Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae)
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Physicochemical Characteristics of Bottom Water
3.2. Sediment Granulometry and Organic Matter
3.3. Metal Contamination in Surface Sediments
3.4. Correlations Between Sediment Parameters and Metals
3.5. Multivariate Analysis of Sediments
3.6. Metal Content in Soft Tissues
3.7. Bioaccumulation Factors (BAFs)
3.8. Metal Pollution Index in Tissues (MPI)
3.9. Relationships Between Metal Concentrations in Sediments and Tissues
4. Discussion
| Location | Mn | Cu | Zn | Cr |
|---|---|---|---|---|
| Villarrica Lake (Chile) * | 89.04–259.08 | 10.49–49.58 | 10.8–74.9 | 4.87–15.16 |
| Colico Lake (Chile) * | 166.29–252.48 | 15.16–27.08 | 28.13–41.22 | 8.41–13.41 |
| Panguipulli Lake (Chile) * | 84.58–207.05 | 8.48–14.73 | 29.32–47.92 | 7.1–14.82 |
| Neltume Lake (Chile) * | 78.83–169.02 | 9.15–15.04 | 23.41–32.25 | 3.2–8.18 |
| Llanquihue Lake (Chile) * | 102.07–342.88 | 11.62–18.85 | 8.45–38.01 | 6.32–23.9 |
| Rupanco Lake (Chile) * | 247.37–279.99 | 12.42–17.52 | 35.75–45.76 | 12.21–17. 8 |
| Nahuel Huapi (Argentina) [18] | - | - | - | 40.2–73.6 |
| NP lakes (Argentina) [50] | 918–2760 | 18.5–38.3 | 90.7–567 | 19.5–57.1 |
| Budi Lagoon (Chile) [14] | 285–989 | 21.8–61.9 | 54.5–94.8 | - |
| Urban lakes (Chile) [51] | - | 30.8–131.9 | 90.9–666.9 | - |
| Lakes in Tokat (Turkey) [52] | 76.7–232.0 | 3.7–8.2 | 23.9–38.9 | 4.4–10.7 |
| Vembanad Lake (India) [53] | - | 8–50 | 36–858 | - |
| Venice Lagoon (Italy) [54] | - | - | 101–1115 | - |
| Sudi Moussa (Morocco) [55] | - | 20–42 | 19–73 | 32.9–180 |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BAF | Bioaccumulation factor |
| Cond | Electrical conductivity |
| DM-AT | Duy Minh and An Thin lakes |
| DO | Dissolved oxygen |
| Igeo | Geoaccumulation index |
| Mes/Oli | Mesotrophic/oligotrophic |
| MPI | Metal pollution index |
| NP | North Patagonian |
| Oli | Oligotrophic |
| OM | Organic matter |
| Sed | Total sediment |
| Temp | Temperature |
| Ult/Oli | Ultraoligotrophic/oligotrophic |
References
- Zhang, T.; Yao, T. Heterogeneous changes in global glacial lakes under coupled climate warming and glacier thinning. Commun. Earth Environ. 2024, 5, 374. [Google Scholar] [CrossRef]
- Ossyssek, S.; Hofmann, A.; Geist, J.; Raeder, U. Diatom Red List species reveal high conservation value and vulnerability of mountain lakes. Diversity 2022, 14, 389. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Tang, L. Coupling relationship between urban expansion and lake change—A case study of Wuhan. Water 2019, 11, 1215. [Google Scholar] [CrossRef]
- Dokulil, M.T. Environmental impacts of tourism on lakes. In Eutrophication: Causes, Consequences and Control; Ansari, A., Gill, S., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 1, pp. 81–88. [Google Scholar] [CrossRef]
- Schippers, P.; van de Weerd, H.; de Klein, J.D.; de Jong, B.; Scheffer, M. Impacts of agricultural phosphorus use in catchments on shallow lake water quality: About buffers, time delays and equilibria. Sci. Total Environ. 2006, 369, 280–294. [Google Scholar] [CrossRef]
- Arismendi, I.; Soto, D.; Penaluna, B.E.; Jara, C.; Leal, C.; León-Muñoz, J. Aquaculture, non-native salmonid invasions and associated declines of native fishes in Northern Patagonian lakes. Freshw. Biol. 2009, 54, 1135–1147. [Google Scholar] [CrossRef]
- Fang, T.; Yang, K.; Wang, H.; Fang, H.; Liang, Y.; Zhao, X.; Gao, N.; Li, J.; Lu, W.; Cui, K. Trace metals in sediment from Chaohu Lake in China: Bioavailability and probabilistic risk assessment. Sci. Total Environ. 2022, 819, 157862. [Google Scholar] [CrossRef] [PubMed]
- Eggleton, J.; Thomas, K.V. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int. 2004, 30, 973–980. [Google Scholar] [CrossRef]
- Ankley, G.T.; Di Toro, D.M.; Hansen, D.J.; Berry, W.J. Assessing potential bioavailability of metals in sediments: A proposed approach. Environ. Manag. 1994, 18, 331–337. [Google Scholar] [CrossRef]
- Geffard, O.; Geffard, A.; His, E.; Budzinski, H. Assessment of the bioavailability and toxicity of sediment-associated PAHs and heavy metals applied to Crassostrea gigas embryos and larvae. Mar. Pollut. Bull. 2003, 46, 481–490. [Google Scholar] [CrossRef]
- Soldati, A.; Jacob, D.E.; Schöne, B.R.; Bianchi, M.M.; Hajduk, A. Seasonal periodicity of growth and composition in valves of Diplodon chilensis patagonicus. J. Molluscan Stud. 2009, 75, 75–85. [Google Scholar] [CrossRef]
- Ribeiro Guevara, S.; Bubach, D.; Vigliano, P.; Lippolt, G.; Arribére, M. Heavy metal and other trace elements in native mussel Diplodon chilensis from northern Patagonia lakes, Argentina. Biol. Trace Elem. Res. 2004, 102, 245–263. [Google Scholar] [CrossRef] [PubMed]
- Yusseppone, M.S.; Bianchi, V.A.; Castro, J.M.; Luquet, C.M.; Sabatini, S.E.; Ríos de Molina, M.C.; Rocchetta, I. Long-term effects of water quality on the freshwater bivalve Diplodon chilensis (Unionida: Hyriidae) caged at different sites in a North Patagonian river (Argentina). Ecohydrology 2020, 13, e2181. [Google Scholar] [CrossRef]
- Valdovinos, C.; Pedreros, P. Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: Implications for biodiversity conservation. Limnologica 2007, 37, 63–75. [Google Scholar] [CrossRef]
- Parada, E.; Peredo, S.; Lara, G.; Valdebenito, I. Growth, age and life span of the freshwater mussel Diplodon chilensis chilensis (Gray, 1828). Arch. Hydrobiol. Suppl. 1989, 115, 563–573. [Google Scholar] [CrossRef]
- León-Muñoz, J.; Echeverría, C.; Marcé, R.; Riss, W.; Sherman, B.; Iriarte, J. The combined impact of land use change and aquaculture on sediment and water quality in oligotrophic Lake Rupanco (North Patagonia, Chile, 40.8° S). J. Environ. Manag. 2013, 128, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Campos, H. Limnological studies of Araucanian lakes (Chile). Verh. Int. Ver. Theor. Angew. Limnol. 1984, 22, 1319–1327. [Google Scholar] [CrossRef]
- Ribeiro Guevara, S.; Rizzo, A.; Arribére, M. Heavy metal inputs in northern Patagonia lakes from short sediment core analysis. J. Radioanal. Nucl. Chem. 2005, 265, 481–493. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Reporte de la Red de Control de Lagos del Sur de Chile [Report of the Monitoring Network of Southern Chilean Lakes]; Technical Report DGA-2017-03; Centro EULA-Chile, Universidad de Concepción: Santiago, Chile, 2017. [Google Scholar]
- OECD. Eutrophication of Waters: Monitoring, Assessment and Control; Organisation for Economic Co-operation and Development: Paris, France, 1982. [Google Scholar]
- Van Daele, M.; Moernaut, J.; Doom, L.; Boes, E.; Fontijn, K.; Heirman, K.; Vandoorne, W.; Hebbeln, D.; Pino, M.; Urrutia, R.; et al. A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology. Sedimentology 2015, 62, 1466–1496. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Campos, M.A.; Zhang, Q.; Acuña, J.; Rilling, J.I.; Ruiz, T.; Carrazana, E.; Jorquera, M. Structure and functional properties of bacterial communities in surface sediments of the recently declared nutrient-saturated Lake Villarrica in Southern Chile. Microb. Ecol. 2023, 86, 1513–1533. [Google Scholar] [CrossRef]
- Rivera-Ruiz, D.; Arumí, J.L.; Lillo-Saavedra, M.; Esse, C.; Arancibia-Ávila, P.; Urrutia, R.; Portuguez-Maurtua, M.; Ogashawara, I. Secchi Depth Retrieval in Oligotrophic to Eutrophic Chilean Lakes Using Open Access Satellite-Derived Products. Remote Sens. 2024, 16, 4327. [Google Scholar] [CrossRef]
- Besada, V.; Sericano, J.L.; Schultze, F. An assessment of two decades of trace metals monitoring in wild mussels from the Northwest Atlantic and Cantabrian coastal areas of Spain, 1991–2011. Environ. Int. 2014, 71, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Prada, L.; García-Ordiales, E.; Roqueñí, N.; Rico, J.M.; Loredo, J. Heavy metal concentrations and dispersion in wild mussels along the Asturias coastline (North of Spain). Ecol. Indic. 2022, 142, 108526. [Google Scholar] [CrossRef]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- US EPA. Method 3052: Microwave-Assisted Acid Digestion of Siliceous and Organically Based Matrices. In EPA SW-846, Third Edition, Chapter 3, Inorganic Analytes; U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- Tapia, J.; Vargas-Chacoff, L.; Bertrán, C.; Peña-Cortés, F.; Hauenstein, E.; Schlatter, R.; Valderrama, A.; Lizama, C.; Fierro, P. Accumulation of potentially toxic elements in sediments in Budi Lagoon, Araucania Region, Chile. Environ. Earth Sci. 2014, 72, 4283–4290. [Google Scholar] [CrossRef]
- Tapia, J.; Bertrán, C.; Araya, C.; Astudillo, M.J.; Vargas-Chacoff, L.; Carrasco, G.; Vaderrama, A.; Letelier, L. Study of the copper, chromium, and lead content in Mugil cephalus and Eleginops maclovinus obtained in the mouths of the Maule and Mataquito rivers (Maule Region, Chile). J. Chil. Chem. Soc. 2009, 54, 36–39. [Google Scholar] [CrossRef]
- Barrientos, C.; Tapia, J.; Bertrán, C.; Peña-Cortés, F.; Hauenstein, E.; Fierro, P.; Vargas-Chacoff, L. Is eating rainbow trout safe? The effects of different land-uses on heavy metals content in Chile. Environ. Pollut. 2019, 254, 112995. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geol. Jahrb. 1969, 105, 157–166. [Google Scholar]
- González, A.; Palma, M.; Ziegler, K.; González, E.; Alvarez, M.A. Contamination and risk assessment of heavy metals in bottom sediments from Lake Valencia, Venezuela. E3S Web Conf. 2013, 1, 16001. [Google Scholar] [CrossRef]
- Griboff, J.; Horáček, M.; Wunderlin, D.; Monferrán, M. Bioaccumulation and trophic transfer of metals, As and Se through a freshwater food web affected by anthropic pollution in Córdoba, Argentina. Ecotoxicol. Environ. Saf. 2018, 148, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yang, F.; Yan, W. Eutrophication likely prompts metal bioaccumulation in edible clams. Ecotoxicol. Environ. Saf. 2021, 224, 112671. [Google Scholar] [CrossRef]
- De Bartolomeo, A.; Poletti, L.; Sanchini, G.; Sebastiani, B.; Morozzi, G. Relationship among parameters of lake polluted sediments evaluated by multivariate statistical analysis. Chemosphere 2004, 55, 1323–1329. [Google Scholar] [CrossRef] [PubMed]
- Spilsbury, W.; Fletcher, K. Application of regression analysis to interpretation of geochemical data from lake sediments in Central British Columbia. Can. J. Earth Sci. 1974, 11, 345–348. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.2.2; R Foundation for Statistical Computing: Vienna, Austria, 2022. Available online: https://www.R-project.org/ (accessed on 23 September 2025).
- Naimo, T.J. A review of the effects of heavy metals on freshwater mussels. Ecotoxicology 1995, 4, 341–362. [Google Scholar] [CrossRef]
- Xu, X.; Pan, B.; Shu, F.; Chen, X.; Xu, N.; Ni, J. Bioaccumulation of 35 metal(loid)s in organs of a freshwater mussel (Hyriopsis cumingii) and environmental implications in Poyang Lake, China. Chemosphere 2022, 307, 136150. [Google Scholar] [CrossRef]
- Gagné, F.; Gagnon, C.; Turcotte, P.; Blaise, C. Changes in metallothionein levels in freshwater mussels exposed to urban wastewaters: Effects from exposure to heavy metals? Biomarker Insights 2007, 2, 107–116. [Google Scholar] [CrossRef]
- Pastorino, P.; Elia, A.C.; Pizzul, E.; Bertoli, M.; Renzi, M.; Prearo, M. The old and the new on threats to high mountain lakes in the Alps: A comprehensive examination with future research directions. Ecol. Indic. 2024, 160, 111812. [Google Scholar] [CrossRef]
- Rocchetta, I.; Lomovasky, B.; Yusseppone, M.S.; Sabatini, S.; Bieczynski, F.; Ríos de Molina, M.C.; Luquet, C. Growth, abundance, morphometric and metabolic parameters of three populations of Diplodon chilensis subject to different levels of natural and anthropogenic organic matter input in a glacial lake of North Patagonia. Limnologica 2014, 44, 72–80. [Google Scholar] [CrossRef]
- Catalan, J.; Camarero, L.; Felip, M.; Pla, S.; Ventura, M.; Buchaca, T.; Bartumeus, F.; de Mendoza, G.; Miró, A.; Casamayor, E.; et al. High mountain lakes: Extreme habitats and witnesses of environmental changes. Limnetica 2006, 25, 551–584. [Google Scholar] [CrossRef]
- Catalan, J.; Ventura, M.; Vives, I.; Grimalt, J.O. The roles of food and water in the bioaccumulation of organochlorine compounds in high mountain lake fish. Environ. Sci. Technol. 2004, 38, 4269–4275. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, E.; Zhang, E.; Li, K.; Shen, J. Spatial distribution, contamination and ecological risk assessment of heavy metals in surface sediments of Erhai Lake, a large eutrophic plateau lake in southwest China. Catena 2016, 145, 193–203. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2017, 621, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chang, F.; Li, D.; Duan, L.; Zhang, X.; Liu, Q.; Li, H.; Gao, Y.; Liu, F.; Zhang, H. Using multiple normalization procedures and contamination indices in the assessment of trace metal(loid) contents of the surface sediments of Lake Xingyun, southwestern China. Sci. Total Environ. 2023, 893, 164812. [Google Scholar] [CrossRef]
- Reid, M.K.; Spencer, K. Use of principal components analysis (PCA) on estuarine sediment datasets: The effect of data pre-treatment. Environ. Pollut. 2009, 157, 2275–2281. [Google Scholar] [CrossRef]
- Rizzo, A.; Daga, R.; Arcagni, M.; Perez Catán, S.; Bubach, D.; Sánchez, R.; Ribeiro Guevara, S.; Arribére, M.A. Concentraciones de metales pesados en distintos compartimentos de lagos andinos de Patagonia Norte. Ecol. Austral 2010, 20, 155–171. [Google Scholar]
- Almanza-Marroquín, V.; Figueroa, R.; Parra, O.; Fernández, X.; Baeza, C.; Yañez, J.; Urrutia, R. Bases limnológicas para la gestión de los lagos urbanos de Concepción, Chile. Lat. Am. J. Aquat. Res. 2017, 44, 313–326. [Google Scholar] [CrossRef]
- Mendil, D.; Uluozlu, O.D. Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chem. 2007, 101, 739–745. [Google Scholar] [CrossRef]
- Priju, C.P.; Narayana, A.C. Heavy and trace metals in Vembanad Lake sediments. Int. J. Environ. Res. 2007, 1, 280–289. [Google Scholar]
- Bellucci, L.G.; Frignani, M.; Paolucci, D.; Ravanelli, M. Distribution of heavy metals in sediments of the Venice Lagoon: The role of the industrial area. Sci. Total Environ. 2002, 295, 35–49. [Google Scholar] [CrossRef]
- Maanan, M.; Zourarah, B.; Carruesco, C.; Aajjane, A.; Naud, J. The distribution of heavy metals in the Sidi Moussa lagoon sediments (Atlantic Moroccan Coast). J. Afr. Earth Sci. 2004, 39, 473–483. [Google Scholar] [CrossRef]
- Castro, J.M.; Bianchi, V.A.; Felici, E.; De Anna, J.S.; Venturino, A.; Luquet, C.M. Effects of dietary copper and Escherichia coli challenge on the immune response and gill oxidative balance in the freshwater mussel Diplodon chilensis. Environ. Toxicol. Chem. 2022, 42, 154–165. [Google Scholar] [CrossRef]
- Soto, D.; Mena, G. Filter feeding by the freshwater mussel Diplodon chilensis as a biocontrol of salmon farming eutrophication. Aquaculture 1999, 171, 65–81. [Google Scholar] [CrossRef]
- Crawford, S.E.; Liber, K. Sediment properties influencing the bioavailability of uranium to Chironomus dilutus larvae in spiked field sediments. Chemosphere 2016, 148, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Couillard, Y.; Campbell, P.G.C.; Tessier, A.; Auclair, J.C.; Pellerin-Massicotte, J. Field transplantation of a freshwater bivalve, Pyganodon grandis, across a metal contamination gradient. I. Temporal changes in metallothionein and metal (Cd, Cu, and Zn) concentrations in soft tissues. Can. J. Fish. Aquat. Sci. 1995, 52, 690–702. [Google Scholar] [CrossRef]
- Markich, S.J.; Brown, P.L.; Jeffree, R.A. Divalent metal accumulation in freshwater bivalves: An inverse relationship with metal phosphate solubility. Sci. Total Environ. 2001, 275, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Raşit Sünbül, M. Biomonitoring of trace metals in the Keban Dam Reservoir (Turkey) using mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus). Biol. Trace Elem. Res. 2018, 185, 216–224. [Google Scholar] [CrossRef]
- Ravera, O.; Cenci, R.M.; Beone, G.M.; Dantas, M.; Lodigiani, P. Trace element concentrations in freshwater mussels and macrophytes as related to those in their environment. J. Limnol. 2003, 62, 61–70. [Google Scholar] [CrossRef]
- Ravera, O.; Beone, G.M.; Trincherini, P.R.; Riccardi, N. Seasonal variation in metal content of two Unio pictorum mancus (Mollusca, Unionidae) populations from two lakes of different trophic state. J. Limnol. 2007, 66, 28–39. [Google Scholar] [CrossRef]
- Rzymski, P.; Niedzielski, P.; Klimaszyk, P.; Poniedzialek, B. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit. Assess. 2014, 186, 3199–3212. [Google Scholar] [CrossRef]
- Oremo, J.; Orata, F.; Owino, J.; Shivoga, W. Assessment of heavy metals in benthic macroinvertebrates water and sediments in River Isiukhu, Kenya. Environ. Monit. Assess. 2019, 191, 646. [Google Scholar] [CrossRef]
- Wagner, A.; Boman, J. Biomonitoring of trace elements in Vietnamese freshwater mussels. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1125–1132. [Google Scholar] [CrossRef]
- Chen, X.; Jian, Y.; Hongbo, L.; Yaping, S.; Sun, L.; Oshima, Y. Element concentrations in a unionid mussel (Anodonta woodiana) at different life stages. J. Fac. Agric. Kyushu Univ. 2012, 57, 139–144. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Gan, J. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China. Arch. Environ. Contam. Toxicol. 2010, 59, 593–601. [Google Scholar] [CrossRef]
- Rodrigues, R.J.; Nasnodkar, M.R.; Nayak, G.; Tiwari, A. Bioaccumulation of metals by edible bivalve Saccostrea cucullata and its application as a bioindicator of metal pollution, tropical (Zuari) estuary, Goa, India. Arab. J. Geosci. 2021, 14, 1677. [Google Scholar] [CrossRef]
- Sedeño-Díaz, J.E.; López-López, E.; Mendoza-Martínez, E.; Rodríguez-Romero, A.; Morales-García, S.S. Distribution Coefficient and Metal Pollution Index in Water and Sediments: Proposal of a New Index for Ecological Risk Assessment of Metals. Water 2019, 12, 29. [Google Scholar] [CrossRef]
- Prabhu Dessai, N.S.; Juvekar, V.S.; Nasnodkar, M.R. Assessment of metal bioavailability in sediments and bioaccumulation in edible bivalves, and phyto-remediation potential of mangrove plants in the tropical (Kali) estuary, India. Mar. Pollut. Bull. 2023, 194, 115419. [Google Scholar] [CrossRef]
- Müller, G.; Ottenstein, R.; Yahya, A. Standardized particle size for monitoring, inventory, and assessment of metals and other trace elements in sediments: <20 µm or <2 µm? Fresenius J. Anal. Chem. 2001, 371, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H.; Chen, W.-Y.; Wu, C.-C.; Lu, E.; Shih, W.-Y.; Chen, J.-W.; Tsai, J. Ecosystem metabolism regulates seasonal bioaccumulation of metals in atyid shrimp (Neocaridina denticulata) in a tropical brackish wetland. Aquat. Toxicol. 2020, 225, 105522. [Google Scholar] [CrossRef] [PubMed]
- Stoichev, T.; Coelho, J.; de Diego, A.; Lobos Valenzuela, M.G.; Pereira, M.E.; de Chanvalon, A.T.; Amouroux, D. Multiple regression analysis to assess the contamination with metals and metalloids in surface sediments (Aveiro Lagoon, Portugal). Mar. Pollut. Bull. 2020, 159, 111470. [Google Scholar] [CrossRef] [PubMed]
- Yusseppone, M.S.; Bianchi, V.A.; Castro, J.M.; Noya Abad, T.; Minaberry, Y.; Sabatini, S.; Luquet, C.M.; Ríos de Molina, M.C.; Rocchetta, I. In situ experiment to evaluate biochemical responses in the freshwater mussel Diplodon chilensis under anthropogenic eutrophication conditions. Ecotoxicol. Environ. Saf. 2020, 193, 110341. [Google Scholar] [CrossRef]
- Yusseppone, M.S.; Lomovasky, B.J.; Luquet, C.M.; Ríos de Molina, M.C.; Rocchetta, I. Age- and sex-dependent changes in morphometric and metabolic variables in the long-lived freshwater mussel Diplodon chilensis. Mar. Freshw. Res. 2016, 67, 1938–1947. [Google Scholar] [CrossRef]
- Bryan, G.W.; Langston, W.J. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef] [PubMed]
- Adams, W.J.; Maher, W.A.; O’Reilly, J.; McDonough, B. Bioavailability assessment of metals in freshwater: A review. Environ. Toxicol. Chem. 2020, 39, 1244–1261. [Google Scholar] [CrossRef]
- Viarengo, A.; Lowe, D.; Bolognesi, C.; Fabbri, E.; Koehler, A. The use of biomarkers in biomonitoring: A 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp. Biochem. Physiol. C 2007, 146, 281–300. [Google Scholar] [CrossRef] [PubMed]




| Degree of Human Intervention | Lakes (Sites) | Coordinates | Altitude (m asl) | Depth (m) | Trophic Level | Secchi (m) | Lake Area (km2) | Watershed Area (km2) | Native Forest Cover (%) | Cities/Towns (Inhabitants) |
|---|---|---|---|---|---|---|---|---|---|---|
| Very low | Neltume (S9, S10) | 39°47′36″ S 71°50′00″ W | 197 | 86 | Ult/Oli | 7.4 | 9.8 | 731 | 87.6 | 0 |
| Colico (S4, S5) | 39°04′47″ S 71°59′13″ W | 327 | 150 | Ult/Oli | 13.3 | 56.3 | 458 | 78.9 | 0 | |
| Low | Panguipulli (S6–S8) | 39°42′11″ S 72°14′97″ W | 131 | 268 | Ult/Oli | 9.7 | 114.1 | 704 | 63.8 | 2 (36,220) |
| Rupanco (S14, S15) | 40°48′48″ S 72°31′26″ W | 123 | 269 | Oli(a) | 13.0 | 231.0 | 692 | 20.4 | 2 (680) | |
| Llanquihue (S11–S13) | 41°08′44″ S 72°48′12″ W | 53 | 317 | Oli(b) | 15.5 | 868.0 | 710 | 24.6 | 7 (103,517) | |
| Moderate | Villarrica (S1–S3) | 39°15′11″ S 72°05′52″ W | 214 | 167 | Mes/Oli | 9.5 | 174.0 | 2287 | 12.1 | 2 (91,327) |
| Matrix | Element | Concentration (mg·kg−1) | Rel. Error (%) | Recovery (%) | |
|---|---|---|---|---|---|
| Certified | Observed | ||||
| Sediment (MESS-1) | Cu | 25.1 ± 3.8 | 26.1 ± 0.2 | 4.0 | 104.0 |
| Cr | 71.0 ± 11.0 | 70.0 ± 0.2 | −1.4 | 98.6 | |
| Mn | 513.0 ± 25.0 | 499.5 ± 3.4 | −2.6 | 97.4 | |
| Zn | 191.0 ± 17.0 | 198.1 ± 4.1 | 3.7 | 103.7 | |
| Tissues (TORT-1) | Cu | 439.0 ± 22.0 | 428.0 ± 7.2 | −2.5 | 97.5 |
| Cr | 2.4 ± 0.6 | 2.1 ± 0.6 | −12.5 | 87.5 | |
| Mn | 23.4 ± 1.0 | 21.8 ± 0.7 | −6.8 | 93.1 | |
| Zn | 177.0 ± 10.0 | 184.0 ± 5.8 | 4.0 | 104.0 | |
| Lake | Site/ Season | Water | Sediment | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Temp (°C) | pH | Cond (µS/cm) | DO (mg/L) | Sand (%) | Mud (%) | OM (%) | |||
| Villarrica | S1 | W | 9.1 | 7.45 | 65.0 | 11.6 | 14.11 ± 12.28 | 30.21 ± 14.56 | 0.13 ± 0.02 |
| S | 16.1 | 8.45 | 70.0 | 10.4 | 54.20 ± 1.46 | 1.18 ± 0.09 | 0.81 ± 0.05 | ||
| S2 | W | 9.8 | 8.87 | 59.0 | 11.9 | 26.33 ± 1.30 | 0.25 ± 0.01 | 0.34 ± 0.56 | |
| S | 19.0 | 8.63 | 70.0 | 10.2 | 45.34 ± 4.32 | 0.39 ± 0.05 | 0.78 ± 0.01 | ||
| S3 | W | 10.5 | 8.50 | 56.0 | 11.4 | 55.82 ± 0.97 | 43.67 ± 0.82 | 0.59 ± 0.16 | |
| S | 17.5 | 7.84 | 100.0 | 9.2 | 88.75 ± 1.74 | 4.13 ± 1.23 | 1.92 ± 0.23 | ||
| Colico | S4 | W | 9.6 | 8.50 | 17.0 | 11.2 | 66.51 ± 1.36 | 3.56 ± 1.01 | 0.65 ± 0.27 |
| S | 21.1 | 7.65 | 20.0 | 8.6 | 53.86 ± 1.94 | 3.98 ± 0.63 | 2.74 ± 0.10 | ||
| S5 | W | 9.7 | 8.52 | 20.0 | 12.6 | 82.10 ± 1.92 | 1.35 ± 0.15 | 0.38 ± 0.12 | |
| S | 19.4 | 7.79 | 10.0 | 8.9 | 85.08 ± 0.83 | 0.44 ± 0.03 | 1.96 ± 0.02 | ||
| Panguipulli | S6 | W | 11.5 | 8.37 | 120.0 | 10.5 | 90.42 ± 0.64 | 5.22 ± 0.89 | 0.45 ± 0.21 |
| S | 18.5 | 8.35 | 30.0 | 8.5 | 73.08 ± 1.44 | 0.91 ± 0.16 | 1.09 ± 0.01 | ||
| S7 | W | 16.0 | 7.35 | 57.0 | 9.8 | 94.95 ± 0.37 | 3.04 ± 0.81 | 0.30 ± 0.07 | |
| S | 18.5 | 8.05 | 30.0 | 8.3 | 79.17 ± 2.01 | 17.20 ± 1.71 | 4.73 ± 0.78 | ||
| S8 | W | 12.0 | 8.14 | 87.0 | 10.9 | 60.24 ± 4.02 | 1.21 ± 0.11 | 0.64 ± 0.53 | |
| S | 19.1 | 7.97 | 30.0 | 9.1 | 77.40 ± 1.44 | 1.36 ± 0.69 | 1.48 ± 0.24 | ||
| Neltume | S9 | W | 12.9 | 7.45 | 66.0 | 10.8 | 26.95 ± 3.07 | 2.41 ± 0.20 | 0.21 ± 0.01 |
| S | 20.6 | 7.82 | 30.0 | 9.1 | 92.48 ± 2.26 | 6.61 ± 1.81 | 1.45 ± 0.19 | ||
| S10 | W | 11.4 | 7.36 | 43.0 | 11.5 | 70.75 ± 0.49 | 3.67 ± 0.60 | 0.32 ± 0.09 | |
| S | 20.3 | 7.99 | 30.0 | 9.1 | 46.22 ± 2.41 | 2.50 ± 1.87 | 2.40 ± 0.23 | ||
| Llanquihue | S11 | W | 14.5 | 8.79 | 93.7 | 10.2 | 99.53 ± 0.03 | 0.40 ± 0.01 | 0.22 ± 0.04 |
| S | 16.2 | 7.87 | 110.0 | 9.6 | 93.76 ± 1.60 | 0.07 ± 0.01 | 0.93 ± 0.02 | ||
| S12 | W | 15.1 | 7.50 | 95.7 | 9.8 | 1.41 ± 0.30 | 0.04 ± 0.03 | 0.01 ± 0.01 | |
| S | 17.7 | 8.81 | 110.0 | 9.4 | 98.74 ± 0.21 | 0.10 ± 0.02 | 0.78 ± 0.01 | ||
| S13 | W | 14.9 | 8.13 | 97.0 | 10.6 | 96.19 ± 0.53 | 1.34 ± 0.18 | 0.03 ± 0.01 | |
| S | 17.1 | 8.21 | 110.0 | 8.3 | 99.80 ± 0.06 | 0.18 ± 0.07 | 0.12 ± 0.02 | ||
| Rupanco | S14 | W | 15.1 | 8.05 | 68.6 | 9.6 | 83.67 ± 0.79 | 1.57 ± 0.16 | 0.34 ± 0.09 |
| S | 19.7 | 8.53 | 50.0 | 8.2 | 90.33 ± 1.00 | 0.29 ± 0.03 | 1.65 ± 0.06 | ||
| S15 | W | 15.1 | 8.05 | 68.6 | 9.6 | 68.92 ± 1.01 | 1.21 ± 0.11 | 0.41 ± 0.08 | |
| S | 19.7 | 8.53 | 50.0 | 8.2 | 82.75 ± 2.20 | 0.59 ± 0.18 | 1.78 ± 0.11 | ||
| Lake | Site/ Season | Sediment Concentration * | Igeo | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Cu (mg·kg−1) | Mn (mg·kg−1) | Cr (mg·kg−1) | Zn (mg·kg−1) | Cu | Mn | Cr | Zn | |||
| Villarrica | S1 | W | 17.13 ± 0.63 | 259.08 ± 3.18 | 7.26 ± 0.29 | 36.34 ± 3.70 | −0.48 | −0.12 | −1.16 | −0.38 |
| S | 19.67 ± 0.41 | 220.08 ± 24.52 | 9.59 ± 1.54 | 20.68 ± 4.41 | −0.28 | −0.35 | −0.76 | −1.19 | ||
| S2 | W | 10.49 ± 0.06 | 89.04 ± 7.65 | 4.87 ± 0.30 | 10.80 ± 2.34 | −1.18 | −1.66 | −1.74 | −2.13 | |
| S | 13.93 ± 3.66 | 145.51 ± 1.23 | 9.54 ± 0.53 | 12.21 ± 1.00 | −0.78 | −0.95 | −0.77 | −1.95 | ||
| S3 | W | 49.58 ± 0.17 | 138.30 ± 7.92 | 15.16 ± 0.44 | 74.90 ± 1.52 | 1.06 | −1.02 | −0.10 | 0.67 | |
| S | 19.05 ± 0.93 | 112.25 ± 2.78 | 9.35 ± 0.63 | 28.40 ± 4.61 | −0.32 | −1.32 | −0.79 | −0.73 | ||
| Colico | S4 | W | 27.08 ± 1.54 | 195.84 ± 6.89 | 13.16 ± 1.05 | 41.22 ± 2.95 | 0.18 | −0.52 | −0.30 | −0.20 |
| S | 15.16 ± 0.72 | 166.29 ± 11.65 | 13.41 ± 1.42 | 30.24 ± 2.37 | −0.65 | −0.76 | −0.27 | −0.64 | ||
| S5 | W | 23.12 ± 1.21 | 238.16 ± 2.79 | 11.25 ± 0.12 | 39.45 ± 0.64 | −0.04 | −0.24 | −0.53 | −0.26 | |
| S | 16.71 ± 0.21 | 252.48 ± 39.65 | 8.41 ± 2.75 | 28.13 ± 2.64 | −0.51 | −0.15 | −0.95 | −0.75 | ||
| Panguipulli | S6 | W | 11.43 ± 6.93 | 84.58 ± 0.27 | 7.87 ± 0.26 | 37.99 ± 1.35 | −1.06 | −1.73 | −1.04 | −0.31 |
| S | 8.65 ± 2.91 | 122.98 ± 4.19 | 6.79 ± 0.24 | 17.24 ± 0.30 | −1.46 | −1.19 | −1.26 | −1.45 | ||
| S7 | W | 14.73 ± 0.98 | 171.53 ± 6.37 | 11.54 ± 1.62 | 44.07 ± 2.55 | −0.69 | −0.71 | −0.49 | −0.10 | |
| S | 11.89 ± 0.77 | 132.78 ± 10.83 | 14.82 ± 1.60 | 47.92 ± 4.54 | −1.00 | −1.08 | −0.13 | 0.02 | ||
| S8 | W | 10.25 ± 0.97 | 207.05 ± 4.59 | 5.99 ± 0.16 | 37.91 ± 0.37 | −1.22 | −0.44 | −1.44 | −0.32 | |
| S | 8.48 ± 2.09 | 153.90 ± 2.01 | 7.10 ± 0.62 | 29.32 ± 2.35 | −1.49 | −0.87 | −1.19 | −0.69 | ||
| Neltume | S9 | W | 9.15 ± 0.73 | 141.18 ± 3.52 | 4.02 ± 0.08 | 23.41 ± 0.77 | −1.38 | −0.99 | −2.01 | −1.01 |
| S | 15.00 ± 0.89 | 78.83 ± 13.54 | 7.82 ± 1.73 | 32.25 ± 0.00 | −0.67 | −1.83 | −1.05 | −0.55 | ||
| S10 | W | 10.66 ± 1.08 | 118.77 ± 2.35 | 3.20 ± 0.38 | 26.39 ± 0.33 | −1.16 | −1.24 | −2.34 | −0.84 | |
| S | 15.04 ± 3.92 | 169.02 ± 3.05 | 8.18 ± 0.86 | 31.39 ± 4.20 | −0.67 | −0.73 | −0.99 | −0.59 | ||
| Llanquihue | S11 | W | 15.75 ± 2.76 | 320.87 ± 7.36 | 18.27 ± 1.14 | 32.95 ± 0.08 | −0.60 | 0.19 | 0.17 | −0.52 |
| S | 13.92 ± 1.05 | 339.42 ± 8.35 | 23.90 ± 1.04 | 28.79 ± 0.00 | −0.78 | 0.27 | 0.56 | −0.71 | ||
| S12 | W | 18.85 ± 0.09 | 175.59 ± 2.56 | 10.24 ± 1.08 | 21.55 ± 2.66 | −0.34 | −0.68 | −0.66 | −1.13 | |
| S | 11.62 ± 0.51 | 342.88 ± 15.51 | 23.86 ± 1.49 | 38.01 ± 2.47 | −1.04 | 0.29 | 0.56 | −0.31 | ||
| S13 | W | 13.98 ± 1.22 | 61.91 ± 4.80 | 2.45 ± 0.34 | 4.64 ± 1.35 | −0.77 | −2.18 | −2.73 | −3.35 | |
| S | 16.63 ± 3.21 | 102.07 ± 1.75 | 6.32 ± 1.49 | 8.45 ± 0.21 | −0.52 | −1.46 | −1.36 | −2.48 | ||
| Rupanco | S14 | W | 17.52 ± 2.13 | 279.88 ± 3.01 | 17.80 ± 0.83 | 45.76 ± 0.47 | −0.44 | −0.01 | 0.13 | −0.05 |
| S | 13.07 ± 0.96 | 274.48 ± 24.60 | 12.21 ± 0.57 | 36.06 ± 0.15 | −0.87 | −0.03 | −0.41 | −0.39 | ||
| S15 | W | 15.91 ± 1.55 | 279.99 ± 9.02 | 17.14 ± 1.93 | 42.18 ± 1.80 | −0.58 | −0.01 | 0.08 | −0.16 | |
| S | 12.42 ± 0.23 | 247.37 ± 5.63 | 12.78 ± 1.62 | 35.75 ± 0.53 | −0.94 | −0.18 | −0.34 | −0.40 | ||
| Lake | Site/ Season | Concentrations in D. chilensis Tissues | MPI | BAF | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Cu (mg·kg−1) | Mn (mg·kg−1) | Cr (mg·kg−1) | Cr (mg·kg−1) | Cu | Mn | Cr | Zn | ||||
| Villarrica | S1 | W | 18.72 ± 5.01 | 1468.44 ± 843.90 | 6.29 ± 2.34 | 215.71 ± 60.06 | 78.15 | 1.09 | 5.67 | 0.87 | 5.94 |
| S | 6.98 ± 1.91 | 992.90 ± 219.26 | 1.60 ± 2.62 | 171.82 ± 54.45 | 37.15 | 0.36 | 4.51 | 0.17 | 8.31 | ||
| S2 | W | 20.22 ± 4.30 | 1332.34 ± 945.46 | 7.56 ± 3.95 | 233.74 ± 22.68 | 83.06 | 1.93 | 14.96 | 1.55 | 21.64 | |
| S | 3.94 ± 2.92 | 1880.85 ± 634.18 | 6.26 ± 6.62 | 245.18 ± 44.43 | 58.07 | 0.28 | 12.93 | 0.66 | 20.08 | ||
| S3 | W | 30.00 ± 10.9 | 1357.23 ± 403.81 | 11.59 ± 3.10 | 179.04 ± 57.86 | 95.87 | 0.61 | 9.81 | 0.77 | 2.39 | |
| S | 11.60 ± 4.04 | 1190.23 ± 797.17 | 7.01 ± 5.44 | 267.47 ± 78.26 | 71.33 | 0.61 | 10.60 | 0.75 | 9.42 | ||
| Colico | S4 | W | 11.59 ± 1.78 | 1693.76 ± 542.61 | 2.49 ± 0.88 | 247.39 ± 70.56 | 58.97 | 0.43 | 8.65 | 0.19 | 6.00 |
| S | 12.40 ± 3.40 | 1601.63 ± 642.15 | 2.57 ± 0.65 | 253.80 ± 29.49 | 59.99 | 0.82 | 9.63 | 0.19 | 8.39 | ||
| S5 | W | 18.16 ± 2.06 | 1798.98 ± 629.23 | 0.46 ± 0.39 | 248.09 ± 41.80 | 43.94 | 0.79 | 7.55 | 0.04 | 6.29 | |
| S | 7.28 ± 2.31 | 2048.64 ± 1164.75 | 4.11 ± 1.63 | 349.57 ± 122.47 | 68.04 | 0.44 | 8.11 | 0.49 | 12.43 | ||
| Pangui-pulli | S6 | W | 14.08 ± 3.58 | 1620.42 ± 841.34 | 1.32 ± 1.03 | 194.02 ± 16.04 | 49.17 | 1.23 | 19.16 | 0.17 | 5.11 |
| S | - | - | - | - | - | - | - | - | - | ||
| S7 | W | 12.39 ± 0.58 | 1602.52 ± 55.23 | 2.70 ± 1.17 | 228.30 ± 1.89 | 14.59 | 0.84 | 9.34 | 0.00 | 5.18 | |
| S | 9.66 ± 0.00 | 1480.00 ± 0.00 | 3.89 ± 0.00 | 255.93 ± 0.00 | 61.42 | 0.81 | 11.15 | 0.26 | 5.34 | ||
| S8 | W | 12.39 ± 3.99 | 1602.52 ± 592.68 | <0.01 | 228.30 ± 76.32 | 14.59 | 1.21 | 7.74 | 0.00 | 6.02 | |
| S | 8.27 ± 2.68 | 2655.38 ± 713.03 | 3.71 ± 1.84 | 242.59 ± 44.19 | 66.68 | 0.98 | 17.25 | 0.52 | 8.27 | ||
| Neltume | S9 | W | 18.25 ± 4.95 | 2322.36 ± 602.50 | 0.25 ± 0.34 | 188.35 ± 82.18 | 37.59 | 2.00 | 16.45 | 0.06 | 8.05 |
| S | 6.18 ± 2.84 | 3325.26 ± 1476.91 | 2.74 ± 1.70 | 273.52 ± 97.81 | 62.65 | 0.41 | 42.18 | 0.35 | 8.48 | ||
| S10 | W | 22.33 ± 6.30 | 1674.47 ± 308.27 | <0.01 | 219.49 ± 10.39 | 16.93 | 2.10 | 14.10 | 0.00 | 8.32 | |
| S | 7.71 ± 2.41 | 2497.28 ± 947.25 | 2.89 ± 1.80 | 311.44 ± 68.25 | 64.52 | 0.51 | 14.78 | 0.35 | 9.92 | ||
| Llanquihue | S11 | W | 22.73 ± 2.80 | 2347.55 ± 648.22 | 0.03 ± 0.05 | 302.60 ± 53.31 | 26.38 | 1.44 | 7.32 | 0.00 | 9.18 |
| S | 14.12 ± 4.82 | 2286.06 ± 1665.75 | 4.56 ± 0.41 | 233.99 ± 35.95 | 76.61 | 1.01 | 6.74 | 0.19 | 8.13 | ||
| S12 | W | 21.64 ± 5.12 | 1712.76 ± 678.69 | <0.01 | 231.60 ± 21.66 | 17.12 | 1.15 | 9.75 | 0.00 | 10.75 | |
| S | 19.94 ± 4.53 | 2390.92 ± 1038.66 | 5.69 ± 1.10 | 274.34 ± 45.08 | 92.88 | 1.72 | 6.97 | 0.24 | 7.22 | ||
| S13 | W | - | - | - | - | - | - | - | - | - | |
| S | 11.69 ± 3.93 | 3114.17 ± 1225.18 | 7.98 ± 4.53 | 271.02 ± 52.70 | 94.20 | 0.70 | 30.51 | 1.26 | 32.07 | ||
| Rupanco | S14 | W | 16.17 ± 4.19 | 2488.94 ± 778.38 | <0.01 | 245.36 ± 22.68 | 17.73 | 0.92 | 8.89 | 0.00 | 5.36 |
| S | 6.03 ± 2.12 | 3002.57 ± 1092.02 | 9.76 ± 2.95 | 296.43 ± 50.79 | 76.76 | 0.46 | 10.94 | 0.80 | 5.45 | ||
| S15 | W | 12.33 ± 6.02 | 2168.68 ± 605.11 | <0.01 | 235.31 ± 34.82 | 15.84 | 0.78 | 7.75 | 0.00 | 5.58 | |
| S | 5.89 ± 2.80 | 1936.62 ± 822.85 | 8.86 ± 2.92 | 162.76 ± 47.61 | 63.69 | 0.47 | 7.83 | 0.69 | 4.55 | ||
| Metal | N | R2 | p Global | F (df) | Coef. Sed | Coef. Mud | Coef. OM |
|---|---|---|---|---|---|---|---|
| Zn | 28 | 0.208 | 0.127 | 2.10 (3,24) | −0.042 (ns) | −1.404 (ns) | 13.966 (ns) |
| Cu | 28 | 0.110 | 0.416 | 0.99 (3,24) | −8.790 (ns) | −14.576 (ns) | −12.270 (ns) |
| Mn | 28 | 0.475 | 0.001 | 7.25 (3,24) | 0.006 (ns) | 0.317 (*) | −3.195 (*) |
| Cr | 28 | 0.198 | 0.145 | 1.97 (3,24) | 0.023 (ns) | 0.137 (*) | 0.576 (ns) |
| Species | Location | Mn | Cu | Zn | Cr |
|---|---|---|---|---|---|
| Diplodon chilensis | Villarrica Lake (Chile) * | 991–1881 | 3.94–30.00 | 171.82–267.47 | 1.60–11.59 |
| Colico Lake (Chile) * | 1602–2049 | 7.28–18.16 | 247.39–349.57 | 0.46–4.11 | |
| Panguipulli Lake (Chile) * | 1480–2655 | 8.27–14.08 | 228.30–255.93 | <0.01–3.89 | |
| Neltume Lake (Chile) * | 2322–3325 | 6.18–22.33 | 188.35–311.44 | <0.01–2.89 | |
| Llanquihue Lake (Chile) * | 1190–2391 | 11.69–22.73 | 231.60–302.60 | <0.01–5.69 | |
| Rupanco Lake (Chile) * | 1937–3003 | 6.03–16.17 | 171.82–267.47 | <0.01–9.76 | |
| Nahuel Huapi (Argentina) [12] | - | - | 274 | 4.38–29.3 | |
| Unio elongatulus | Keban Dam (Turkey) [61] | 17.4 | 0.74 | 10.1 | 1.05 |
| Unio pictorum | Maggiore Lake (Italy) [62] | 5092 | 13 | 361 | 2 |
| Maggiore Lake (Italy) [63] | 6470 | 28 | 840 | 3.97 | |
| Candia Lake (Italy) [63] | 3690 | 12.7 | 120 | 1.48 | |
| Unio tumidus | Malta Lake (Poland) [64] | 19.09 | 4.59 | 51.29 | 1.11 |
| Unionidae | Victoria Lake (Kenya) [65] | - | 4.53 | 36.98 | 0.96 |
| Anodonta cygnea | Maggiore Lake (Italy) [63] | 11258 | 34 | 642 | 4 |
| Pletholophus sweinhoei | DM-AT (Vietnam) [66] | 520–1600 | 2.4–3.2 | 120–150 | 0.14–0.36 |
| Anodonta woodiana | Taihu Lake (China) [67] | 3560 | 13 | 606 | - |
| Taihu Lake (China) [68] | 59–119 | 0.4–18.5 | 661–1253 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fierro, P.; Tapia, J.; Hernández, A.; Becerra, J.; Vargas-Chacoff, L.; Vásquez, M.; Barrientos, D.; Valdovinos, C. Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae). Water 2025, 17, 3079. https://doi.org/10.3390/w17213079
Fierro P, Tapia J, Hernández A, Becerra J, Vargas-Chacoff L, Vásquez M, Barrientos D, Valdovinos C. Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae). Water. 2025; 17(21):3079. https://doi.org/10.3390/w17213079
Chicago/Turabian StyleFierro, Pablo, Jaime Tapia, Antonia Hernández, Joaquín Becerra, Luis Vargas-Chacoff, Marcela Vásquez, Daniela Barrientos, and Claudio Valdovinos. 2025. "Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae)" Water 17, no. 21: 3079. https://doi.org/10.3390/w17213079
APA StyleFierro, P., Tapia, J., Hernández, A., Becerra, J., Vargas-Chacoff, L., Vásquez, M., Barrientos, D., & Valdovinos, C. (2025). Low-Level Gradients of Metal Contamination in Temperate Lakes of Southern South America: Evidence of Bioaccumulation in the Bivalve Diplodon chilensis (Hyriidae). Water, 17(21), 3079. https://doi.org/10.3390/w17213079

