Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = sediment chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1582 KB  
Article
Sticking Efficiency of Microplastic Particles in Terrestrial Environments Determined with Atomic Force Microscopy
by Robert M. Wheeler and Steven K. Lower
Microplastics 2026, 5(1), 6; https://doi.org/10.3390/microplastics5010006 - 9 Jan 2026
Viewed by 119
Abstract
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the [...] Read more.
Subsurface deposition determines whether soils, aquifers, or ocean sediment represent a sink or temporary reservoir for microplastics. Deposition is generally studied by applying the Smoluchowski–Levich equation to determine a particle’s sticking efficiency, which relates the number of particles filtered by sediment to the probability of attachment occurring from an interaction between particles and sediment. Sticking efficiency is typically measured using column experiments or estimated from theory using the Interaction Force Boundary Layer (IFBL) model. However, there is generally a large discrepancy (orders of magnitude) between the values predicted from IFBL theory and the experimental column measurements. One way to bridge this gap is to directly measure a microparticle’s interaction forces using Atomic Force Microscopy (AFM). Herein, an AFM method is presented to measure sticking efficiency for a model polystyrene microparticle (2 μm) on a model geomaterial surface (glass or quartz) in environmentally relevant, synthetic freshwaters of varying ionic strength (de-ionized water, soft water, hard water). These data, collected over nanometer length scales, are compared to sticking efficiencies determined through traditional approaches. Force measurement results show that AFM can detect extremely low sticking efficiencies, surpassing the sensitivity of column studies. These data also demonstrate that the 75th to 95th percentile, rather than the mean or median force values, provides a better approximation to values measured in model column experiments or field settings. This variability of the methods provides insight into the fundamental mechanics of microplastic deposition and suggests AFM is isolating the physicochemical interactions, while column experiments also include physical interactions like straining. Advantages of AFM over traditional column/field experiments include high throughput, small volumes, and speed of data collection. For example, at a ramp rate of 1 Hz, 60 sticking efficiency measurements could be made in only a minute. Compared to column or field experiments, the AFM requires much less liquid (μL volume) making it effortless to examine the impact of solution chemistry (temperature, pH, ionic strength, valency of dissolved ions, presence of organics, etc.). Potential limitations of this AFM approach are presented alongside possible solutions (e.g., baseline correction, numerical integration). If these challenges are successfully addressed, then AFM would provide a completely new approach to help elucidate which subsurface minerals represent a sink or temporary storage site for microparticles on their journey from terrestrial to oceanic environments. Full article
(This article belongs to the Special Issue Microplastics in Freshwater Ecosystems)
Show Figures

Figure 1

10 pages, 11432 KB  
Data Descriptor
Georeferenced Sediment and Surface Water Element Concentrations in the Coastal Liepāja Lake (Latvia), 2024
by Inga Grinfelde, Uldis Valainis, Maris Nitcis, Ieva Buske, Jana Grave, Normunds Stivrins, Vilda Grybauskiene, Gitana Vyciene, Maris Bertins and Jovita Pilecka-Ulcugaceva
Data 2025, 10(12), 200; https://doi.org/10.3390/data10120200 - 3 Dec 2025
Viewed by 412
Abstract
Liepāja Lake, a Natura 2000 protected area and one of the largest coastal freshwater bodies in Latvia, has been historically influenced by urbanization, diffuse agricultural inputs, and legacy contamination from metallurgy and ship-repair industries. Comprehensive, spatially explicit data on its sediment and water [...] Read more.
Liepāja Lake, a Natura 2000 protected area and one of the largest coastal freshwater bodies in Latvia, has been historically influenced by urbanization, diffuse agricultural inputs, and legacy contamination from metallurgy and ship-repair industries. Comprehensive, spatially explicit data on its sediment and water chemistry were previously lacking. The dataset used in this study provides an openly accessible record of major and trace element concentrations in surface sediments and surface waters collected during the 2024 field campaign. Sampling sites were distributed across northern, central, and southern zones to capture gradients in anthropogenic pressure and natural variability. Water samples were filtered and acidified following ISO 15587-2:2002, while sediments were homogenized, sieved, and digested following EPA 3051a. Both matrices were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS, Agilent 8900 ICP-QQQ) with multi-element calibration traceable to NIST standards. The dataset comprises 31 analytes (Li–Bi) with paired standard deviation values, reported in mg kg–1 (sediments) and µg L–1 (water). Rigorous validation included certified reference materials, duplicates, blanks, and statistical outlier screening. The resulting data form a reliable geochemical baseline for assessing pollution sources, quantifying spatial heterogeneity, and supporting future monitoring, modeling, and restoration efforts in climate-sensitive Baltic coastal lakes. Full article
Show Figures

Figure 1

26 pages, 1774 KB  
Review
(Eco)Toxicity of E-Waste: Current Methods, Challenges, and Research Priorities
by Diogo A. Ferreira-Filipe, Andrew S. Hursthouse, Armando C. Duarte, Teresa Rocha-Santos and Ana L. Patrício Silva
Toxics 2025, 13(12), 1048; https://doi.org/10.3390/toxics13121048 - 3 Dec 2025
Viewed by 691
Abstract
The rapid growth in manufacturing and use of electrical and electronic equipment has led to unprecedented volumes of poorly managed e-waste, posing serious ecological risks. Although data on individual chemical substances in e-waste are available, evidence of ecotoxicity from actual e-waste materials remains [...] Read more.
The rapid growth in manufacturing and use of electrical and electronic equipment has led to unprecedented volumes of poorly managed e-waste, posing serious ecological risks. Although data on individual chemical substances in e-waste are available, evidence of ecotoxicity from actual e-waste materials remains scattered. This review consolidates organism-level ecotoxicity data on real e-waste samples (mixed fractions, fragments, leachates) and samples collected near e-waste facilities (soil, sediments, dust, water) across aquatic and terrestrial environments. It critically examines how methodological approaches influence reported outcomes and outlines research priorities. In aquatic environments, toxic responses vary with increased amounts of toxicants (dissolved metals, particles from dismantling operations) that mobilise to surface waters, while hydrophobic organic compounds cause sublethal behavioural and genotoxic effects. The few studies on terrestrial environments show impaired invertebrate growth and reproduction, along with changes in soil and “plastisphere” microbiota. However, tested concentrations, material complexity, and incomplete reporting of exposure chemistry, among other factors, limit the environmental relevance and comparability of the data. Uniformised procedures, combined with thorough chemical characterisation, environmentally realistic conditions, and cross-system bioassays (including different exposure routes and cumulative assessments), may provide mechanistic insights into e-waste toxicity, supporting evidence-based risk management strategies while contributing towards the development and validation of robust new approach methodologies (NAMs). Full article
Show Figures

Graphical abstract

22 pages, 1579 KB  
Article
Integrated Sediment and Mussel Chemical Analysis for Environmental Quality Assessment in Rovinj’s Coastal Waters (Northern Adriatic, Croatia)
by Jadranka Pelikan, Kristina Grozić, Luca Privileggio, Dijana Pavičić-Hamer, Mirta Smodlaka Tanković, Kristina Pikelj, Marin Glad and Bojan Hamer
J. Mar. Sci. Eng. 2025, 13(11), 2212; https://doi.org/10.3390/jmse13112212 - 20 Nov 2025
Viewed by 550
Abstract
Marine sediments are a key component of aquatic ecosystems, linking diverse water uses, functions, and services. Chemical contamination of sediments is a global concern, with many jurisdictions striving to prevent future pollution and manage existing contamination. This study evaluates the contamination status of [...] Read more.
Marine sediments are a key component of aquatic ecosystems, linking diverse water uses, functions, and services. Chemical contamination of sediments is a global concern, with many jurisdictions striving to prevent future pollution and manage existing contamination. This study evaluates the contamination status of Rovinj’s coastal waters using an integrated approach that combines sediment and biota chemical analyses. Sediments were analyzed to assess long-term contaminant accumulation (D8.C1), while the Mediterranean mussel (Mytilus galloprovincialis) served as a bioindicator of bioavailable contaminants and their cumulative effects on marine habitats (D8.C2). Sediment samples were collected from five sites (S1–S5), and mussels were caged using Mussel Watch installations for approximately 120 days at a control site (Lim Bay) and within Rovinj harbor. Both matrices were analyzed for heavy metals (As, Cd, Cu, Cr, Hg, Ni, Pb, and Zn), polycyclic aromatic hydrocarbons (16 PAHs), and polychlorinated biphenyls (PCBs), following the EU Water Framework Directive. All sampled locations showed a reduction in sediment contamination relative to 2011 data, with most concentrations below ecotoxicological thresholds. Exceptions included elevated ΣPAH and PCB concentrations in the harbor (S1 = 3.18 mg/kg DW; 0.33 mg/kg DW) and marina (S2 = 3.64 mg/kg DW; 0.89 mg/kg DW), as well as Ni levels (S3 = 30 mg/kg DW; S4 = 34 mg/kg DW). Despite higher contaminant loads at some locations, mussel contaminant bioaccumulation remained limited, and their vitality and survival were only moderately affected in the harbor. Although localized increases in some contaminants were detected, all calculated QPECm values remained below 1.0, indicating no significant ecological risk. However, a moderate-to-high probability of toxic effects (P) may occur with long-term exposure for biota inhabiting harbor and marina areas. The results of this study demonstrate continued improvement in the environmental quality of Rovinj’s coastal waters compared to the previous decade. Full article
(This article belongs to the Special Issue Assessment and Monitoring of Coastal Water Quality)
Show Figures

Graphical abstract

20 pages, 1771 KB  
Article
Hard Evidence from Turtle Shells: Tracing Metal and Non-Metallic Elements Bioaccumulation in Freshwater Ecosystems
by Haithem Aib, Badis Bakhouche, Krisztián Nyeste, Boglárka Döncző, Selmane Chabani, Amina Saadi, Zsolt Varga and Herta Mária Czédli
Environments 2025, 12(11), 445; https://doi.org/10.3390/environments12110445 - 18 Nov 2025
Viewed by 1384
Abstract
The longevity, site fidelity, and trophic position of freshwater turtles have led to their increasing recognition as useful bioindicators of environmental contamination. Mauremys leprosa (n = 25) shells from a Northern African wetland system were examined for trace element concentrations in order [...] Read more.
The longevity, site fidelity, and trophic position of freshwater turtles have led to their increasing recognition as useful bioindicators of environmental contamination. Mauremys leprosa (n = 25) shells from a Northern African wetland system were examined for trace element concentrations in order to assess shell composition as a non-invasive biomonitoring method. Micro x-ray fluorescence (μXRF) method was used to measure the shell concentrations of 17 elements, including Ca, P, Fe, Zn, Mn, Sr, Pb, Sb, and Al. As would be expected from the structural composition of bony tissues, calcium and phosphorus were the predominant constituents. In addition to bulk concentrations, micro-XRF elemental mapping revealed heterogeneous spatial distributions of essential and toxic elements within the shells, providing visual evidence of bioaccumulation patterns and supporting the use of shells as non-invasive bioindicators. There were statistically significant sex-related differences in the levels of trace elements, with males exhibiting higher concentrations of Mg, Mn, Sb, Pb, and Al (p < 0.05). Spearman correlations revealed strong associations between certain shell elements (e.g., Fe, Mn, Ti, Zn) and morphometric parameters. Comparisons with environmental samples (water and sediment) showed moderate to strong correlations, particularly with sediment metal concentrations, supporting the utility of shell chemistry as an integrative exposure matrix. Nonetheless, there were significant percentages of censored or missing values for certain metals (Cu, Ni, and As). This study emphasizes how viable turtle shells are as non-lethal markers of bioaccumulation and stresses how crucial it is to take environmental matrices, element-specific variability, and sex into account when assessing contamination. Longitudinal monitoring, physiological biomarkers, and isotopic analysis should all be used in future studies to bolster the causal relationships between environmental exposure and turtle health. Full article
Show Figures

Figure 1

25 pages, 3960 KB  
Article
Spatial Structure and Temporal Dynamics in Clear Lake, CA: The Role of Wind in Promoting and Sustaining Harmful Cyanobacterial Blooms
by David A. Caron, Alle A. Y. Lie, Brittany Stewart, Amanda Tinoco, Isha Kalra, Stephanie A. Smith, Adam L. Willingham, Shawn Sneddon, Jayme Smith, Eric Webb, Kyra Florea and Meredith D. A. Howard
Water 2025, 17(22), 3265; https://doi.org/10.3390/w17223265 - 15 Nov 2025
Viewed by 604
Abstract
Clear Lake in Lake County, CA, USA has experienced highly toxic cyanobacterial blooms for more than a decade, with multiple cyanobacterial taxa and cyanotoxins appearing sporadically, typically throughout much of the early-spring to late-fall seasons. Recurring blooms have been attributed to high internal [...] Read more.
Clear Lake in Lake County, CA, USA has experienced highly toxic cyanobacterial blooms for more than a decade, with multiple cyanobacterial taxa and cyanotoxins appearing sporadically, typically throughout much of the early-spring to late-fall seasons. Recurring blooms have been attributed to high internal nutrient loads within the lake, with hydrography and hydrology playing important but still poorly documented roles in controlling the availability of growth-limiting elements to the phytoplankton community. The lake is approximately 180 km2 in areal extent and composed of three somewhat disjointed lobes, or ‘Arms’. The large size of the lake presents a formidable task for synoptic lakewide surveys and for understanding the specific features that stimulate the development and magnitude of harmful blooms. We conducted a study in August of 2020 that involved the use of an autonomous underwater vehicle and deployment of a hand-held water column profiler to describe the lakewide status of various biological, chemical, and physical features. Discrete water samples were also collected from ten stations located throughout the lake to produce a near-synoptic depiction of lake status. Additionally, a mechanically driven, continuously monitoring water-column profiler was deployed at a central lake location to document short-term temporal (minutes to months) changes in water-column structure and chemistry. Wind was a dominant feature affecting the lake’s chemistry and biology during the study, resulting in massive concentrations and dramatic spatial heterogeneity of phytoplankton biomass and cyanotoxins in the eastern and southeastern Arms of the lake, and confirmed by the analysis of discrete water samples. Unique insight into the processes leading to or prolonging blooms was revealed by the water column profiler, which demonstrated rapid development (within a few hours) of suboxic conditions during periods of calm winds. We speculate that these quiescent periods are fundamental events in the lake’s ecology, resulting in episodic ‘pulses’ of nutrient release from the sediments, which can stimulate or refuel blooms of cyanobacteria in the water column. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

48 pages, 2100 KB  
Review
Extraction and Analytical Techniques for Pharmaceuticals and Personal Care Products in Sediments: A Critical Review Towards Environmental Sustainability
by Alia D. Aouant and Dimitra Hela
Sustainability 2025, 17(22), 10025; https://doi.org/10.3390/su172210025 - 10 Nov 2025
Cited by 2 | Viewed by 1628
Abstract
Pharmaceuticals and personal care products (PPCPs) are among the most frequently detected emerging pollutants in aquatic sediments, raising increasing concerns due to their persistence, bioaccumulation potential, and ecological impact. As sediments act both as reservoirs and secondary sources of contamination, effective and environmentally [...] Read more.
Pharmaceuticals and personal care products (PPCPs) are among the most frequently detected emerging pollutants in aquatic sediments, raising increasing concerns due to their persistence, bioaccumulation potential, and ecological impact. As sediments act both as reservoirs and secondary sources of contamination, effective and environmentally responsible analytical methodologies are essential for accurate environmental monitoring and risk assessment. This review presents a critical evaluation of extraction-based workflows for PPCP determination in sediment matrices, covering literature published from 2015 to 2025. We systematically analyze each step of the analytical pipeline, including sample pre-treatment, extraction, clean-up, and instrumental analysis, while emphasizing how method selection and optimization affect recovery rates, sensitivity, and detection limits. Special attention is paid to the physicochemical characteristics of PPCPs that govern extraction behavior, as well as to the trade-offs between analytical efficiency and environmental sustainability, such as solvent type, energy demand, and method greenness. By consolidating current knowledge, this work aims to lay a theoretical foundation for researchers and practitioners in selecting suitable, robust, and sustainable analytical strategies for effective environmental protection. Full article
Show Figures

Figure 1

22 pages, 2010 KB  
Article
Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae)
by Pablo Fierro, Jaime Tapia, Antonia Hernández, Joaquín Becerra, Luis Vargas-Chacoff, Marcela Vásquez, Daniela Barrientos and Claudio Valdovinos
Water 2025, 17(21), 3079; https://doi.org/10.3390/w17213079 - 28 Oct 2025
Viewed by 721
Abstract
Glacial-origin lakes in southern South America are increasingly exposed to anthropogenic pressures, but early signs of contamination often remain undetected in apparently pristine systems. In this study, we assessed the bioaccumulation of trace metals (Cu, Mn, Zn, Cr) in the tissues of the [...] Read more.
Glacial-origin lakes in southern South America are increasingly exposed to anthropogenic pressures, but early signs of contamination often remain undetected in apparently pristine systems. In this study, we assessed the bioaccumulation of trace metals (Cu, Mn, Zn, Cr) in the tissues of the native freshwater mussel Diplodon chilensis and their relationship with sediment metal concentrations across 15 sites in six temperate lakes. Sediment quality was largely classified as unpolluted according to the geoaccumulation index (87% of values ≤ 0), yet high metal loads were found in mussel tissues, with Mn and Zn reaching 3325 mg·kg−1 and 350 mg·kg−1 respectively. Bioaccumulation factors were especially high for Mn (42.2) and Zn (32.1), reflecting efficient uptake from the environment. Multivariate analyses revealed spatial patterns driven by sediment composition and gradients of human influence, while regression models highlighted a significant role of fine sediment fractions in Mn bioaccumulation. These results demonstrate that D. chilensis can detect bioavailable metal fractions even in low-impact systems, underscoring its potential as a sentinel species. The integrative approach combining sediment chemistry, tissue analyses, and quantitative indices provides a replicable, cost-effective framework for the early detection of metal contamination in temperate lakes worldwide. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

38 pages, 72935 KB  
Article
Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems
by Lisa I. Kearney, Andrew G. Christy, Elena A. Belousova, Benjamin R. Hines, Alkis Kontonikas-Charos, Mitchell de Bruyn, Henrietta E. Cathey and Vladimir Lisitsin
Minerals 2025, 15(11), 1118; https://doi.org/10.3390/min15111118 - 27 Oct 2025
Viewed by 1334
Abstract
Accurate phase identification is essential for characterising complex mineral systems but remains a challenge in SEM-based automated mineralogy (AM) for compositionally variable rock-forming or accessory minerals. While platforms such as the Tescan Integrated Mineral Analyzer (TIMA) offer high-resolution phase mapping through BSE-EDS data, [...] Read more.
Accurate phase identification is essential for characterising complex mineral systems but remains a challenge in SEM-based automated mineralogy (AM) for compositionally variable rock-forming or accessory minerals. While platforms such as the Tescan Integrated Mineral Analyzer (TIMA) offer high-resolution phase mapping through BSE-EDS data, classification accuracy depends on the quality of the user-defined phase library. Generic libraries often fail to capture site-specific mineral compositions, resulting in misclassification and unclassified pixels, particularly in systems with solid solution behaviour, compositional zoning, and textural complexity. We present a refined approach to developing and validating custom TIMA phase libraries. We outline strategies for iterative rule refinement using mineral chemistry, textures, and BSE-EDS responses. Phase assignments were validated using complementary microanalytical techniques, primarily electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Three Queensland case studies demonstrate this approach: amphiboles in an IOCG deposit; cobalt-bearing phases in a sediment-hosted Cu-Au-Co deposit; and Li-micas in an LCT pegmatite system. Targeted refinement of phases improves identification, reduces unclassified phases, and enables rare phase recognition. Expert-guided phase library development strengthens mineral systems research and downstream applications in geoscience, ore deposits, and critical minerals while integrating datasets across scales from cores to mineral mapping. Full article
Show Figures

Figure 1

21 pages, 1405 KB  
Review
TiO2 Nanoparticles in Soil: Adsorption, Transformation, and Environmental Risks
by Hongyu Liu, Yaqin Wang, Xicheng Wang, Rui Liu and Peng Zhang
Powders 2025, 4(4), 28; https://doi.org/10.3390/powders4040028 - 23 Oct 2025
Viewed by 872
Abstract
Titanium-containing nanoparticles have emerged as materials of significant technological importance due to their multifunctional properties and excellent performance. With their expanding applications, the amount of TiO2 nanoparticles (TNPs) being released into the soil environment has increased significantly. This review addresses the gap [...] Read more.
Titanium-containing nanoparticles have emerged as materials of significant technological importance due to their multifunctional properties and excellent performance. With their expanding applications, the amount of TiO2 nanoparticles (TNPs) being released into the soil environment has increased significantly. This review addresses the gap in current research, which has predominantly focused on the environmental behavior of TNPs in aquatic systems while lacking systematic integration of the synergetic mechanism of adsorption–transformation–ecological effects in soil systems and its guiding value for practical applications. It deeply reveals the interaction mechanisms between TNPs and environmental pollutants. TNPs exhibit outstanding adsorption performance towards environmental pollutants such as heavy metals and organic compounds. Specifically, the maximum adsorption capacities of titanate nanowhiskers for the heavy metal ions Cu(II), Pb(II), and Cr(III) are 143.9 mg·g−1, 384.6 mg·g−1, and 190.8 mg·g−1, respectively. Additionally, 1-hydroxydinaphthoic acid surface-modified nano-TiO2 exhibits an adsorption rate of up to 98.6% for p-nitrophenol, with an enrichment factor of 50-fold. The transformation process of TNPs after pollutant adsorption profoundly affects their environmental fate, among which pH is a critical controlling factor: when the environmental pH is close to the point of zero charge (pHpzc = 5.88), TNPs exhibit significant aggregation behavior and macroscopic sedimentation. Meanwhile, factors such as soil solution chemistry, dissolved organic matter, and microbial activities collectively regulate the aggregation, aging, and chemical/biological transformation of TNPs. In the soil ecosystem, TNPs can exert both beneficial and detrimental impacts on various soil organisms, including bacteria, plants, nematodes, and earthworms. The beneficial effects include alleviating heavy metal stress, serving as a nano-fertilizer to supply titanium elements, and acting as a nano-pesticide to enhance plants’ antiviral capabilities. However, excessively high concentrations of TiO2 can stimulate plants, induce oxidative stress damage, and impair plant growth. This review also highlights promising research directions for future studies, including the development of safer-by-design TNPs, strategic surface modifications to enhance functionality and reduce risks, and a deeper understanding of TNP–soil microbiome interactions. These avenues are crucial for guiding the sustainable application of TNPs in soil environments. Full article
Show Figures

Figure 1

28 pages, 10774 KB  
Article
TiO2 and CaCO3 Microparticles Produced in Aqueous Extracts from Satureja montana: Synthesis, Characterization, and Preliminary Antimicrobial Test
by Federica Valentini, Irene Angela Colasanti, Camilla Zaratti, Dumitrita Filimon, Andrea Macchia, Anna Neri, Michela Relucenti, Massimo Reverberi, Ivo Allegrini, Ettore Guerriero, Marina Cerasa, Marta De Luca, Francesca Santangeli, Roberto Braglia, Francesco Scuderi, Lorenza Rugnini, Roberta Ranaldi, Roberto De Meis and Antonella Canini
Molecules 2025, 30(20), 4138; https://doi.org/10.3390/molecules30204138 - 20 Oct 2025
Viewed by 661
Abstract
The possibility of modifying the surface chemistry of materials and synthetizing inorganic particles in natural aqueous extracts of plants (avoiding calcination), opens the doors to undoubtedly interesting scenarios for innovative functionalization strategies that are increasingly eco-sustainable and rich in interesting chemical–physical and biochemical [...] Read more.
The possibility of modifying the surface chemistry of materials and synthetizing inorganic particles in natural aqueous extracts of plants (avoiding calcination), opens the doors to undoubtedly interesting scenarios for innovative functionalization strategies that are increasingly eco-sustainable and rich in interesting chemical–physical and biochemical properties. Among the aerial plants, Satureja montana exhibits interesting antibacterial, antifungal, antimicrobial, and antioxidant activities due to the rich volatile and non-volatile compounds (characterized by gas chromatography–mass spectrometry), contained in the aqueous extracts. For the first time, the latter was applied for the green synthesis of TiO2 and CaCO3 particles, characterized by X-ray diffraction, Raman, infrared spectroscopies, and scanning electron microscopy, coupled with microanalysis. Screening through antimicrobial assays under indoor passive sedimentation conditions showed opposite trends for two kinds of particles. TiO2 anatase spherical particles (400 < φ < 600 nm) increase microbial growth, proportionally to increasing particle concentration. Instead, S. montana-functionalized CaCO3 prismatic microparticles (1 µm × 1 µm × 1 µm) exhibit strong and dose-dependent antimicrobial activities, achieving near-complete inhibition at 50 mg/mL. Full article
(This article belongs to the Special Issue Synthesized and Functionalized Nanoparticles in Natural Compounds)
Show Figures

Graphical abstract

23 pages, 8290 KB  
Article
Experimental and Numerical Investigation of Fines Migration Mechanisms in Porous Media: Implications for Marine Gas Hydrate Production
by Shuang Cindy Cao, Mengzhen Cao, Yanli Yuan, Jongwon Jung and Xiaoshuang Li
J. Mar. Sci. Eng. 2025, 13(10), 2002; https://doi.org/10.3390/jmse13102002 - 18 Oct 2025
Cited by 1 | Viewed by 686
Abstract
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the [...] Read more.
Fines migration and clogging in porous media have significant implications for engineering applications. For example, during the extraction of marine gas hydrates, fines migration can lead to pore clogging and reduced permeability. This study combines micromodel experiments with DEM-CFD simulations to investigate the effects of fine type (latex/mica), fine shape (spherical/flake), pore size (50 to 700 μm), and pore fluid composition (DW/brine) on fines migration, fine clogging behavior, and the evolution of host sediment porosity. Experiments demonstrate that clogging is geometrically influenced by the relationship between pore size and fines dimensions. Even when the size of fines (mica) is smaller than the pore throat size, their aggregates can still lead to clogging at very low concentrations (0.1–0.2%). The aggregate size of irregular mica is affected by changes in pore fluid properties, which may occur due to the freshening of pore water during hydrate dissociation. Furthermore, a moving gas/liquid interface concentrates fines, thereby increasing the risk of pore clogging. Simulations further reveal that fines migration causes dynamic changes in porosity, which requires a comprehensive consideration of the coupled effects of fine type, fluid velocity, pore size, and fluid chemistry. This study elucidates the microscopic mechanisms and quantifies the macroscopic effects of fines migration behavior in porous media, providing a theoretical foundation for further research. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

36 pages, 4995 KB  
Review
Petroleum Emulsion Stability and Separation Strategies: A Comprehensive Review
by Soroush Ahmadi and Azizollah Khormali
ChemEngineering 2025, 9(5), 113; https://doi.org/10.3390/chemengineering9050113 - 17 Oct 2025
Viewed by 3853
Abstract
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors [...] Read more.
Crude oil emulsions continue to pose significant challenges across production, transportation, and refining due to their inherent stability and complex interfacial chemistry. Their persistence is driven by the synergistic effects of asphaltenes, resins, acids, waxes, and fine solids, as well as operational factors such as temperature, pH, shear, and droplet size. These emulsions increase viscosity, accelerate corrosion, hinder catalytic activity, and complicate downstream processing, resulting in substantial operational, economic, and environmental impacts—underscoring the necessity of effective demulsification strategies. This review provides a comprehensive examination of emulsion behavior, beginning with their formation, classification, and stabilization mechanisms and progressing to the fundamental processes governing destabilization, including flocculation, coalescence, Ostwald ripening, creaming, and sedimentation. Separation techniques are critically assessed across chemical, thermal, mechanical, electrical, membrane-based, ultrasonic, and biological domains, with attention to their efficiency, limitations, and suitability for industrial deployment. Particular emphasis is placed on hybrid and emerging methods that integrate multiple mechanisms to improve performance while reducing environmental impact. By uniting fundamental insights with technological innovations, this work highlights current progress and identifies future directions toward greener, more efficient oil–water separation strategies tailored to diverse petroleum operations. Full article
Show Figures

Figure 1

16 pages, 2061 KB  
Article
A Relationship Between Nutrients in a Mid-Forest Eutrophic Lake
by Józef Antonowicz, Michał Rybak and Tomasz Wróblewski
Water 2025, 17(19), 2913; https://doi.org/10.3390/w17192913 - 9 Oct 2025
Viewed by 678
Abstract
In 2023, studies were carried out on the aquatic environment of the forest lake Łętowskie. The studies covered the horizontal and vertical planes and seasonal dynamics. Lake Łętowskie is a lake with an area of 402 ha, which distinguishes it from other lakes [...] Read more.
In 2023, studies were carried out on the aquatic environment of the forest lake Łętowskie. The studies covered the horizontal and vertical planes and seasonal dynamics. Lake Łętowskie is a lake with an area of 402 ha, which distinguishes it from other lakes in Pomerania due to its large area. In three quarters of the lake shore border forests, changes in surface and volume have been observed in the lakes over the last century, which has affected the chemistry of the water. The aims of this study were to determine the dependencies between the concentration of biogenic substances in the near-bottom layer and subsurface water and analyze the dependencies between chemical parameters in the water of the mid-forest lake Łętowskie. In the water samples obtained, including the surface layer (SW) and the near-bottom layer (NBL), the concentrations of N-NO3, N-NO2, N-NH4, N-tot, N-org, P-PO4, P-tot, P-org, and O2, electrolytic conductivity, pH, Ca, and Mg were determined. Statistical analyses were carried out, including tests and multidimensional PCA and cluster analysis. A significant effect of forests on the chemical composition of lake water was observed. The conducted studies of Łętowskie Lake indicate that the NBL experiences seasonal dynamics, where phosphorus and nitrogen compounds are transformed, which causes trophic changes in the lake. Based on multidimensional cluster analysis, differences between the SW and the NBL were shown. In Łętowskie Lake, the level of biogenic substances in the water is significantly influenced by processes occurring inside the lake as a result of the exchange of matter between the NBL and bottom sediments. This exchange in shallower areas of the lake is influenced by winds, especially in exposed locations: this was observed for P-tot, P-PO4, P-org, Ca, N-NO3 and N-NH4, N-tot, and N-org. The conducted studies are important for supporting the protection of the Landscape Area “Łętowskie Lake and the vicinity of Kępice” to preserve the existing values of the natural environment and maintain the ecological balance of natural systems. Current scientific publications on the hydrochemical data of Łętowskie Lake are currently lacking, and the available data needs to be updated. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

17 pages, 3621 KB  
Article
Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation
by Rubén H. Olcay, Andréia B. Henriques, George E. Valadão, Iván A. Reyes, Julio C. Juárez, Martín Reyes, Miguel Pérez and Mizraim U. Flores
Polymers 2025, 17(19), 2613; https://doi.org/10.3390/polym17192613 - 27 Sep 2025
Viewed by 745
Abstract
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 [...] Read more.
This study evaluates the use of seawater and continental water in tailings thickening and copper flotation at laboratory scale, focusing on water reuse in mining operations in arid regions. The tailings had a mean particle size of 10 µm, with 75% < 50 µm, and a specific weight of 2.64 g/cm3. Seawater contained significantly higher ion concentrations Na+ 10,741 ppm, Mg2+ 1245 ppm, and Ca2+ 556 ppm compared with continental water (187, 32, and 127 ppm, respectively), which negatively affected polymer performance. Sedimentation tests showed that the anionic polymer (A3) increased settling rates by 33 times with continental water at 40 g/t, while with seawater the increase was 31 times at 60 g/t. In column thickener tests, discharge solids reached 65% with continental water and 62% with seawater, representing an annual reduction of ~17,000 m3 of recovered water when seawater is used. Consistency tests indicated that achieving slump <20% required 75% solids with continental water and 77.5% with seawater. With dewatering polymers, doses of 200 g/t achieved ~70% solids and slump values near 50%, surpassing column thickener performance. Primary flotation results showed that recirculated and filtered seawater improved copper recovery by 3–5% compared with fresh seawater, due to partial removal of interfering ions. In contrast, recirculated and filtered continental water reduced recovery by 2–4%, likely because of residual polymer effects on mineral surfaces. These findings highlight the importance of polymer selection and dosage optimization to ensure efficient water recovery and sustainable flotation performance under varying water chemistries. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop