Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = semidiurnal tidal current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8052 KiB  
Article
Tidal-Driven Water Residence Time in the Bohai and Yellow Seas: The Roles of Different Tidal Constituents
by Qingjun Fu, Huichao Jiang, Chen Dong, Kangjie Jin, Xihan Liu and Lei Lin
Water 2025, 17(6), 884; https://doi.org/10.3390/w17060884 - 19 Mar 2025
Viewed by 396
Abstract
Water residence time (WRT) is a crucial parameter for evaluating the rate of water exchange and it serves as a timescale for elucidating hydrodynamic processes, pollutant dispersion, and biogeochemical cycling in coastal waters. This study investigates the tidal-driven WRT patterns in the Bohai [...] Read more.
Water residence time (WRT) is a crucial parameter for evaluating the rate of water exchange and it serves as a timescale for elucidating hydrodynamic processes, pollutant dispersion, and biogeochemical cycling in coastal waters. This study investigates the tidal-driven WRT patterns in the Bohai and Yellow Seas (collectively known as BYS) by employing a tidal model in conjunction with an adjoint WRT diagnostic model and explores the influence of tidal constituents on WRT. The findings indicate that the tidal-driven WRT in the BYS is approximately 2.11 years, exhibiting a significant spatially heterogeneous distribution. The WRT pattern shows a strong correlation with the pattern of tidal-driven Lagrangian residual currents (LRCs). Semidiurnal tides have a more pronounced effect on WRT than diurnal tides. Semidiurnal tides significantly reduce WRT across the entire BYS, while diurnal tides predominantly influence WRT in the Bohai Sea (BS). The M2 tidal constituent is the most influential in decreasing WRT and enhancing water exchange, owing to its dominant energy contribution within the tidal system. In contrast, the S2 tidal constituent has a minimal effect; however, its interaction with the M2 tidal constituent plays a significant role in reducing the WRT. The K1 and O1 constituents exert more localized effects on WRT, particularly in the central BS, where their energy ratios relative to M2 are relatively high. Although the amplitude of the S2 constituent exceeds that of K1 and O1, its contribution to LRC—and consequently to WRT—is limited due to the overlapping tidal wave with M2. This research contributes to a deeper understanding of the influence of tidal dynamics on long-term water transport and associated timescales, which are vital for enhancing predictions of material transport and ecosystem dynamics in tidal-dominated environments. Full article
Show Figures

Figure 1

26 pages, 21642 KiB  
Article
Studying the Internal Wave Generation Mechanism in the Northern South China Sea Using Numerical Simulation, Synthetic Aperture Radar, and In Situ Measurements
by Kan Zeng, Ruyin Lyu, Hengyu Li, Rongqing Suo, Tao Du and Mingxia He
Remote Sens. 2024, 16(8), 1440; https://doi.org/10.3390/rs16081440 - 18 Apr 2024
Cited by 2 | Viewed by 2030
Abstract
The internal waves in the South China Sea are highly correlated with the tidal currents in the Luzon Strait, which makes it possible to establish an internal wave prediction model based on internal wave kinematics. However, the kinematic model requires the input of [...] Read more.
The internal waves in the South China Sea are highly correlated with the tidal currents in the Luzon Strait, which makes it possible to establish an internal wave prediction model based on internal wave kinematics. However, the kinematic model requires the input of the exact location and time of the initial internal wave for which the generation mechanism of internal waves in the northern South China Sea must be well understood. By analyzing the internal wave field in the northern South China Sea (SCS) simulated using the MIT General Circulation Model (MITgcm) and observations from satellite synthetic aperture radar (SAR) and mooring temperature–salinity–depth (TSD) chains, the source regions and propagation initiation times of internal waves are identified for three typical tidal phases, i.e., the diurnal-tide-dominated phase (DTP), transition tide phase (TTP), and semidiurnal-tide-dominated phase (STP). The generation procedures of Type A and Type B internal waves are discussed in detail with those data. The present study reveals that Type A and Type B waves are generated at the eastern and western ridges, respectively, and both commence their westward propagation at the peak of the eastward tidal flow. The dynamics of lee waves and the resonance effect with double ridges constitute the generation mechanisms of internal waves in the northern SCS. Combined with varying configurations of tidal conditions, topography, and stratification, the generation procedures of Type A and Type B waves in the DTP, TTP, and STP are elucidated with the generation mechanism in a unified and self-consistent way. In short, during DTP, weaker A waves alternate with weaker B waves each day; during TTP, strong A waves and strong B waves appear alternately every day; and there are two weak A waves per day during the STP. The generation mechanism can help in developing future empirical models for generating internal waves using tidal currents, topography, and stratification without requiring complex fluid dynamics calculations. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation (Second Edition))
Show Figures

Graphical abstract

15 pages, 37380 KiB  
Technical Note
Characteristics of Spring Sea Surface Currents near the Pearl River Estuary Observed by a Three-Station High-Frequency Surface Wave Radar System
by Haoyue Li, Lin Zhang, Daosheng Wang and Lin Mu
Remote Sens. 2024, 16(4), 672; https://doi.org/10.3390/rs16040672 - 13 Feb 2024
Viewed by 1646
Abstract
The processes of ocean dynamics are complex near the Pearl River Estuary and are not clear due to a lack of abundant observations. The spatial characteristics of the spring sea surface currents in the adjacent waters of the Pearl River Estuary were analyzed [...] Read more.
The processes of ocean dynamics are complex near the Pearl River Estuary and are not clear due to a lack of abundant observations. The spatial characteristics of the spring sea surface currents in the adjacent waters of the Pearl River Estuary were analyzed using the current data observed by a three-station high-frequency surface wave radar system (HFSWRS). Compared with the two-station HFSWRS, the deviation of current velocity and direction observed by the three-station HFSWRS from the underway measurements decreased by 42.86% and 38.30%, respectively. The analyzed results show that the M2 tidal current is the dominant current among all the tidal constituents, followed by K1, with angles of inclination ranging from 130° to 150°. The tidal flow is dominated by northwest–southeast back-and-forth flow. In the southern part of the observed area, which is far from the coastline, the tidal current ellipses exhibit a circular pattern. The prevalent tidal current type in this region is irregularly semi-diurnal, and the shallow water constituents also have a significant effect. The tidal energy in the adjacent waters of the Pearl River Estuary is affected by potential energy flux and kinetic energy flux. As the water depth and currents velocity increase in the southeast direction, the tidal energy flux increases. In the nearshore zone, the direction of tidal energy flux varies along the coastline. The changes in the residual current within the observed area are correlated with the sea surface wind field. Based on the high-precision sea surface current observed by the three-station HFSWRS, the characteristics of the ocean dynamic processes near the Pearl River Estuary are analyzed comprehensively, which provides important reference and confidence for the application of the developing new radar observing network with about 10 radar stations near the Pearl River Estuary. Full article
(This article belongs to the Special Issue Remote Sensing and Numerical Simulation for Tidal Dynamics)
Show Figures

Figure 1

18 pages, 5783 KiB  
Article
Performance Assessment of a High-Frequency Radar Network for Detecting Surface Currents in the Pearl River Estuary
by Langfeng Zhu, Tianyi Lu, Fan Yang, Chunlei Wei and Jun Wei
Remote Sens. 2024, 16(1), 198; https://doi.org/10.3390/rs16010198 - 3 Jan 2024
Cited by 2 | Viewed by 2112
Abstract
The performance of a high-frequency (HF) radar network situated within the Pearl River Estuary from 17 July to 13 August 2022 is described via a comparison with seven acoustic Doppler current profilers (ADCPs). The radar network consists of six OSMAR-S100 compact HF radars, [...] Read more.
The performance of a high-frequency (HF) radar network situated within the Pearl River Estuary from 17 July to 13 August 2022 is described via a comparison with seven acoustic Doppler current profilers (ADCPs). The radar network consists of six OSMAR-S100 compact HF radars, with a transmitting frequency of 13–16 MHz and a direction-finding technique. Both the radial currents and vector velocities showed good agreement with the ADCP results (coefficient of determination r2: 0.42–0.78; RMS difference of radials: 11–21.6 cm s1; bearing offset Δθ: 4.8°16.1°; complex correlation coefficient γ: 0.62–0.96; and phase angle α: −24.3°17.8°). For these radars, the Δθ values are not constant but vary with azimuthal angles. The relative positions between the HF radar and ADCPs, as well as factors such as the presence of island terrain obstructing the signal, significantly influence the errors. The results of spectral analysis also demonstrate a high level of consistency and the capability of HF radar to capture diurnal and semidiurnal tidal frequencies. The tidal characteristics and the Empirical Orthogonal Function (EOF) results measured by the HF radars also resemble the ADCPs and align with the characteristics of the estuarine current field. Full article
Show Figures

Figure 1

18 pages, 3343 KiB  
Article
Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar
by Lei Ren, Guangwei Pan, Lingna Yang, Yaqi Wang, Gang Zheng, Peng Yao, Qin Zhu, Zhenchang Zhu and Michael Hartnett
Remote Sens. 2023, 15(22), 5395; https://doi.org/10.3390/rs15225395 - 17 Nov 2023
Viewed by 1480
Abstract
Research on coastal ocean circulation patterns over long time periods is significant for various marine endeavors: environmental protection, coastal engineering construction, and marine renewable energy extraction. Based on sea surface current data remotely observed using a shore-based high frequency radar (HFR) system for [...] Read more.
Research on coastal ocean circulation patterns over long time periods is significant for various marine endeavors: environmental protection, coastal engineering construction, and marine renewable energy extraction. Based on sea surface current data remotely observed using a shore-based high frequency radar (HFR) system for one year (2016), spatiotemporal characteristics of surface flow fields of sea surface flow fields along the west coast of Ireland are studied using harmonic analysis, rotary spectral analysis and representative flow fields over different seasons and the whole year. Coastal surface currents in the study area are strongly affected by tidal dynamics of the M2 constituent, showing significant characteristics of regular semidiurnal tide, such as M2 and S2. The energy spectrum distribution indicates that the tidal constituents M2 and S2 are the dominant periodic energy constituents in a counterclockwise spectrum, which mainly presents rotating flow; the representative diurnal tidal constituents is the constituent K1, and its energy spectrum distribution is mainly clockwise. A comparison between probable maximum current velocity (PMCV) and measured maximum current velocity (MMCV) is presented. It shows that although tidal current characteristics in the study area are significant, the main driving force of the currents at the time of the maximum currents is wind energy. These results provide new insights into a region of huge societal potential at early stages of sustainable economic exploitation where few data currently exist. Full article
Show Figures

Figure 1

24 pages, 12114 KiB  
Article
Tidal Currents in Douglas Channel, British Columbia: Evaluation and Prediction
by Alexander B. Rabinovich, Charles G. Hannah and Maxim V. Krassovski
Water 2023, 15(13), 2441; https://doi.org/10.3390/w15132441 - 2 Jul 2023
Viewed by 1778
Abstract
Douglas Channel is the principal shipping route between the town of Kitimat and the Pacific Ocean. Prediction of near-surface currents is crucial for safe tanker navigation and cleaning-up oil spills. Three years of current velocity data were collected at two moorings located 30 [...] Read more.
Douglas Channel is the principal shipping route between the town of Kitimat and the Pacific Ocean. Prediction of near-surface currents is crucial for safe tanker navigation and cleaning-up oil spills. Three years of current velocity data were collected at two moorings located 30 km apart. Spectral, wavelet, and harmonic analysis of measured currents throughout the upper (40-m) and lower (50–358 m) water columns indicated the predominant influence of semidiurnal (SD) tidal currents. In the upper layer, wind and density flows resulted in considerable seasonal and interannual variability of these currents. Analysis of the SD variance reveals three major components: barotropic, coherent baroclinic, and random baroclinic. The predictability of near-surface currents depends on the relative contribution and stability of the first two components. Tidal constants estimated for one year were used to predict currents for two other years; we found that at the mooring closer to the entrance of Douglas Channel, 80 to 89% of the SD energy in the upper layer and 89–93% in the lower layer can be forecasted, while closer to the two channel head, these numbers are smaller: 55–70% and 79–89%, respectively. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 1332 KiB  
Article
Optimization of a Tidal–Wind–Solar System to Enhance Supply–Demand Balancing and Security: A Case Study of the Goto Islands, Japan
by Patxi Garcia-Novo, Daniel Coles, Yusaku Kyozuka, Reiko Yamada, Haruka Moriguchi and Daisaku Sakaguchi
Sustainability 2023, 15(12), 9147; https://doi.org/10.3390/su15129147 - 6 Jun 2023
Cited by 6 | Viewed by 2559
Abstract
Due to the expected increase in electric power demand in the coming decades and the economic and environmental issues caused by power generation from the combustion of hydrocarbon fuels, the integration of renewable energy into the grids of remote islands has attracted attention. [...] Read more.
Due to the expected increase in electric power demand in the coming decades and the economic and environmental issues caused by power generation from the combustion of hydrocarbon fuels, the integration of renewable energy into the grids of remote islands has attracted attention. Among all renewable sources, tidal stream energy shows potential to contribute positively in areas with strong tidal currents due to the predictability and semi-diurnal periodicity of the resource, which makes it compatible with short-term energy storage. However, its performance in areas with lower available power density has not yet been addressed. In this paper, energy systems for the Goto Islands, Japan which combine solar, offshore wind, and tidal energy are evaluated based on whole-system performance indicators such as the annual energy shortage and surplus and the battery load factor. Without energy storage, an energy mix of 31% solar, 47% offshore wind, and 22% tidal energy provides the lowest values for annual energy shortage (29.26% of total power demand) and surplus (29.26%). When batteries are incorporated into the system, tidal stream energy is the main contributor to reducing these two parameters, with values up to 23.58% and 19.60%, respectively, for the solar and tidal scenario with 30 MW of installed storage capacity. These results show the advantages of tidal stream energy exploitation in stand-alone energy systems, even with relatively low capacity factors (0.33). Full article
Show Figures

Figure 1

24 pages, 3404 KiB  
Article
Measuring Detection Efficiency of High-Residency Acoustic Signals for Estimating Probability of Fish–Turbine Encounter in a Fast-Flowing Tidal Passage
by Brian Gavin Sanderson, Charles William Bangley, Louise Patricia McGarry and Daniel James Hasselman
J. Mar. Sci. Eng. 2023, 11(6), 1172; https://doi.org/10.3390/jmse11061172 - 2 Jun 2023
Cited by 9 | Viewed by 1988
Abstract
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory [...] Read more.
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory or local fish populations. Individuals belonging to several fish populations were acoustically tagged and monitored by using acoustic receivers moored within the Minas Passage. Detection efficiency ρ is required as the first step to estimate the probability of fish–turbine encounter. Moored Innovasea HR2 receivers and high-residency (HR) tags were used to obtain detection efficiency ρ as a function of range and current speed, for near-seafloor signal paths within the tidal energy development area. Strong tidal currents moved moorings, so HR tag signals and their reflections from the sea surface were used to measure ranges from tags to receivers. HR2 self-signals that reflected off the sea surface showed which moorings were displaced to lower and higher levels on the seafloor. Some of the range testing paths had anomalously low ρ, which might be attributed to variable bathymetry blocking the line-of-sight signal path. Clear and blocked signal paths accord with mooring levels. The application of ρ is demonstrated for the calculation of abundance, effective detection range, and detection-positive intervals. High-residency signals were better detected than pulse position modulation (PPM) signals. Providing that the presently obtained ρ applies to tagged fish that swim higher in the water column, there is a reasonable prospect that probability of fish–turbine encounter can be estimated by monitoring fish that carry HR tags. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

11 pages, 2984 KiB  
Article
Unusual Mooring Oscillations: Apparent Foucault–Wheatstone Device in the Deep Ocean?
by Hans van Haren
J. Mar. Sci. Eng. 2023, 11(5), 1087; https://doi.org/10.3390/jmse11051087 - 22 May 2023
Viewed by 1731
Abstract
A pressure sensor, located for four months in the middle of a 1275 m-long taut deep-ocean mooring in 2380 m water depth above a seamount with sub-surface top-buoys and seafloor anchor-weight, demonstrates narrow-band spectral peaks of deterministic well-predictable signals with equivalent 0.5 m [...] Read more.
A pressure sensor, located for four months in the middle of a 1275 m-long taut deep-ocean mooring in 2380 m water depth above a seamount with sub-surface top-buoys and seafloor anchor-weight, demonstrates narrow-band spectral peaks of deterministic well-predictable signals with equivalent 0.5 m amplitudes at uncommon sub-harmonic frequencies f*/4, f*/2, 3f*/4 of the local near-inertial frequency f* = 1.085f, where f denotes the Coriolis parameter. None of these sub-harmonics can be associated with oceanographic motions, which are dominated by super-inertial internal waves that are more broadband and less predictable. No corresponding peaks are found in spectra of other observables like current velocity (differences), temperature, and pressure in the top buoy of the mooring. The mid-cable pressure sensor was mounted on a nearly 1 kN weighing non-swiveled frame. Its data are hypothesized to reflect a resonant mechanical oscillation of the high-tensioned elastic steel mooring cable under repeated short-scale Strouhal cable vibrations induced by vortex-shedding due to water-flow drag and/or possibly by tidal baroclinic motions that are about 50% larger near the sloping seafloor of the seamount than mid-depth thereby modifying the mooring-cable in a helical shape. Cable dynamics and mooring-motion considerations yield inconclusive results to explain the observations. Hypothesizing, the observations suggest, cable dynamically, sub-harmonic drainage of helix-shape source at non-tidal semidiurnal center-frequency (M2 + S2)/2 = 3f*/2, physically, the measurement of Earth rotation thereby mimicking a Foucault–Wheatstone device, and, oceanographically, the relative vortex-rotation ζ/2 = 0.085f being possibly induced by water-flow interacting quasi-permanently with the nearby seamount by a topographic obstruction, so that total local near-inertial frequency f* = f + ζ/2. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

18 pages, 8903 KiB  
Article
Subtidal Dynamics in a Tidal River with Limited Discharge
by Gillang Noor Nugrahaning Gusti, Kiyosi Kawanisi, Mohamad Basel Al Sawaf and Faruq Khadami
Water 2022, 14(16), 2585; https://doi.org/10.3390/w14162585 - 22 Aug 2022
Cited by 3 | Viewed by 3759
Abstract
Investigating subtidal friction and mass transport is pivotal for examining subtidal dynamics in tidal rivers. Although the behavior of subtidal friction and transport has been discussed in recent years, most studies have been conducted on tidal rivers that are affected by high amounts [...] Read more.
Investigating subtidal friction and mass transport is pivotal for examining subtidal dynamics in tidal rivers. Although the behavior of subtidal friction and transport has been discussed in recent years, most studies have been conducted on tidal rivers that are affected by high amounts of river runoff. The aim of this study is to offer an initial understanding of the spatial and temporal behaviors of subtidal friction and subtidal flux in a tidal river channel with limited river runoff. This study utilized the frequency domain and theoretical decomposition analyses to determine the dominant tidal and subtidal mechanisms. Frequency domain analysis indicated the dominance of semidiurnal and diurnal tides in the observed tidal river channel. The rate of energy transfer owing to shallow water interaction was found to be stronger for the current velocity than for the water elevation. Decomposition analysis showed that subtidal friction and flux in a low-discharge tidal river channel were largely influenced by subtidal flow-induced subtidal friction and Eulerian return flux, respectively. The key findings of this study are as follows: (i) the limited amount of river runoff (4–20 m3/s) leads to the vertical variability of subtidal friction contributions from subtidal flow and subtidal-tidal interaction, as well as Eulerian return flux, and (ii) the vertical variability of the aforementioned terms can be associated with the existence of influential longitudinal subtidal density gradients along the tidal river. We believe that these findings advance our understanding of subtidal dynamics in tidal river systems, particularly those with limited discharge. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 3656 KiB  
Article
A Case Study of Tidal Analysis Using Theory-Based Artificial Intelligence Techniques for Disaster Management in Taehwa River, South Korea
by Kola Yusuff Kareem, Yeonjeong Seong, Kyungtak Kim and Younghun Jung
Water 2022, 14(14), 2172; https://doi.org/10.3390/w14142172 - 9 Jul 2022
Cited by 6 | Viewed by 4897
Abstract
Monitoring tidal dynamics is imperative to disaster management because it requires a high level of precision to avert possible dangers. Good knowledge of the physical drivers of tides is vital to achieving such a precision. The Taehwa River in Ulsan City, Korea experiences [...] Read more.
Monitoring tidal dynamics is imperative to disaster management because it requires a high level of precision to avert possible dangers. Good knowledge of the physical drivers of tides is vital to achieving such a precision. The Taehwa River in Ulsan City, Korea experiences tidal currents in the estuary that drains into the East Sea. The contribution of wind to tide prediction is evaluated by comparing tidal predictions using harmonic analysis and three deep learning models. Harmonic analysis is conducted on hourly water level data from 2010–2021 using the commercial pytides toolbox to generate constituents and predict tidal elevations. Three deep learning models of long short-term memory (LSTM), gated recurrent unit (GRU), and bi-directional lstm (BiLSTM) are fitted to the water level and wind speed to evaluate wind and no-wind scenarios. Results show that Taehwa tides are categorized as semidiurnal tides based on a computed form ratio of 0.2714 in a 24-h tidal cycle. The highest tidal range of 0.60 m is recorded on full moon spring tide indicating the significant lunar pull. Wind effect improved tidal prediction NSE of optimal LSTM model from 0.67 to 0.90. Knowledge of contributing effect of wind will inform flood protection measures to enhance disaster preparedness. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

20 pages, 6447 KiB  
Article
Distinct Variability between Semidiurnal and Diurnal Internal Tides at the East China Sea Shelf
by Weidong Wang, Robin Robertson, Yang Wang, Chen Zhao, Zhanjiu Hao, Baoshu Yin and Zhenhua Xu
Remote Sens. 2022, 14(11), 2570; https://doi.org/10.3390/rs14112570 - 27 May 2022
Cited by 6 | Viewed by 2987
Abstract
Breaking internal tides and induced mixing are critical to shelf dynamics, including heat and mass exchanges. Spatiotemporal variability of internal tides and modulation factors for the southern East China Sea shelf were examined based on a combination of a three-month mooring velocity and [...] Read more.
Breaking internal tides and induced mixing are critical to shelf dynamics, including heat and mass exchanges. Spatiotemporal variability of internal tides and modulation factors for the southern East China Sea shelf were examined based on a combination of a three-month mooring velocity and satellite altimeter data. Semidiurnal and diurnal internal tides exhibited distinct temporal trends, with the semidiurnal internal tides enhanced by an order of magnitude during the latter half of the record, while the diurnal internal tides followed quasi spring-neap cycles with a generally stable intensity except for two specific periods of strengthening. These internal tides probably originated remotely over the shelf-slope area northeast of Taiwan. Time-varying stratification was the most important factor for the internal tidal magnitude. In addition, varying background currents influenced the diurnal critical latitude band, which explains the slightly enhanced diurnal internal tides during the two periods. Although both semidiurnal and diurnal internal tides were mode-1 dominated, the semidiurnal internal tides were surface intensified while the diurnal tides were bottom intensified. The proportion of higher mode internal tides increased during robust eddy activities. Stronger background vertical shear corresponded to high-frequency events and energy transfers from tidal frequencies to high frequencies associated with turbulent mixing. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Ocean Observation)
Show Figures

Figure 1

20 pages, 14682 KiB  
Article
Surface Current Variations and Hydrological Characteristics of the Penghu Channel in the Southeastern Taiwan Strait
by Po-Chun Hsu
Remote Sens. 2022, 14(8), 1816; https://doi.org/10.3390/rs14081816 - 9 Apr 2022
Cited by 11 | Viewed by 3835
Abstract
Coastal ocean dynamics application radar (CODAR) SeaSonde high-frequency (HF) radars deployed along the coast of Taiwan were used to reveal ocean surface current variations both hourly and through climatological seasons in the Penghu Channel (PHC), southeastern Taiwan Strait (TS), from December 2014 to [...] Read more.
Coastal ocean dynamics application radar (CODAR) SeaSonde high-frequency (HF) radars deployed along the coast of Taiwan were used to reveal ocean surface current variations both hourly and through climatological seasons in the Penghu Channel (PHC), southeastern Taiwan Strait (TS), from December 2014 to December 2020. The ocean current in the PHC has a semidiurnal tidal cycle, and the seasonal main flow, wind direction, and wind strength significantly affect the direction and speed of the flow passing through the PHC. The speed of the tidal current in the PHC area can reach more than 1 m/s, and the monthly average flow speed in the PHC is between 0.12 (winter) and 0.24 m/s (summer). Several buoys indicated that the southward flow along the western coast of Taiwan drifted through the PHC in fall and winter. The HF radar observations confirmed the same, implying that this occurred during the strong northeastern monsoon. For a weak northerly wind or even southerly wind, the flow in the PHC can be northward. Different wind directions can affect the speed of the flow passing through the PHC and the branch flow in the northern PHC. The HF radar results are highly consistent with the spatial characteristics of satellite data regarding the sea surface temperature, sea surface salinity, and chlorophyll concentrations; however, there are significant differences from the satellite-derived ocean current. Full article
Show Figures

Graphical abstract

12 pages, 4912 KiB  
Technical Note
Coastal Acoustic Tomography of the Neko-Seto Channel with a Focus on the Generation of Nonlinear Tidal Currents—Revisiting the First Experiment
by Minmo Chen, Aruni Dinan Hanifa, Naokazu Taniguchi, Hidemi Mutsuda, Xiaohua Zhu, Zenan Zhu, Chuanzheng Zhang, Ju Lin and Arata Kaneko
Remote Sens. 2022, 14(7), 1699; https://doi.org/10.3390/rs14071699 - 31 Mar 2022
Cited by 6 | Viewed by 2590
Abstract
The first coastal acoustic tomography (CAT) experiment site of the Neko-Seto Channel was revisited to elucidate the propagation and generation characteristics of the M2 and M4 tidal currents with a second CAT experiment, which was conducted from 3–6 April 2018 (local [...] Read more.
The first coastal acoustic tomography (CAT) experiment site of the Neko-Seto Channel was revisited to elucidate the propagation and generation characteristics of the M2 and M4 tidal currents with a second CAT experiment, which was conducted from 3–6 April 2018 (local time). Two-dimensional flow fields of the M2 and M4 tidal currents and the residual current were reconstructed using a coast-fitting inversion model with the reciprocal travel-time data of five acoustic stations. The M2 tidal current is a progressive-type wave that propagates eastward at a speed of 0.7 ms−1, much slower than expected for free progressive tides in this region (19 ms−1). The M4 nonlinear current constructed an out-of-phase relationship between the western and eastern halves of the tomography domain, implying the generation of standing-type waves. Such nonlinear processes led to flood- and ebb-dominant tidal current asymmetries for the western and eastern halves of the model domain, respectively. The two-day mean residual currents constructed a northeastward current with a maximum speed of 0.3 ms−1 in the western half of the model domain and a clockwise rotation in the eastern half. The averaged inversion errors were 0.03 ms−1, significantly smaller than the amplitude of the aforementioned currents. Full article
Show Figures

Graphical abstract

19 pages, 42687 KiB  
Article
Internal Tides and Their Intraseasonal Variability on the Continental Slope Northeast of Taiwan Island Derived from Mooring Observations and Satellite Data
by Yuqi Yin, Ze Liu, Yuanzhi Zhang, Qinqin Chu, Xihui Liu, Yijun Hou and Xinhua Zhao
Remote Sens. 2022, 14(1), 59; https://doi.org/10.3390/rs14010059 - 23 Dec 2021
Cited by 2 | Viewed by 3162
Abstract
In this study, strong internal tides were observed on the continental slope northeast of Taiwan Island. Owing to the lack of long-term observations, these tides’ intraseasonal variability and the impact of the Kuroshio Current remain unclear. This study aimed to fill in the [...] Read more.
In this study, strong internal tides were observed on the continental slope northeast of Taiwan Island. Owing to the lack of long-term observations, these tides’ intraseasonal variability and the impact of the Kuroshio Current remain unclear. This study aimed to fill in the gaps using one-year continuous mooring observations, satellite data and analysis data. The horizontal kinetic energy (HKE) of semidiurnal internal tides showed that there was conspicuous energy from 100 days to 200 days, which was mainly attributed to the cross-term of HKE. The impact of the Kuroshio Current and mesoscale eddies on the HKEs were assessed: Cyclonic (anticyclonic) mesoscale eddies propagated from the open ocean, weakened (strengthened) the Kuroshio and shifted the Kuroshio onshore (offshore) northeast of Taiwan Island. The weakened (strengthened) Kuroshio increased (decreased) the shoreward velocity at the mooring site, and the onshore (offshore) Kuroshio migration increased (decreased) the northeastward velocity and enhanced (weakened) the HKEs of internal tides by modulating the tidal energy horizontal propagation. The weakened (strengthened) Kuroshio also resulted in gentler (steeper) isopycnals across the slope and enhanced (weakened) the HKEs of internal tides by influencing the interaction between ocean stratification and bottom topography. Full article
(This article belongs to the Special Issue Coastal Environments and Coastal Hazards)
Show Figures

Figure 1

Back to TopTop