Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation
Abstract
1. Introduction
2. Materials and Methods
2.1. Mineral Sample
2.2. Discontinuous Tailings Sedimentation Tests with Conventional Polymers
2.3. Tailings Thickening Tests with Dewatering Polymers
2.4. Tests for the Consistency of the Tailings
2.5. Tests of Angle of Stacking of the Tailings
2.6. Yield Stress Measurements in the Tailings
2.7. Tests of Primary Flotation
3. Results and Discussion
3.1. Characteristics of the Mineral Sample and Water
3.2. Test of Discontinuous Sedimentation
3.3. Discontinuous Sedimentation Tests with Selected Conventional Polymer
3.4. Discontinuous Sedimentation Tests of Tailings Samples in Column Thickener with Selected Conventional Polymer
3.5. Slurry Stability Without Polymer Use
3.6. Tailing Consistency Tests Using Dewatering Polymer
3.7. Angle of Stacking of the Tailings
3.8. Yield Stress of the Tailings
3.9. Analysis of Continental Water and Seawater Used in the Process
3.10. Flotation Tests with Continental Water and Seawater
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.S.; Edwards, J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Larsson, M.; Nosrati, A.; Kaur, S.; Wagner, J.; Baus, U.; Nydén, M. Copper removal from acid mine drainage-polluted water using glutaraldehyde-polyethyleneimine modified diatomaceous earth particles. Heliyon 2018, 4, e00520. [Google Scholar] [CrossRef] [PubMed]
- Texeira, L.; Calisaya-Azpilcueta, D.; Cruz, C.; Botero, Y.L.; Cisternas, L.A. Impact of the use of seawater on acid mine drainage from mining wastes. J. Clean. Prod. 2023, 383, 135516. [Google Scholar] [CrossRef]
- Torres, M.A.; Meruane, G.E.; Graber, T.A.; Gutiérrez, P.C.; Taboada, M.E. Recovery of nitrates from leaching solutions using seawater. Hydrometallurgy 2013, 133, 100–105. [Google Scholar] [CrossRef]
- Ordóñez, J.I.; Moreno, L.; Gálvez, E.D.; Cisternas, L.A. Seawater leaching of caliche mineral in column experiments. Hydrometallurgy 2013, 139, 79–87. [Google Scholar] [CrossRef]
- Toro, N.; Gálvez, E.; Robles, P.; Castillo, J.; Villca, G.; Salinas-Rodríguez, E. Use of Alternative Water Resources in Copper Leaching Processes in Chilean Mining Industry—A Review. Metals 2022, 12, 445. [Google Scholar] [CrossRef]
- Cortés, S.; Maluenda-Leon, P.; Wong-Pinto, L.; Ordónez, J.I. Hydrometallurgical processing of mining-impacted soils: A preliminary study to recover copper salts by leaching with seawater and crystallization. Hydrometallurgy 2024, 225, 106267. [Google Scholar] [CrossRef]
- Campo, G.; Ruffino, B.; Reyes, A.; Zanetti, M. Water-Energy Nexus in the Antofagasta Mining District: Options for Municipal Wastewater Reuse from a Nearly Energy-Neutral WWTP. Water 2023, 1, 1221. [Google Scholar] [CrossRef]
- Taboada, M.E.; Hernández, P.C.; Galleguillos, H.R.; Flores, E.K.; Graber, T.A. Behavior of sodium nitrate and caliche mineral in seawater: Solubility and physicochemical properties at different temperatures and concentrations. Hydrometallurgy 2012, 113–114, 160–166. [Google Scholar] [CrossRef]
- Moreno, P.; Ara, H.; Cuevas, J.; Monardes, A.; Adaro, M.; Norgate, T.; Bruckard, W. The use of seawater as process water at Luces copper-molibdenum beneficiaton plant in Taltal (Chile). Miner. Eng. 2011, 24, 852–858. [Google Scholar] [CrossRef]
- Li, W.; Li, Y. Improved understanding of chalcopyrite flotation in seawater using sodium hexametaphosphate. Miner. Eng. 2019, 134, 269–274. [Google Scholar] [CrossRef]
- Qiu, Z.; Liu, G.; Liu, Q.; Zhong, H. Understanding the roles of high salinity in inhibiting the molybdenite flotation. Colloids Surf. A 2016, 509, 123–129. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The effect of saline water on mineral flotation—A critical review. Miner. Eng. 2014, 66–68, 13–24. [Google Scholar] [CrossRef]
- Campero, C.; Harris, L.M. The Legal Geographies of Water Claims: Seawater Desalination in Mining Regions in Chile. Water 2019, 11, 886. [Google Scholar] [CrossRef]
- Cooley, H.; Gleick, P.H.; Wolff, G.H. Desalination, with a Grain of Salt: A California Perspective; Pacific Institute for Studies in Development, Environment, and Security: Oakland, CA, USA, 2006. [Google Scholar]
- Wilder, M.; Aguilar-Barajas, I.; Pineda-Pablos, N.; Varady, R.; Megdal, S.; McEvoy, J.; Merideth, R.; Zúñiga-Terán, A.; Scott, C. Desalination and water security in the US–Mexico border region: Assessing the social, environmental and political impacts. Water Int. 2016, 41, 756–775. [Google Scholar] [CrossRef]
- Cheng, G.; Peng, Y.; Xiong, L.; Lu, Y.; Li, E.; Gao, J.; Qin, Y.; Wang, X.; Lau, E.V. New insights into enhancing sustainable flotation performance of fine chalcopyrite via surface modification. Particuology 2025, 105, 155–164. [Google Scholar] [CrossRef]
- Cheng, G.; Xiong, L.; Lu, Y.; Zhang, Z.G.; Lu, C.; Lau, E.V. Advancements in the application of surface roughness in mineral flotation process. Sep. Sci. Technol. 2024, 59, 592–611. [Google Scholar] [CrossRef]
- Nowosielska, A.M.; Nikoloski, N.A.; Parsons, D.F. The effects of saline water on the recovery of lead and zinc sulfide during froth flotation. Miner. Eng. 2023, 202, 108236. [Google Scholar] [CrossRef]
- Di Feo, A.; Hill-Svehla, C.M.; Hart, B.R.; Volchek, K.; Morin, L.; Demers, A. The effects of water recycling on flotation at North American concentrator. Miner. Eng. 2021, 170, 107037. [Google Scholar] [CrossRef]
- Lia, Y.; Zhua, H.; Lia, W.; Zhu, Y. A fundamental study of chalcopyrite flotation in seawater using sodium silicate. Miner. Eng. 2019, 139, 106862. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of kerosene emulsion in MgCl2 solution on the kinetics of bubble interactions with molybdenite and chalcopyrite. Colloids Surf. Physicochem. Eng. Asp. 2016, 501, 98–113. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Y.; Nicholson, T.; Lauten, R.A. The role of cations in copper flotation in the presence of bentonite. Miner. Eng. 2021, 170, 107037. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, X.; Peng, Y. The effect of saline water on the critical degree of coal surface oxidation for coal flotation. Miner. Eng. 2018, 119, 222–227. [Google Scholar] [CrossRef]
- Ningbo, S.; Wanzhong, Y.; Jin, Y. Effect of seawater on flotation separation of galena from sphalerite. Adv. Powder Technol. 2024, 35, 104333. [Google Scholar] [CrossRef]
- Philippe, R.; Dixon, R.; Dal Pozzo, S. Seawater supply options for the mining industry. In Proceedings of the 2nd International Seminar on Geology for the Mining Industry, Antofagasta, Chile, 8–10 June 2011. [Google Scholar]
- Zhang, M.; Peng, Y.; Xu, N. The effect of seawater on copper and gold flotation in the presence of bentonite. Miner. Eng. 2015, 77, 93–98. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Werner, T.T.; Jowitt, S.M.; Haque, N.; Mohan Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Glob. Environ. Chang. 2017, 44, 109–124. [Google Scholar] [CrossRef]
- Cruz, C.; Reyes, A.; Jeldres, R.I.; Cisternas, L.A.; Kraslawski, A. Using partial desalination treatment to improve the recovery of copper and molybdenum minerals in Chilean mining industry. Ind. Eng. Chem. Res. 2019, 58, 8915–8922. [Google Scholar] [CrossRef]
- Herrera-León, S.; Cruz, C.; Kraslawski, A.; Cisternas, L.A. Current situation and major challenges of desalination in Chile. Desalin Water Treat. 2019, 171, 93–104. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E. The use of seawater in mining. Miner. Process Extr. Metall. Rev. 2017, 39, 18–33. [Google Scholar] [CrossRef]
- Ramos, O.; Castro, S.; Laskowski, J.S. Copper–molybdenum ores flotation in sea water: Floatability and frothability. Miner. Eng. 2013, 53, 108–112. [Google Scholar] [CrossRef]
- Cruz-Rojas, C.V. Sustainable Solutions for Using Seawater in the Copper Mining Industry; LUT University Press: Antofagasta, Chile, 2024. [Google Scholar]
- Olcay, R.H.; Hernández, C.A.; Valadão, G.E.S.; Chávez, A.P. Production of minerals paste from phosphates sludges. Ingeniare Rev. Chil. De Ing. Univ. De Tarapacá 2020, 28, 335–345. [Google Scholar] [CrossRef]
- Olcay, R.H.; Valadão, G.E.; Araujo, A.C.; Reyes, I.A.; Flores, M.U. Dewatering of Fine Tailings for Disposal in Dams Using a Column Thickener, Deep Cone Classifier, and Hyperbaric Filtration. Min. Metall. Explor. 2024, 41, 335–344. [Google Scholar] [CrossRef]
- Clayton, S.; Grice, T.G.; Boger, D.V. Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int. J. Miner. Process 2003, 70, 3–21. [Google Scholar] [CrossRef]
- Boger, D.V. Rheology and the resource industries. Chem. Eng. Sci. 2009, 64, 4525–4536. [Google Scholar] [CrossRef]
- Mizani, S.; Simms, P. Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model. Miner. Eng. 2016, 98, 40–48. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, Z.; Yang, L.; Wang, M. Effective Removal of Calcium and Magnesium Ions from Water by a Novel Alginate–Citrate Composite Aerogel. Gels 2021, 7, 125. [Google Scholar] [CrossRef]
- Dong, Y.; Guo, Z.; Guo, N.; Liu, T. One-Step Removal of Calcium, Magnesium, and Nickel in Desalination by Alcaligenes aquatilis via Biomineralization. Crystals 2019, 9, 633. [Google Scholar] [CrossRef]
- Sharkh, A.B.; Al-Amoudi, A.A.; Farooque, M.; Fellows, C.M.; Ihm, S.; Lee, S.; Li, S.; Voutchkov, N. Seawater desalination concentrate—A new frontier for sustainable mining of valuable minerals Nature. Sustainability 2022, 5, 689–696. [Google Scholar] [CrossRef]
- Manono, M.S.; Khan, S.F.; October, L.L.; Corin, K.C. The effect of residual coagulants and flocculants in process water on flotation performance of a Cu-Ni-PGM ore. Miner. Eng. 2024, 216, 108850. [Google Scholar] [CrossRef]
- Leiva, W.H.; Toro, N.; Robles, P.; Quezada, G.R.; Salazar, I.; Jeldres, R. Clay Tailings Flocculated in Seawater and Industrial Water: Analysis of Aggregates, Sedimentation, and Supernatant Quality. Polymers 2024, 16, 1441. [Google Scholar] [CrossRef]
Property | Technical | Equipment |
---|---|---|
Tailings specific weight | Simple pycnometry | Pycnometer |
Tailings particle size distribution | Laser diffraction | Marveln Mastersizer 3000 (Worcestershire, UK) |
Tailings yield stress | Rheometry | Rheometer Brookfield DV3T (United States, as Brookfield Engineering Laboratories) |
Tailings chemical composition | X-ray fluorescence | Olympus Delta Premium DP-4050-C (Waltham, MA, USA) |
Tailings mineral composition | X-ray diffraction | Advance Davinci Bruker D8 Spectrometer (Bruker AXS GmbH, Karlsruhe, Germany) |
Water chemical composition | Atomic absorption spectrometer | SpectrAA-55B (Santa Clara, CA, USA) |
Water turbidity | White light source and 90°detection | Turbidimeter TB 250 WL (Lovibond, which, Tintometer Group, Germany) |
Flocculant/Charge | Molecular Weight | Functional Groups | Degree of Hydrophilicity | Conformation in Solution | Behavior in the Presence of Ions |
---|---|---|---|---|---|
A1/Anionic | High | Amide + carboxylate | Hydrophilic | Extended | High salinity → partial compaction; Cu2+ → dense flocs |
A2/Anionic | Very high | Amide + COO− | Very hydrophilic | Highly extended coil | Tailings thickeners; SO42− → maintains efficiency up to a certain limit |
A3/Anionic | High | Anionic polyacrylamide (amide + carboxylate) | Very hydrophilic | Extended chain; good bridging | With Ca2+/Mg2+ → more compact flocs; with Cu2+/Fe3+ → strong interactions, rapid settling |
A4/Anionic | Medium | Amide + carboxylate (copolymer) | Hydrophilic | Less extended than APAM | Better tolerance in waters with SO42−; with Ca2+ → stable flocs |
A5/Anionic | High | Amide + sulfonate (–SO3−) | Very hydrophilic | Coil expanded by sulfonate charges | High performance in recirculated waters with copper sulfates |
Flocculant/Charge | Molecular Weight | Functional Groups | Degree of Hydrophilicity | Conformation in Solution | Behavior in the Presence of Ions |
---|---|---|---|---|---|
C1/Cationic | High | Amide + quaternary ammonium | Hydrophilic | Extended chain | SO42− reduces efficiency; Cu2+ → compact flocs |
C2/Cationic | Medium | Amide + quaternary ammonium | Hydrophilic | More compact | Pre-aid before anionics; good adsorption on fines |
C3/Cationic | Low | Protonated amines | Very hydrophilic | Compact, direct neutralization | Resistant to SO42−; affinity for negative clays |
C4/Cationic | Medium | Protonated branched amines | Hydrophilic | Branched, multiple adsorption sites | Improves initial settling in waters with Cu2+/Fe3+ |
C5/Cationic | Medium | Quaternary ammonium | Very hydrophilic | Short chain, surface layer | Little affected by Ca2+/Mg2+; maintains adsorption in waters with sulfates |
Tailings | Sample I | Sample II | Sample III | Average |
---|---|---|---|---|
Specific weight (g/cm3) | 2.65 | 2.59 | 2.69 | 2.64 |
Sample | Si (%) | S (%) | K (%) | Ca (%) | Fe (%) | Cu (%) | Zn (%) | As (%) | Zr (%) | Mo (%) | Pb (%) | LE (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tailing 1 | 5.23 | 0.94 | 2.03 | 0.64 | 3.54 | 0.11 | 0.020 | 0.02 | 0.01 | 0.04 | 0.01 | 86.11 |
Tailing 2 | 4.46 | 0.88 | 2.01 | 0.61 | 3.89 | 0.13 | 0.010 | 0.02 | 0.01 | 0.05 | 0.01 | 87.44 |
Tailing 3 | 5.07 | 0.89 | 2.1 | 0.54 | 3.7 | 0.11 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 | 86.53 |
Average | 5.92 | 0.91 | 2.04 | 0.6 | 3.71 | 0.12 | 0.01 | 0.02 | 0.01 | 0.03 | 0.01 | 86.70 |
Mineral Species | Formula | Percentage in the Sample |
---|---|---|
Quartz | SiO2 | 55.1 |
Muscovite | K2(Mg,Al)4–5(Al,Si)8O20(OH)4 | 22.4 |
Microcline | KAlSi3O8 | 12.4 |
Albite | NaAlSi3O8 | 5.2 |
Pyrite | FeS2 | 2.6 |
Clinochlore | Mg3.75Fe2+1.25Si3Al2O10(OH)8 | 2.6 |
Water Sample | Na (ppm) | Mg (ppm) | Ca (ppm) | pH | EC (σ) (mS/cm) | Turbidity (NTU) |
---|---|---|---|---|---|---|
Continental | 187 | 32 | 127 | 7.7 | 1.4 | <100 |
Seawater | 10,741 | 1245 | 556 | 7.9 | 56 | <100 |
Water Sample | Na (ppm) | Mg (ppm) | Ca (ppm) | pH | EC (σ) (mS/cm) |
---|---|---|---|---|---|
Continental CP | 161 | 25 | 105 | 7.8 | 1.2 |
Seawater CP | 9764 | 1043 | 471 | 8.0 | 44 |
Continental DP | 172 | 29 | 116 | 7.9 | 1.1 |
Seawater DP | 9975 | 1081 | 514 | 8.1 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olcay, R.H.; Henriques, A.B.; Valadão, G.E.; Reyes, I.A.; Juárez, J.C.; Reyes, M.; Pérez, M.; Flores, M.U. Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation. Polymers 2025, 17, 2613. https://doi.org/10.3390/polym17192613
Olcay RH, Henriques AB, Valadão GE, Reyes IA, Juárez JC, Reyes M, Pérez M, Flores MU. Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation. Polymers. 2025; 17(19):2613. https://doi.org/10.3390/polym17192613
Chicago/Turabian StyleOlcay, Rubén H., Andréia B. Henriques, George E. Valadão, Iván A. Reyes, Julio C. Juárez, Martín Reyes, Miguel Pérez, and Mizraim U. Flores. 2025. "Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation" Polymers 17, no. 19: 2613. https://doi.org/10.3390/polym17192613
APA StyleOlcay, R. H., Henriques, A. B., Valadão, G. E., Reyes, I. A., Juárez, J. C., Reyes, M., Pérez, M., & Flores, M. U. (2025). Polymer-Assisted Tailings Dewatering in Seawater and Continental Water for Copper Flotation. Polymers, 17(19), 2613. https://doi.org/10.3390/polym17192613