Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar
Abstract
:1. Introduction
2. Methodologies
2.1. Study Area
2.2. HFR System
2.3. Tidal Current Analysis
2.3.1. Tidal Current Patterns
2.3.2. Rotary Spectral Analysis
2.3.3. Effects of Bathymetry Variation on Currents
2.4. Maximum Ocean Currents
3. Results
3.1. Mean Surface Flow Fields
3.2. Tidal Elevation Analysis
3.3. Characteristics and Patterns of Tidal Currents
3.3.1. Harmonic Analysis on Spatially Averaged Surface Currents
3.3.2. Rotary Spectral Analysis
3.3.3. Spatiotemporal Rotation of Surface Currents
3.4. Characteristics of Maximum Surface Currents Maxima
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capodici, F.; Cosoli, S.; Ciraolo, G.; Nasello, C.; Maltese, A.; Poulain, P.-M.; Drago, A.; Azzopardi, J.; Gauci, A. Validation of HF radar sea surface currents in the Malta-Sicily Channel. Remote Sens. Environ. 2019, 225, 65–76. [Google Scholar] [CrossRef]
- Hays, G.C. Ocean currents and marine life. Curr. Biol. 2017, 27, R470–R473. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, C.; Corgnati, L.; Horstmann, J.; Rubio, A.; Reyes, E.; Quentin, C.; Cosoli, S.; Asensio, J.L.; Mader, J.; Griffa, A. Best practices on high frequency radar deployment and operation for ocean current measurement. Front. Mar. Sci. 2020, 7, 210. [Google Scholar] [CrossRef]
- Tran, M.C.; Sentchev, A.; Nguyen, K.C. Multi-scale variability of circulation in the Gulf of Tonkin from remote sensing of surface currents by high-frequency radars. Ocean. Dyn. 2021, 71, 175–194. [Google Scholar] [CrossRef]
- Ren, L.; Chu, N.; Hu, Z.; Hartnett, M. Investigations into synoptic spatiotemporal characteristics of coastal upper ocean circulation using high frequency radar data and model output. Remote Sens. 2020, 12, 2841. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, H.; Wen, B. DEDNet: Offshore eddy detection and location with HF radar by deep learning. Sensors 2020, 21, 126. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Sil, S.; Gangopadhyay, A. Tide-current-eddy interaction: A seasonal study using high frequency radar observations along the western Bay of Bengal near 16° N. Estuar. Coast. Shelf Sci. 2020, 232, 106523. [Google Scholar] [CrossRef]
- Chavanne, C.; Flament, P.; Carter, G.; Merrifield, M.; Luther, D.; Zaron, E.; Gurgel, K. The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part I: Observations and numerical predictions. J. Phys. Oceanogr. 2010, 40, 1155–1179. [Google Scholar] [CrossRef]
- Gough, M.K.; Garfield, N.; McPhee-Shaw, E. An analysis of HF radar measured surface currents to determine tidal, wind-forced, and seasonal circulation in the Gulf of the Farallones, California, United States. J. Geophys. Res. Ocean. 2010, 115, C04019. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Murty, T.; Swain, D. On extracting high-frequency tidal variability from HF radar data in the northwestern Bay of Bengal. J. Oper. Oceanogr. 2018, 11, 65–81. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Pramanik, S.; Arunraj, K.S.; Jena, B.K. Characteristics and evolution of a coastal mesoscale eddy in the Western Bay of Bengal monitored by high-frequency radars. Dyn. Atmos. Ocean. 2019, 88, 101107. [Google Scholar] [CrossRef]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing frontal eddies along the E ast A ustralian C urrent from HF radar observations. J. Geophys. Res. Ocean. 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Lorente, P.; Piedracoba, S.; Montero, P.; Sotillo, M.G.; Ruiz, M.I.; Álvarez-Fanjul, E. Comparative Analysis of Summer Upwelling and Downwelling Events in NW Spain: A Model-Observations Approach. Remote Sens. 2020, 12, 2762. [Google Scholar] [CrossRef]
- Paduan, J.D.; Cook, M.S.; Tapia, V.M. Patterns of upwelling and relaxation around Monterey Bay based on long-term observations of surface currents from high frequency radar. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2018, 151, 129–136. [Google Scholar] [CrossRef]
- Kohut, J.T.; Glenn, S.M.; Chant, R.J. Seasonal current variability on the New Jersey inner shelf. J. Geophys. Res. Ocean. 2004, 109, C07S07. [Google Scholar] [CrossRef]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Jena, B.K.; Venkatesan, R.; Gawarkiewicz, G. Seasonal and tidal variability of surface currents in the Western Andaman Sea using HF radars and buoy observations during 2016–2017. IEEE Trans. Geosci. Remote Sens. 2020, 59, 7235–7244. [Google Scholar] [CrossRef]
- Paduan, J.; Cook, M.; Fernandez, D. Two-dimensional diurnal to monthly period surface currents in Monterey Bay from CODAR-type HF radar. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1814–1816. [Google Scholar]
- Gurgel, K.-W.; Antonischki, G.; Essen, H.-H.; Schlick, T. Wellen Radar (WERA): A new ground-wave HF radar for ocean remote sensing. Coast. Eng. 1999, 37, 219–234. [Google Scholar] [CrossRef]
- Hammond, T.; Pattiaratchi, C.; Eccles, D.; Osborne, M.; Nash, L.; Collins, M.B. Ocean surface current radar (OSCR) vector measurements on the inner continental shelf. Cont. Shelf Res. 1987, 7, 411–431. [Google Scholar] [CrossRef]
- Emery, B.M.; Washburn, L.; Harlan, J.A. Evaluating radial current measurements from CODAR high-frequency radars with moored current meters. J. Atmos. Ocean. Technol. 2004, 21, 1259–1271. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, X.; Lin, H.; Chen, X.; Xu, X.a.; Li, L. Spatial distribution characteristics of surface tidal currents in the southwest of Taiwan Strait. J. Ocean. Univ. China 2014, 13, 971–978. [Google Scholar] [CrossRef]
- McMahon, T.; Raine, R.; Titov, O.; Boychuk, S. Some oceanographic features of northeastern Atlantic waters west of Ireland. ICES J. Mar. Sci. 1995, 52, 221–232. [Google Scholar] [CrossRef]
- Pingree, R.; Griffiths, D. Currents driven by a steady uniform wind stress on the shelf seas around the British-Isles. Oceanol. Acta 1980, 3, 227–236. [Google Scholar]
- Pingree, R.; Le Cann, B. Three anticyclonic Slope Water Oceanic eDDIES (SWODDIES) in the southern Bay of Biscay in 1990. Deep Sea Res. Part A Oceanogr. Res. Pap. 1992, 39, 1147–1175. [Google Scholar] [CrossRef]
- Polonsky, A.; Sukhonos, P. Variability of the wind stress, the field of currents, wind stress curl and vorticity of surface currents in the North Atlantic. Izv. Ross. Akad. Nauk. Seriya Geogr. 2017, 62–73. [Google Scholar] [CrossRef]
- Saviano, S.; Esposito, G.; Di Lemma, R.; de Ruggiero, P.; Zambianchi, E.; Pierini, S.; Falco, P.; Buonocore, B.; Cianelli, D.; Uttieri, M. Wind Direction Data from a Coastal HF Radar System in the Gulf of Naples (Central Mediterranean Sea). Remote Sens. 2021, 13, 1333. [Google Scholar] [CrossRef]
- Dobrynin, M.; Kleine, T.; Düsterhus, A.; Baehr, J. Skilful seasonal prediction of ocean surface waves in the Atlantic Ocean. Geophys. Res. Lett. 2019, 46, 1731–1739. [Google Scholar] [CrossRef]
- Gonzalez, P.L.; Brayshaw, D.J.; Zappa, G. The contribution of North Atlantic atmospheric circulation shifts to future wind speed projections for wind power over Europe. Clim. Dyn. 2019, 53, 4095–4113. [Google Scholar] [CrossRef]
- Barrick, D. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. Antennas Propag. 1972, 20, 2–10. [Google Scholar] [CrossRef]
- O’Donncha, F.; Hartnett, M.; Nash, S.; Ren, L.; Ragnoli, E. Characterizing observed circulation patterns within a bay using HF radar and numerical model simulations. J. Mar. Syst. 2015, 142, 96–110. [Google Scholar] [CrossRef]
- Paduan, J.D.; Rosenfeld, L.K. Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar). J. Geophys. Res. Ocean. 1996, 101, 20669–20686. [Google Scholar] [CrossRef]
- Kundu, P.K.; Blanton, J.O.; Janopaul, M.M. Analysis of current observations on the Georgia shelf. J. Phys. Oceanogr. 1981, 11, 1139–1149. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, X.; Fei, Y.; Xu, X.a.; Chen, X. Surface tidal currents in the open sea area to the east of the Zhoushan Islands measured with high frequency surface wave radar. Acta Oceanol. Sin. 2013, 32, 5–10. [Google Scholar] [CrossRef]
- Mooers, C.N.K. A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants. Deep Sea Res. Oceanogr. Abstr. 1973, 20, 1129–1141. [Google Scholar] [CrossRef]
- Gonella, J. A Rotary-component method for analysing meteorological and oceanographic vector time series. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 833–846. [Google Scholar] [CrossRef]
- Perkin, H. Inertial oscillations in the Mediterranear. Deep Sea Res. Oceanogr. Abstr. 1972, 19, 289–296. [Google Scholar] [CrossRef]
- Calman, J. On the interpretation of ocean current spectra, part II: Testing dynamical hypotheses. J. Phys. Oceanogr. 1978, 8, 644–652. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Halverson, M.; Pawlowicz, R. Tide, wind, and river forcing of the surface currents in the Fraser River plume. Atmos. Ocean. 2016, 54, 131–152. [Google Scholar] [CrossRef]
- Arabelos, D.; Asteriadis, G.; Contadakis, M.; Spatalas, S.; Sachsamanoglou, H. Atmospheric tides in the area of Thessaloniki. J. Geodyn. 1997, 23, 65–75. [Google Scholar] [CrossRef]
- Leaman, K.D.; Sanford, T.B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. Ocean. 1975, 80, 1975–1978. [Google Scholar] [CrossRef]
- Ren, L.; Yang, L.; Pan, G.; Zheng, G.; Zhu, Q.; Wang, Y.; Zhu, Z.; Hartnett, M. Characterizing Residual Current Circulation and Its Response Mechanism to Wind at a Seasonal Scale Based on High-Frequency Radar Data. Remote Sens. 2022, 14, 4510. [Google Scholar] [CrossRef]
- Li, R.; Chen, C.; Xia, H.; Beardsley, R.C.; Shi, M.; Lai, Z.; Lin, H.; Feng, Y.; Liu, C.; Xu, Q.; et al. Observed wintertime tidal and subtidal currents over the continental shelf in the northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 5289–5310. [Google Scholar] [CrossRef]
- Yang, J.; Ding, W.; Cui, J.; Guo, S. Characteristical analysis of tidal and residual currents in the sea area around Tangshan international tourism island. IOP Conf. Ser. Earth Environ. Sci. 2021, 632, 022044. [Google Scholar] [CrossRef]
Station | Operating Frequency (MHz) | Transmitted Bandwidth (KHz) | Spatial Resolution (km) | Temporal Resolution (min) | Data Averaging Period (min) |
---|---|---|---|---|---|
R1 | 26.425 | 499.88 | 0.3 | 60 | 94 |
R2 | 24.64 | 499.88 | 0.3 | 60 | 94 |
R3 | 13.5 | 49.63 | 3 | 60 | 75 |
R4 | 13.5 | 49.63 | 3 | 60 | 75 |
Statistics | Spring | Summer | Autumn | Winter | Full Year |
---|---|---|---|---|---|
Maximum | 47.67 | 45.43 | 46.03 | 54.08 | 54.08 |
Minimum | 0.26 | 0.67 | 0.43 | 0.80 | 0.26 |
Mean | 13.60 | 14.01 | 15.45 | 19.85 | 15.32 |
Tidal Constituent | Amplitude (cm) | Phase (°) | SNR |
---|---|---|---|
M2 | 150.28 | 125.81 | 480,000.00 |
S2 | 54.64 | 158.05 | 67,000.00 |
N2 | 30.87 | 105.16 | 25,000.00 |
K2 | 15.56 | 156.73 | 3000.00 |
K1 | 10.79 | 62.82 | 750.00 |
O1 | 7.16 | 316.71 | 200.00 |
M4 | 3.72 | 329.77 | 770.00 |
P1 | 3.65 | 50.61 | 99.00 |
MS4 | 3.19 | 47.98 | 580.00 |
M6 | 3.11 | 350.11 | 120.00 |
Q1 | 2.22 | 265.40 | 18.00 |
Tidal Constituent | Amplitude (cm/s) | Phase (°) | Period (h) |
---|---|---|---|
M2 | 9.5661 | 264.29 | 12.42 |
S2 | 3.8180 | 116.11 | 12.00 |
N2 | 2.3696 | 55.89 | 12.66 |
K2 | 0.8610 | 128.53 | 11.97 |
K1 | 1.8667 | 171.11 | 23.93 |
S1 | 1.4701 | 33.25 | 24.00 |
P1 | 1.4384 | 126.26 | 24.07 |
O1 | 0.7627 | 225.74 | 25.82 |
M4 | 0.3683 | 326.92 | 6.21 |
MS4 | 0.3332 | 197.86 | 6.10 |
M6 | 0.2629 | 242.66 | 4.14 |
Variable | Statistics | Spring | Summer | Autumn | Winter | Full Year |
---|---|---|---|---|---|---|
Wind Speed | Maximum | 21.31 | 14.28 | 18.26 | 21.96 | 21.96 |
(m/s) | Average | 6.64 | 6.38 | 7.21 | 9.03 | 7.28 |
Minimum | 0.14 | 0.13 | 0.03 | 0.42 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Pan, G.; Yang, L.; Wang, Y.; Zheng, G.; Yao, P.; Zhu, Q.; Zhu, Z.; Hartnett, M. Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar. Remote Sens. 2023, 15, 5395. https://doi.org/10.3390/rs15225395
Ren L, Pan G, Yang L, Wang Y, Zheng G, Yao P, Zhu Q, Zhu Z, Hartnett M. Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar. Remote Sensing. 2023; 15(22):5395. https://doi.org/10.3390/rs15225395
Chicago/Turabian StyleRen, Lei, Guangwei Pan, Lingna Yang, Yaqi Wang, Gang Zheng, Peng Yao, Qin Zhu, Zhenchang Zhu, and Michael Hartnett. 2023. "Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar" Remote Sensing 15, no. 22: 5395. https://doi.org/10.3390/rs15225395
APA StyleRen, L., Pan, G., Yang, L., Wang, Y., Zheng, G., Yao, P., Zhu, Q., Zhu, Z., & Hartnett, M. (2023). Assessment of Ocean Circulation Characteristics off the West Coast of Ireland Using HF Radar. Remote Sensing, 15(22), 5395. https://doi.org/10.3390/rs15225395