Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems
Abstract
1. Introduction
2. Automated Mineralogy Framework: An Approach to TIMA Acquisition and Data Processing
2.1. Instrumentation
2.1.1. Working Conditions
2.1.2. BSE Imaging and Calibration
2.2. Liberation Analysis and Acquisition Mode
- Pixel spacing (BSE spacing) represents the desired interval (in microns) between BSE image pixels, which determines the resolution of the BSE image.
- Dot spacing (EDS spacing) represents the mean spatial distance (in microns) between EDS acquisition points in the spectroscopic mesh used for elemental analysis. The specified value is always rounded to the nearest odd integer multiple of pixel spacing, normally three times that of the pixel spacing.
2.2.1. Dot Mapping Acquisition Parameters Used
2.2.2. TIMA Segmentation and Separation of Phases
2.3. Data Processing and TIMA Phase Library Development
2.3.1. Textural and Mineralogical Information from BSE Imagery and Large-Area Maps
2.3.2. Geochemistry: Semi-Quantitative Elemental Composition from EDS Maps and Spectra
EDS Spectra
Element Maps
Limitations Inherent in Energy-Dispersive X-Ray Spectra
Use of Minor Chemical Substituents to Distinguish Polymorphic Minerals
2.3.3. Mineralogy
Phase Maps
Mineral Classification Scheme: Building the Phase Library
- Counts are between a minimum and a maximum value for a given element “peak” (energy window).
- The sum of counts at two energy windows is between a minimum and a maximum value.
- The ratio of counts at two energy windows is likewise between a minimum and a maximum value.
- A softer “priority” rule, where if matches occur between the sample and multiple library entries, the phase identity selected is the highest in order of priority, which is set to imply expected abundance or likelihood of the phase.
- The BSE level between a minimum and maximum value can be used to differentiate between species with similar rules for (i–iii) but with differing brightness levels in the BSE image. This rule is based on BSE emissivity and relies on the BSE detector having consistent calibration so that BSE levels are comparable among datasets from different sessions. The BSE thresholds are commonly used to exclude background material like epoxy and prevent charge.
Limitations Arising from Mineral Chemistry
Identification of Unidentified Pixels: Resolving Unclassified and Misclassified Phases
- The mineral may be an unexpected or very rare phase that is not present in the library, in which case, it needs to be identified and suitable data, with match criteria entered into the library.
- Low-count X-ray spectra were collected, resulting in no classification, as with misclassified phases.
- The default choice of rules for mineral identification may not be optimally chosen for this particular sample or sample suite because the solid solution puts the actual mineral composition outside the bounds set by the current rules. This requires iterative dialogue between the software and a human with crystal-chemical expertise.
Use of Known Mineral Incompatibilities to Correct Misidentifications
Use of Mineral Morphology and Textural Relations to Correct Misidentifications
3. Case Studies
3.1. Unambiguous Characterisation of Major Rock-Forming Minerals
- Fe2+ substituting for Mg in the octahedrally coordinated “C” sites. If Fe2+ > Mg, we have ferro-hornblende, ideally Ca2(Fe2+Al)(AlSi7O22)(OH)2.
- Fe3+ substituting for Al in the octahedrally coordinated “C” sites. If Fe3+ > Al, we have ferri-hornblende, ideally Ca2(MgFe3+)(AlSi7O22)(OH)2.
- Both “ferro-” and “ferri-” substitutions can operate to provide ferro-ferri-hornblende, Ca2(Fe2+Fe3+)(AlSi7O22)(OH)2.
- Additional Tschermak substitution can occur to provide tschermakite, Ca2(Mg3Al2)(Al2Si6O22)(OH)2, and its ferro- and ferri-analogues.
3.2. Identification and Deportment of Critical Elements
3.3. Indirect Identification of Diagnostic Light Elements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AM | Automated mineralogy |
| TIMA | Tescan Integrated Mineral Analyzer |
| BSE | Back-scattered electron |
| EDS | Energy-dispersive X-ray spectroscopy |
| EPMA | Electron probe microanalysis |
| LA-ICPMS | Laser ablation inductively coupled plasma mass spectrometry |
| XRD | X-ray diffraction |
| IOCG | Iron–oxide–copper-gold |
| LCT | Lithium–caesium–tantalum |
| SEM | Scanning electron microscopy |
| MLA | Mineral Liberation Analyzer |
| CARF | Central Analytical Research Facility |
| QUT | Queensland University of Technology |
| FEG | Field emission gun |
| SE | Secondary electron |
| CL | Cathodoluminescence |
| BI | Beam intensity |
| WD | Working distance |
| ICR | Input count rate |
| IMA | International Mineralogical Association |
References
- Hrstka, T.; Gottlieb, P.; Skála, R.; Breiter, K.; Motl, D. Automated mineralogy and petrology—Applications of TESCAN Integrated Mineral Analyzer (TIMA). J. Geosci. 2018, 63, 47–63. [Google Scholar] [CrossRef]
- Miller, P.; Reid, A.; Zuiderwyk, M. QEM* SEM image analysis in the determination of modal assays, mineral associations and mineral liberation. In Proceedings of the XIV International Mineral Processing Congress: Worldwide Industrial Application of Mineral Processing Technology, Toronto, ON, Canada, 17–23 October 1982; pp. VIII-3.1–VIII-3.20. [Google Scholar]
- Reid, A.; Gottlieb, P.; MacDonald, K.; Miller, P. QEM* SEM image analysis of ore minerals: Volume fraction, liberation and observational variances. Appl. Mineral. 1984, 191–204. [Google Scholar]
- Fandrich, R.; Gu, Y.; Burrows, D.; Moeller, K. Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 2007, 84, 310–320. [Google Scholar] [CrossRef]
- Gu, Y. Automated scanning electron microscope based mineral liberation analysis. J. Miner. Mater. Charact. Eng. 2003, 2, 33–41. [Google Scholar] [CrossRef]
- Schulz, B.; Sandmann, D.; Gilbricht, S. SEM-based automated mineralogy and its application in geo-and material sciences. Minerals 2020, 10, 1004. [Google Scholar] [CrossRef]
- Gottlieb, P.; Wilkie, G.; Sutherland, D.; Ho-Tun, E.; Suthers, S.; Perera, K.; Jenkins, B.; Spencer, S.; Butcher, A.; Rayner, J. Using quantitative electron microscopy for process mineralogy applications. JOM 2000, 52, 24–25. [Google Scholar] [CrossRef]
- Hoal, K.; Stammer, J.; Appleby, S.; Botha, J.; Ross, J.; Botha, P. Research in quantitative mineralogy: Examples from diverse applications. Miner. Eng. 2009, 22, 402–408. [Google Scholar] [CrossRef]
- Baum, W. Ore characterization, process mineralogy and lab automation a roadmap for future mining. Miner. Eng. 2014, 60, 69–73. [Google Scholar] [CrossRef]
- Guhl, A.C.; Greb, V.-G.; Schulz, B.; Bertau, M. An improved evaluation strategy for ash analysis using scanning electron microscope automated mineralogy. Minerals 2020, 10, 484. [Google Scholar] [CrossRef]
- Schulz, B.; Merker, G.; Gutzmer, J. Automated SEM mineral liberation analysis (MLA) with generically labelled EDX spectra in the mineral processing of rare earth element ores. Minerals 2019, 9, 527. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Eksteen, J.J.; Jones, M.G.; Wells, M. The mineralogy and processing potential of the Commonwealth project in the Molong Volcanic Belt, central eastern New South Wales, Australia. Ore Geol. Rev. 2019, 111, 102976. [Google Scholar] [CrossRef]
- Aylmore, M.G.; Merigot, K.; Quadir, Z.; Rickard, W.D.; Evans, N.J.; McDonald, B.J.; Catovic, E.; Spitalny, P. Applications of advanced analytical and mass spectrometry techniques to the characterisation of micaceous lithium-bearing ores. Miner. Eng. 2018, 116, 182–195. [Google Scholar] [CrossRef]
- Emo, R.B.; Kamber, B.S. A reconstitution approach for whole rock major and trace element compositions of granulites from the kapuskasing structural zone. Minerals 2020, 10, 573. [Google Scholar] [CrossRef]
- Emo, R.B.; Kamber, B.S. Evidence for highly refractory, heat producing element-depleted lower continental crust: Some implications for the formation and evolution of the continents. Chem. Geol. 2021, 580, 120389. [Google Scholar] [CrossRef]
- Holwell, D.A.; Adeyemi, Z.; Ward, L.A.; Smith, D.J.; Graham, S.D.; McDonald, I.; Smith, J.W. Low temperature alteration of magmatic Ni-Cu-PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy. Ore Geol. Rev. 2017, 91, 718–740. [Google Scholar] [CrossRef]
- Kern, M.; Möckel, R.; Krause, J.; Teichmann, J.; Gutzmer, J. Calculating the deportment of a fine-grained and compositionally complex Sn skarn with a modified approach for automated mineralogy. Miner. Eng. 2018, 116, 213–225. [Google Scholar] [CrossRef]
- Keulen, N.; Malkki, S.N.; Graham, S. Automated quantitative mineralogy applied to metamorphic rocks. Minerals 2020, 10, 47. [Google Scholar] [CrossRef]
- Liu, T.; Song, W.; Kynicky, J.; Yang, J.; Chen, Q.; Tang, H. Automated quantitative characterization REE ore mineralogy from the giant Bayan Obo Deposit, Inner Mongolia, China. Minerals 2022, 12, 426. [Google Scholar] [CrossRef]
- Murphy, D.T.; Emo, R.; Deegan, B.; Allen, C. Growth and evolution of NE Australian continental crust interpreted from complex melting-hybridization histories of northern Queensland granulite xenoliths. Gondwana Res. 2023, 113, 163–178. [Google Scholar] [CrossRef]
- Perez-Barnuevo, L.; Pirard, E.; Castroviejo, R. Automated characterisation of intergrowth textures in mineral particles. A case study. Miner. Eng. 2013, 52, 136–142. [Google Scholar] [CrossRef]
- Rollinson, G.K.; Andersen, J.C.; Stickland, R.J.; Boni, M.; Fairhurst, R. Characterisation of non-sulphide zinc deposits using QEMSCAN®. Miner. Eng. 2011, 24, 778–787. [Google Scholar] [CrossRef]
- Santoro, L.; Putzolu, F.; Mondillo, N.; Herrington, R.; Najorka, J.; Boni, M.; Dosbaba, M.; Maczurad, M.; Balassone, G. Quantitative mineralogical evaluation of Ni-Co laterite ores through XRPD-QPA-and automated SEM-based approaches: The Wingellina (Western Australia) case study. J. Geochem. Explor. 2021, 223, 106695. [Google Scholar] [CrossRef]
- Schulz, B. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP–Th–U–Pb monazite dating. J. Metamorph. Geol. 2017, 35, 141–163. [Google Scholar] [CrossRef]
- Shan, P.; Cao, M.; Evans, N.J.; Gao, H.; Mao, Y.; Gao, Y.; Salazar, L.; Zhao, Y.; Qin, K. Automated quantitative mineralogy analysis reveals characteristics of Co occurrence in the Jinchang porphyry deposit, NE China. Ore Geol. Rev. 2023, 158, 105524. [Google Scholar] [CrossRef]
- Taylor, R.J.; Hill, E.; Andrew, M. A step forward in quantitative automated mineralogy in 2D and 3D. Geostand. Geoanal. Res. 2024, 48, 579–593. [Google Scholar] [CrossRef]
- Yang, J.; Song, W.; Liu, Y.; Zhu, X.; Kynicky, J.; Chen, Q. Mineralogy and element geochemistry of the Bayan Obo (China) carbonatite dykes: Implications for REE mineralization. Ore Geol. Rev. 2024, 165, 105873. [Google Scholar] [CrossRef]
- Yu, X.; Su, X.; Wang, Z.; Hou, Z.; Li, B.; Deng, T.; Yan, Z. Genesis of the Xiangshan Uranium Ore Field: Implications from Tescan Integrated Mineral Analyzer and Micro-X-Ray Fluorescence Mapping and Thermodynamic Modeling. Minerals 2024, 15, 5. [Google Scholar] [CrossRef]
- da Silva, F.L.; Moreira, G.F.; Pires, K.S.; von Kruger, F.L.; da Silva Araujo, F.G. Quantitative phases characterization of clayey ceramics containing manganese ore tailings. J. Mater. Res. Technol. 2020, 9, 11884–11894. [Google Scholar] [CrossRef]
- Harvey, P.J.; Rouillon, M.; Dong, C.; Ettler, V.; Handley, H.K.; Taylor, M.P.; Tyson, E.; Tennant, P.; Telfer, V.; Trinh, R. Geochemical sources, forms and phases of soil contamination in an industrial city. Sci. Total Environ. 2017, 584, 505–514. [Google Scholar] [CrossRef]
- Hrstka, T.; Motl, D.; Gottlieb, P.; Hladil, J. Using an automated approach in building a dust particle atlas for research and environmental monitoring. Sci. Res. Abstr. 2017, 6, 43. [Google Scholar]
- Knappett, C.; Pirrie, D.; Power, M.R.; Nikolakopoulou, I.; Hilditch, J.; Rollinson, G.K. Mineralogical analysis and provenancing of ancient ceramics using automated SEM-EDS analysis (QEMSCAN®): A pilot study on LB I pottery from Akrotiri, Thera. J. Archaeol. Sci. 2011, 38, 219–232. [Google Scholar] [CrossRef]
- Kostryzhev, A.; Murphy, T. Phase characterisation in minerals and metals using an SEM-EDS based automated mineralogy system. Methods Microsc. 2025, 1, 163–175. [Google Scholar] [CrossRef]
- Crompton, J.W. Weathering products in glacial silt and clay: Using automated mineralogy to probe size distribution and source. Arct. Antarct. Alp. Res. 2025, 57, 2438462. [Google Scholar] [CrossRef]
- Figueroa, G.; Moeller, K.; Buhot, M.; Gloy, G.; Haberla, D. Advanced discrimination of hematite and magnetite by automated mineralogy. In Proceedings of the 10th International Congress for Applied Mineralogy (ICAM), Trondheim, Norway, 1–5 August 2011; pp. 197–204. [Google Scholar]
- Kearney, L.; Nothdurft, L.; Murphy, D.; Webb, G.E.; Webster, J. Characterising Microtextural and Mineralogical Features of Reef Rocks using Automated Mineral Analysis. In Proceedings of the 13th Asia Pacific Microscopy Congress 2025 (APMC13), Brisbane, Australia, 2–7 February 2025; p. 270. [Google Scholar]
- Swierczek, Z.; Quast, K.; Addai-Mensah, J.; Connor, J.N.; Li, J.; Robinson, D.J. Mineralogical characterisation of a sample of an Australian nickel laterite. In Proceedings of the Chemeca 2011: Engineering a Better World, Sydney, NSW, Australia, 18–21 September 2011; pp. 1755–1764. [Google Scholar]
- Weislogel, A.; Pfaff, K.; Knapp, J. Leveraging Automated Mineralogy Analysis to Assess Paleosol Chemical Weathering; Goldschmidt: Leipzig, Germany, 2025. [Google Scholar]
- Wilton, D.H.; Thompson, G.M.; Grant, D.C. The use of automated indicator mineral analysis in the search for mineralization—A next generation drift prospecting tool. Assoc. Appl. Geochem. Explor. Newsl. 2017, 174, 1–18. [Google Scholar] [CrossRef]
- Motl, D.; Filip, V. Method and Apparatus for Material Analysis by a Focused Electron Beam Using Characteristic X-Rays and Back-Scattered Electrons. US 13/398,114, 28 February 2013. [Google Scholar]
- Mineralogy Database. Available online: https://webmineral.com/ (accessed on 1 September 2025).
- Mindat. Available online: https://www.mindat.org/ (accessed on 1 September 2025).
- Ralph, J.; Von Bargen, D.; Martynov, P.; Zhang, J.; Que, X.; Prabhu, A.; Morrison, S.M.; Li, W.; Chen, W.; Ma, X. Mindat. org: The open access mineralogy database to accelerate data-intensive geoscience research. Am. Mineral. 2025, 110, 833–844. [Google Scholar] [CrossRef]
- Klein, C.; Dutrow, B. Manual of Mineral Science (After James D. Dana), 23rd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Putnis, A. Introduction to Mineral Sciences; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- International Mineralogical Association Commission for New Minerals, Nomenclature and Classification (2025) IMA-CNMNC List of Mineral Names (September 2025). Available online: https://cnmnc.units.it/index.php (accessed on 1 October 2025).
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Belousova, E.; Listin, V.; Dhnaram, C.; Blake, P.; Tang, J.; Gopalakrishnan, S.; Killen, D.; von Gnielinski, F.E.; Valetich, M. Hyperspectral imaging and whole-rock multi-element geochemistry for Pb-Zn-Ag and Cu deposits of NW Queensland—Data package. In GSQ Technical Notes 2022/04; Queensland Government: Brisbane, Australia, 2022. [Google Scholar]
- Evans, T. Chapter 23—Mount Oxide. In North West Mineral Province Deposit Atlas; Queensland Government: Brisbane, Australia, 2025; pp. 725–755. [Google Scholar]
- Valenta, R. NW Queensland Mineral Province Deposit Atlas Prototype Report–the Mount Isa and Ernest Henry Deposits. In DNRME-GSQ Commissioned Study and Report; The Sustainable Minerals Institute: Brisbane, Australia, 2018. [Google Scholar]
- Qiu, Z.-J.; Xing, Y.; Brugger, J.; Etschmann, B.; Pintér, Z.; Fougerouse, D.; Xu, J.; Yu, Z.; Guo, G.-J.; Fan, H.-R. Vacancies in sulfides facilitate fluid-induced solid-state diffusion and critical metals accumulation. Nat. Commun. 2025, 16, 1835. [Google Scholar] [CrossRef]
- Yaylali, B.; Deveci, H.; Yazici, E.Y.; Celep, O. Extraction of cobalt from a cobaltiferrous pyrite concentrate using H2SO4-NaNO3 lixiviant system. Miner. Eng. 2023, 198, 108077. [Google Scholar] [CrossRef]
- Sack, R.O. Fahlore thermochemistry: Gaps inside the (Cu, Ag) 10 (fe, zn) 2 (sb, as) 4S13 cube. Petrology 2017, 25, 498–515. [Google Scholar] [CrossRef]
- Sack, R.O.; Loucks, R.R. Thermodynamic properties of tetrahedrite-tennantite: Constraints on the interdependence of the Ag ⇌ Cu, Fe ⇌ Zn, Cu ⇌ Fe, and As ⇌ Sb exchange reactions. Am. Mineral. 1985, 70, 1270–1289. [Google Scholar]
- Dincă, G.; Popescu, G.C.; Topa, D. Decoding the mineralogy and geochemistry of sulfosalts in the Săcărâmb Au-Ag-Te ore deposit (Romania): Unveiling a fresh insight into the evolution of a complex hydrothermal system. Ore Geol. Rev. 2025, 176, 106424. [Google Scholar] [CrossRef]
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Britt, A.; Czarnota, K. A review of critical mineral resources in Australia. Aust. J. Earth Sci. 2024, 71, 1016–1049. [Google Scholar] [CrossRef]
- Foster, M.D. Interpretation of the Composition of Lithium Micas; United States Government Printing Office: Washington, DC, USA, 1960; pp. 2330–7102. [Google Scholar]
- Tischendorf, G.; Forster, H.-J.; Gottesmann, B.; Rieder, M. True and brittle micas: Composition and solid-solution series. Mineral. Mag. 2007, 71, 285–320. [Google Scholar] [CrossRef]
- Rieder, M.; Cavazzini, G.; D’yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval, P.W.; Mueller, G.; Neiva, A.M.; Radoslovich, E.W. Nomenclature of the micas. Clays Clay Miner. 1998, 46, 586–595. [Google Scholar] [CrossRef]
- Fan, G.; Li, G.; Shen, G.; Xu, J.; Dai, J. Luanshiweiite: A new member of lepidolite series. Acta Mineral. Sin. 2013, 33, 713–721. [Google Scholar]
- Hines, B.; Turnbull, D.; Ashworth, L.; McKnight, S. Geochemical characteristics and structural setting of lithium–caesium–tantalum pegmatites of the Dorchap Dyke Swarm, northeast Victoria, Australia. Aust. J. Earth Sci. 2023, 70, 763–800. [Google Scholar] [CrossRef]
- IMA Database of Mineral Properties. Available online: https://rruff.info/ima/ (accessed on 1 October 2025).
- Brigatti, M.F.; Caprilli, E.; Malferrari, D.; Medici, L.; Poppi, L. Crystal structure and chemistry of trilithionite-2 M 2 and polylithionite-2 M 2. Eur. J. Mineral. 2005, 17, 475–481. [Google Scholar] [CrossRef]
- Brigatti, M.F.; Kile, D.E.; Poppi, M. Crystal structure and crystal chemistry of lithium-bearing muscovite-2 M 1. Can. Mineral. 2001, 39, 1171–1180. [Google Scholar] [CrossRef]
- Černý, P.; Chapman, R.; Teertstra, D.K.; Novák, M. Rubidium-and cesium-dominant micas in granitic pegmatites. Am. Mineral. 2003, 88, 1832–1835. [Google Scholar] [CrossRef]
- Wang, R.; Hu, H.; Zhang, A.; Fontan, F.; de Parseval, P.; Jiang, S. Cs-dominant polylithionite in the Koktokay# 3 pegmatite, Altai, NW China: In situ micro-characterization and implication for the storage of radioactive cesium. Contrib. Mineral. Petrol. 2007, 153, 355–367. [Google Scholar]
- Pautov, L.; Agakhanov, A.; Bekenova, G. Sokolovaite CsLi2AlSi4O10F2—A new mineral species of the mica group. New Data Miner. 2006, 41, 5–13. [Google Scholar]
- Monier, G.; Robert, J.-L. Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: An experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600 °C, 2 kbar PH2O: Comparison with natural lithium micas. Mineral. Mag. 1986, 50, 641–651. [Google Scholar] [CrossRef]
- Selway, J.B.; Novak, M.; Hawthorne, F.C.; Cerny, P.; Ottolini, L.; Kyser, T.K. Rossmanite,[](LiAl2)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline; description and crystal structure. Am. Mineral. 1998, 83, 896–900. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A. Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Jochum, K.P.; Willbold, M.; Raczek, I.; Stoll, B.; Herwig, K. Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand. Geoanal. Res. 2005, 29, 285–302. [Google Scholar] [CrossRef]


















| Species | K p.f.u. | Al p.f.u. | Si p.f.u. | K/Al | Al/Si |
|---|---|---|---|---|---|
| Muscovite | 1 | 3 | 3 | 0.333 | 1.0 |
| Trilithionite | 1 | 2.5 | 3 | 0.4 | 0.833 |
| Polylithionite | 1 | 1 | 4 | 1 | 0.25 |
| Luanshiweiite | 1 | 2 | 3.5 | 0.5 | 0.571 |
| Annite | 1 | 1 | 3 | 1 | 0.333 |
| Siderophyllite | 1 | 3 | 2 | 0.333 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kearney, L.I.; Christy, A.G.; Belousova, E.A.; Hines, B.R.; Kontonikas-Charos, A.; de Bruyn, M.; Cathey, H.E.; Lisitsin, V. Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems. Minerals 2025, 15, 1118. https://doi.org/10.3390/min15111118
Kearney LI, Christy AG, Belousova EA, Hines BR, Kontonikas-Charos A, de Bruyn M, Cathey HE, Lisitsin V. Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems. Minerals. 2025; 15(11):1118. https://doi.org/10.3390/min15111118
Chicago/Turabian StyleKearney, Lisa I., Andrew G. Christy, Elena A. Belousova, Benjamin R. Hines, Alkis Kontonikas-Charos, Mitchell de Bruyn, Henrietta E. Cathey, and Vladimir Lisitsin. 2025. "Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems" Minerals 15, no. 11: 1118. https://doi.org/10.3390/min15111118
APA StyleKearney, L. I., Christy, A. G., Belousova, E. A., Hines, B. R., Kontonikas-Charos, A., de Bruyn, M., Cathey, H. E., & Lisitsin, V. (2025). Automated, Not Autonomous: Integrating Automated Mineralogy with Complementary Techniques to Refine and Validate Phase Libraries in Complex Mineral Systems. Minerals, 15(11), 1118. https://doi.org/10.3390/min15111118

