 | 0.224 |
8PA (°) | 76.540 ± 0.256 | 76.360 ± 0.258 | 75.910 ± 0.767 | 0.780 |
12PA (°) | 79.150 ± 0.197 | 79.180 ± 0.288 | 78.870 ± 0.803 | 0.942 |
4BSL (cm) | 11.543 ± 0.161 | 11.385 ± 0.055 | 11.427 ± 0.150 | 0.786 |
8BSL (cm) | 16.231 ± 0.059 | 16.214 ± 0.083 | 16.241 ± 0.229 | 0.984 |
12BSL (cm) | 19.763 ± 0.064 | 19.704 ± 0.085 | 19.804 ± 0.238 | 0.845 |
4PB (cm) | 5.180 ± 0.036 | 5.150 ± 0.034 | 5.270 ± 0.080 | 0.694 |
8PB (cm) | 6.894 ± 0.043 | 6.862 ± 0.050 | 6.959 ± 0.165 | 0.830 |
12PB (cm) | 8.690 ± 0.040 | 8.586 ± 0.062 | 8.750 ± 0.171 | 0.307 |
Traits | SNP Genotype (Mean ± SE) | p-Value | ||
---|---|---|---|---|
AA | AG | GG | ||
SFR | 1.050 ± 0.067 a | 0.780 ± 0.079 b | 0.720 ± 0.283 b | 0.037 * |
PWR | 0.252 ± 0.003 | 0.249 ± 0.004 | 0.257 ± 0.013 | 0.774 |
WAD | 1181.512 ± 9.806 | 1182.997 ± 13.810 | 1214.227 ± 37.196 | 0.753 |
IFW | 0.774 ± 0.019 | 0.718 ± 0.019 | 0.724 ± 0.074 | 0.163 |
SFT | 0.484 ± 0.017 | 0.436 ± 0.011 | 0.438 ± 0.037 | 0.138 |
PMpH | 6.134 ± 0.038 | 6.110 ± 0.015 | 6.037 ± 0.052 | 0.745 |
LMpH | 6.814 ± 0.129 | 6.646 ± 0.011 | 6.588 ± 0.034 | 0.610 |
LMFR | 0.892 ± 0.002 | 0.891 ± 0.002 | 0.891 ± 0.005 | 0.682 |
PMFR | 0.917 ± 0.002 | 0.917 ± 0.001 | 0.906 ± 0.004 | 0.163 |
LMAP (%) | 66.252 ± 0.502 | 66.649 ± 0.668 | 65.865 ± 1.787 | 0.872 |
PMAP (%) | 66.205 ± 0.459 b | 67.195 ± 0.570 ab | 70.372 ± 1.997 a | 0.058 |
LMFD | 39.333 ± 2.692 | 37.189 ± 0.534 | 37.174 ± 1.448 | 0.847 |
PMFD | 45.674 ± 2.067 | 43.849 ± 0.524 | 45.009 ± 1.843 | 0.821 |
LMD | 922.155 ± 15.890 | 969.665 ± 24.867 | 931.169 ± 52.051 | 0.244 |
PMD | 602.432 ± 8.422 b | 625.318 ± 14.777 ab | 693.943 ± 47.040 a | 0.041 * |
LMWLR | 16.335 ± 0.212 | 16.545 ± 0.294 | 15.843 ± 1.036 | 0.706 |
PMWLR | 24.186 ± 0.244 | 23.414 ± 0.372 | 23.655 ± 1.313 | 0.206 |
Traits | SNP Genotype (Mean ± SE) | p-Value | ||
---|---|---|---|---|
AA | AG | GG | ||
ALT (U/L) | 1.790 ± 0.113 | 2.060 ± 0.148 | 2.150 ± 0.472 | 0.323 |
AST (U/L) | 282.900 ± 3.052 | 287.320 ± 4.659 | 303.780 ± 14.468 | 0.243 |
γ-GT (U/L) | 15.310 ± 0.298 | 16.000 ± 0.380 | 15.610 ± 1.155 | 0.384 |
AKP (U/L) | 713.180 ± 24.875 | 679.910 ± 32.463 | 810.230 ± 104.601 | 0.420 |
TP (g/L) | 43.824 ± 0.410 | 42.344 ± 0.539 | 39.583 ± 1.229 a | 0.008 ** |
ALB (g/L) | 16.884 ± 0.116 a | 16.541 ± 0.139 b | 15.835 ± 0.314 b | 0.024 * |
GLOB (g/L) | 27.066 ± 0.350 a | 25.943 ± 0.454 b | 23.748 ± 1.046 b | 0.019 * |
CHE (kU/L) | 1.951 ± 0.027 a | 1.825 ± 0.033 b | 1.730 ± 0.072 b | 0.005 ** |
CRE (μmol/L) | 3.710 ± 0.329 | 3.840 ± 0.609 | 4.620 ± 1.876 | 0.814 |
GLU (mmol/L) | 8.793 ± 0.176 | 8.690 ± 0.262 | 8.780 ± 0.782 | 0.945 |
TC (mmol/L) | 3.138 ± 0.038 | 3.166 ± 0.050 | 3.342 ± 0.164 | 0.410 |
TG (mmol/L) | 0.412 ± 0.005 | 0.416 ± 0.007 | 0.420 ± 0.014 | 0.887 |
HDL (mmol/L) | 1.955 ± 0.021 | 2.010 ± 0.028 | 2.122 ± 0.092 | 0.070 |
LDL (mmol/L) | 1.034 ± 0.021 | 1.001 ± 0.031 | 1.035 ± 0.080 | 0.676 |
CPK (U/L) | 7297.89 ± 95.24 | 7352.29 ± 136.75 | 7868.57 ± 478.30 | 0.370 |
LDH (U/L) | 2755.96 ± 25.12 a | 2852.82 ± 32.98 b | 2682.61 ± 85.03 a | 0.042 * |
AMY (U/L) | 431.98 ± 10.49 | 423.40 ± 13.05 | 431.61 ± 46.42 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Zhao, J.; Dong, B.; Li, N.; Yao, L.; Sun, G. Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities. Animals 2025, 15, 2300. https://doi.org/10.3390/ani15152300
Shi J, Zhao J, Dong B, Li N, Yao L, Sun G. Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities. Animals. 2025; 15(15):2300. https://doi.org/10.3390/ani15152300
Chicago/Turabian StyleShi, Jianzhou, Jinbing Zhao, Bingxue Dong, Na Li, Lunguang Yao, and Guirong Sun. 2025. "Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities" Animals 15, no. 15: 2300. https://doi.org/10.3390/ani15152300
APA StyleShi, J., Zhao, J., Dong, B., Li, N., Yao, L., & Sun, G. (2025). Genetic Effects of Chicken Pre-miR-3528 SNP on Growth Performance, Meat Quality Traits, and Serum Enzyme Activities. Animals, 15(15), 2300. https://doi.org/10.3390/ani15152300