Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = secretory transcription factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 292 KB  
Review
Measuring the Senescence-Associated Secretory Phenotype
by Achilleas Karras, Georgios Lioulios, Konstantia Kantartzi, Asimina Fylaktou, Stylianos Panagoutsos and Maria Stangou
Biomedicines 2025, 13(9), 2062; https://doi.org/10.3390/biomedicines13092062 - 24 Aug 2025
Abstract
Cellular senescence is a fundamental hallmark of aging, contributing to tissue dysfunction and chronic disease through the senescence-associated secretory phenotype (SASP). The SASP encompasses a diverse and dynamic collection of secreted cytokines, chemokines, growth factors, and proteases that vary depending on cell type, [...] Read more.
Cellular senescence is a fundamental hallmark of aging, contributing to tissue dysfunction and chronic disease through the senescence-associated secretory phenotype (SASP). The SASP encompasses a diverse and dynamic collection of secreted cytokines, chemokines, growth factors, and proteases that vary depending on cell type, senescence trigger, and microenvironmental context. Accurate quantification of SASP components is critical to understanding the mechanisms linking senescence to pathology and for advancing senotherapeutic strategies. However, measuring the SASP presents significant technical and biological challenges due to its complexity, heterogeneity, and context dependence. This review provides a comprehensive overview of the principal methodologies used to measure SASP components across different biological levels—transcriptional, translational, and functional—and sample types, including cell cultures, tissues, and systemic fluids. We discuss the advantages and limitations of widely used RNA-level techniques (e.g., qRT-PCR, RNA sequencing, in situ hybridization), protein-level assays (e.g., ELISA, Western blotting, mass spectrometry, Luminex, MSD), and spatial detection methods (e.g., immunohistochemistry, immunofluorescence). By organizing current SASP detection strategies by molecular level and sample source, this review highlights the importance of multiparametric approaches to capture the full spectrum of senescent cell activity. We also identify key methodological gaps and propose directions for refining SASP biomarker discovery in aging and disease research. Full article
(This article belongs to the Special Issue Inflammaging and Immunosenescence: Mechanisms and Link)
20 pages, 4054 KB  
Article
Genomic Insights into the Molecular Basis of Broad Host Adaptability of the Entomopathogenic Fungus Conidiobolus coronatus (Entomophthoromycotina)
by Fan Bai, Tian Yang, Lvhao Zhang, Jiaqi Yang, Xinyu Chen and Xiang Zhou
J. Fungi 2025, 11(8), 600; https://doi.org/10.3390/jof11080600 - 19 Aug 2025
Viewed by 284
Abstract
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide [...] Read more.
Conidiobolus coronatus (Entomophthorales), a fungal pathogen with a broad insect host range, is a promising candidate for biocontrol applications. We sequenced a C. coronatus strain isolated from a Rhopalomyia sp. cadaver using PacBio long-read sequencing to elucidate the molecular basis of its wide host adaptability. The newly assembled 44.21 Mb genome exhibits high completeness (BUSCO score: 93.45%) and encodes 11,128 protein-coding genes, with 23.1% predicted to mediate pathogen–host interactions. Comparative genomics with the aphid-obligate pathogen C. obscurus revealed significant expansions in gene families associated with host adaptation mechanisms, including host recognition, transcriptional regulation, degradation of host components, detoxification, and immune evasion. Functional annotation highlighted enrichment in cellular component organization and energy metabolism. Pfam annotation identified one hundred twenty-five seven-transmembrane receptors (putative GPCRs), sixty-seven fungus-specific transcription factors, three hundred sixty-one peptidases (one hundred ninety-eight serine proteases and one hundred three metalloproteases), one hundred twenty-seven cytochrome P450 monooxygenases (P450s), thirty-five cysteine-rich secretory proteins, and fifty-five tyrosinases. Additionally, four hundred thirty carbohydrate-active enzymes (CAZymes) across six major modules were characterized. Untargeted metabolomics detected 22 highly expressed terpenoids, consistent with terpenoid biosynthesis gene clusters in the genome. Collectively, these expansions underpin the broad host range of C. coronatus by enabling cross-host signal decoding and gene expression reprogramming, breaching diverse host physicochemical barriers, and expanding its chemical ecological niche. This study provides genomic insights into broad host adaptability in entomopathogenic fungi, facilitating further understanding of pathogen–host interactions. Full article
(This article belongs to the Special Issue New Perspectives on Insect-Associated Fungi)
Show Figures

Figure 1

17 pages, 15835 KB  
Article
Gut Microbial Metabolites of Tryptophan Augment Enteroendocrine Cell Differentiation in Human Colonic Organoids: Therapeutic Potential for Dysregulated GLP1 Secretion in Obesity
by James Hart, Hassan Mansour, Harshal Sawant, Morrison Chicko, Subha Arthur, Jennifer Haynes and Alip Borthakur
Int. J. Mol. Sci. 2025, 26(15), 7080; https://doi.org/10.3390/ijms26157080 - 23 Jul 2025
Viewed by 3041
Abstract
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) [...] Read more.
Enteroendocrine cells (EECs) are specialized secretory cells in the gut epithelium that differentiate from intestinal stem cells (ISCs). Mature EECs secrete incretin hormones that stimulate pancreatic insulin secretion and regulate appetite. Decreased EEC numbers and impaired secretion of the incretin glucagon-like peptide-1 (GLP1) have been implicated in obesity-associated metabolic complications. Gut microbial metabolites of dietary tryptophan (TRP) were recently shown to modulate ISC proliferation and differentiation. However, their specific effects on EEC differentiation are not known. We hypothesized that the gut microbial metabolites of dietary tryptophan counteract impaired GLP1 production and function in obesity by stimulating EEC differentiation from ISCs. We utilized complementary models of human and rat intestines to determine the effects of obesity or TRP metabolites on EEC differentiation. EEC differentiation was assessed by the EEC marker chromogranin A (CHGA) levels in the intestinal mucosa of normal versus obese rats. The effects of TRP metabolites on EEC differentiation were determined in human intestinal organoids treated with indole, a primary TRP metabolite, or the culture supernatant of Lactobacillus acidophilus grown in TRP media (LA-CS-TRP). Our results showed that the mRNA and protein levels of CHGA, the EEC marker, were significantly decreased (~60%) in the intestinal mucosa of high-fat-diet-induced obese rat intestines. The expression of the transcription factors that direct the ISC differentiation towards the EEC lineage was also decreased in obesity. In human organoids, treatment with indole or LA-CS-TRP significantly increased (more than 2-fold) CHGA levels, which were blocked by the aryl hydrocarbon receptor (AhR) antagonist CH-223191. Thus, the stimulation of EEC differentiation by colonic microbial metabolites highlights a novel therapeutic role of TRP metabolites in obesity and associated metabolic disorders. Full article
Show Figures

Figure 1

25 pages, 7475 KB  
Article
Human Dialyzable Leukocyte Extract Enhances Albendazole Efficacy and Promotes Th1/Th2-Biased Lymphocyte and Antibody Responses in Peritoneal Cavity of Murine Model of Mesocestoides vogae Infection
by Gabriela Hrčková, Dagmar Mudroňová, Katarína Reiterová, Serena Cavallero and Ilaria Bellini
Int. J. Mol. Sci. 2025, 26(14), 6994; https://doi.org/10.3390/ijms26146994 - 21 Jul 2025
Viewed by 403
Abstract
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, [...] Read more.
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, the site of larval proliferation and parasite-induced immunosuppression. Peritoneal lymphoid cells were analysed by flow cytometry and qPCR. Cells proliferative responses to ConA, LPS, and parasite excretory/secretory (E/S) antigens, cytokine production (ELISA), IgM and IgG isotypes in exudates and parasite antigen recognition (Western blot) were assessed. Efficacy was measured by larval burden and 14-3-3 gene expression in larvae. HLE combined with ABZ enhanced larval clearance and suppressed 14-3-3 gene expression in larvae. HLE and combination therapy increased CD3+ T cell frequencies, especially CD3+high, reduced regulatory CD3+/IL-10 Tregs and expression of Foxp3+. All treatments diminished CD19+/IL-10+ Bregs, correlating with lower CD9 and Atf3 mRNA levels compared to infected mice. Transcription factors T-bet expression was strongly upregulated, while GATA3 was moderately elevated. IFN-γ production and T/B cell proliferation were restored after HLE and combination therapy, partially, even in the presence of E/S antigens. IgM and total IgG levels against parasite antigens declined, while Th1-associated IgG2a increased in ABZ+HLE and HLE-treated groups. Albendazole failed to reverse the immunosuppressive Treg-type immunity but was more effective in reducing Breg populations and their functions. HLE enhanced ABZ efficacy by restoring Th1 responsiveness, reducing Treg/Breg activity, and modulating antibody profiles. It represents a promising immunomodulatory adjuvant in the treatment of the infections associated with Th2/Treg-driven immunosuppression. Full article
(This article belongs to the Special Issue Molecular Research on Parasitic Infection)
Show Figures

Figure 1

40 pages, 2429 KB  
Review
Hepatocytes as Model for Investigating Natural Senotherapeutic Compounds and Their Effects on Cell Cycle Dynamics and Genome Stability
by Anastasia Fizikova, Anna Prokhorova, Daria Churikova, Zahar Konstantinov, Roman Ivanov, Alexander Karabelsky and Stanislav Rybtsov
Int. J. Mol. Sci. 2025, 26(14), 6794; https://doi.org/10.3390/ijms26146794 - 16 Jul 2025
Viewed by 963
Abstract
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA [...] Read more.
DNA is inherently unstable and is susceptible to damage from both endogenous sources (such as reactive oxygen species) and exogenous factors (including UV, ionizing radiation, and chemicals). The accumulation of DNA damage manifests as genetic mutations, chromosomal instability, and the stalling of DNA replication and transcription processes. Accumulated DNA damage influences apoptosis and cell cycle checkpoints, serving as one of the key triggers for the manifestation of the senescent phenotype. Both aging and cancer are associated with the accumulation of mutations in somatic cells. Disruption of cell cycle control and uncontrolled proliferation are fundamental characteristics of any cancer cell, with the majority of anticancer drugs acting as inhibitors of cyclin-dependent kinases, thereby inducing a transition of cells into a senescent state. Consequently, disturbances in the dynamics and regulation of inflammatory responses, oxidative stress, cell proliferation, DNA damage repair, and epigenetic anomalies, along with the influence of retroviruses and transposons, lead to the accumulation of senescent cells within the human body, characterized by blocked replication and cell cycle, as well as a distinct secretory phenotype. The age-related or disease-associated accumulation of these senescent cells significantly alters the physiology of tissues and the organism as a whole. Many secondary metabolites of higher plants exhibit senolytic and senomorphic activities, although most of them are not fully characterized. In this review, we will explore the principal signaling pathways in mammalian cells that govern the cell cycle and cellular senescence, with a particular emphasis on how their dynamics, expression, and regulation have been modified through the application of senotherapeutic compounds. The second section of the review will identify key target genes for the metabolic engineering, primarily aimed at enhancing the accumulation of plant secondary metabolites with potential therapeutic benefits. Lastly, we will discuss the rationale for utilizing liver cells as a model system to investigate the effects of senolytic compounds on human physiology and health, as well as how senotherapeutic substances can be leveraged to improve gene therapy approaches based on CRISPR/Cas9 and prime-editing technologies. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

14 pages, 2217 KB  
Article
A Systematic Study of Lysine Succinylation in the Pathogenic Bacterium Vibrio harveyi in Aquatic Animals
by Shuai Yang, Peng Zhou, Weijie Zhang, Yujia Zhang, Haiwei Guo, Yingzhu Wei, Xiaoxin Wen, Jichang Jian, Na Wang and Huanying Pang
Molecules 2025, 30(11), 2418; https://doi.org/10.3390/molecules30112418 - 31 May 2025
Viewed by 576
Abstract
Vibrio harveyi, a pathogenic vibrio, is ubiquitous and the most prevalent disease infecting tropical and subtropical mariculture animals in marine and estuarine environments. It presents a major risk to mariculture companies worldwide and can cause serious disease problems in aquaculture. Recent studies have [...] Read more.
Vibrio harveyi, a pathogenic vibrio, is ubiquitous and the most prevalent disease infecting tropical and subtropical mariculture animals in marine and estuarine environments. It presents a major risk to mariculture companies worldwide and can cause serious disease problems in aquaculture. Recent studies have shown that various pathogens employ post-translational modifications (PTMs) to regulate cellular processes. One of the major PTMs is lysine succinylation, which is widespread in eukaryotic and prokaryotic cells. Many basic biological functions of bacteria are associated with the regulation of lysine (K) succinylation (Ksuc). However, little is known about the role of lysine succinylation in V. harveyi pathogenesis. Here, we performed LC-MS/MS analysis of 1271 proteins from V. harveyi to identify 4252 Ksuc modification sites. The modification of S-ribosylhomocysteine lyase (LuxS) and transcription elongation factor GreA proteins by Ksuc was confirmed through immunoprecipitation combined with Western blot, further validating our proteomics results. Bioinformatics study revealed that the identified Ksuc proteins play roles in multiple cellular processes and vital metabolic pathways, including LuxS, biofilm exopolysaccharide biosynthesis protein EpsG, and the general secretory system (Sec systems), and are proteins that regulate bacterial virulence. Generally, this scientific study serves as the basis for additional research on the pathogenic nature of Ksuc in V. harveyi and reveals potential targets that would accelerate the manufacturing of attenuated vaccines. Full article
Show Figures

Figure 1

14 pages, 1986 KB  
Article
Activating Transcription Factor 3 (ATF3) Regulates Cellular Senescence and Osteoclastogenesis via STAT3/ERK and p65/AP-1 Pathways in Human Periodontal Ligament Cells
by Won-Jung Bae and Sang-Im Lee
Int. J. Mol. Sci. 2025, 26(10), 4959; https://doi.org/10.3390/ijms26104959 - 21 May 2025
Viewed by 939
Abstract
Oral cellular aging plays a critical role in the pathogenesis of chronic periodontitis and alveolar bone resorption. Although activating transcription factor 3 (ATF3) has been implicated as a senescence-associated factor, its specific role in periodontal ligament cell (PDLC) senescence remains unclear. Human PDLCs [...] Read more.
Oral cellular aging plays a critical role in the pathogenesis of chronic periodontitis and alveolar bone resorption. Although activating transcription factor 3 (ATF3) has been implicated as a senescence-associated factor, its specific role in periodontal ligament cell (PDLC) senescence remains unclear. Human PDLCs were exposed to lipopolysaccharide (LPS, 1 μg/mL) and nicotine (5 mM) for 3 days to induce senescence. ATF3 expression was silenced using siRNA. The expression of senescence-associated secretory phenotype (SASP) factors (IFNγ, IL6, IL8, TNFα, and IL1β) and the secretion of nitric oxide (NO) and prostaglandin E2 (PGE2) were assessed by RT-PCR and immunoassay. Conditioned media (CM) from these cells were applied to mouse bone marrow macrophages (BMMs) to evaluate osteoclast differentiation and bone resorption. In addition, key signaling pathways, including STAT3, ERK, NF-κB (p65), and AP-1, were investigated by Western blotting and immunofluorescence. ATF3 knockdown markedly reduced the LPS/nicotine-induced expression of SASP factors and decreased NO and PGE2 levels. CM from ATF3-silenced PDLCs markedly inhibited osteoclast differentiation, as evidenced by reduced tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and diminished bone resorption. Moreover, ATF3 inhibition led to a decreased RANKL/OPG ratio and attenuated the phosphorylation of STAT3 and ERK, along with the reduced nuclear translocation of p65 and AP-1 components. These findings suggest that ATF3 plays a critical role in mediating cellular senescence and osteoclastogenesis in PDLCs. Targeting ATF3 may represent a novel therapeutic strategy for managing age-related oral diseases, such as chronic periodontitis. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

27 pages, 1369 KB  
Article
Insights into the Red Seaweed Asparagopsis taxiformis Using an Integrative Multi-Omics Analysis
by Min Zhao, Tomas Lang, Zubaida Patwary, Andrew L. Eamens, Tianfang Wang, Jessica Webb, Giuseppe C. Zuccarello, Ana Wegner-Thépot, Charlotte O’Grady, David Heyne, Lachlan McKinnie, Cecilia Pascelli, Nori Satoh, Eiichi Shoguchi, Alexandra H. Campbell, Nicholas A. Paul and Scott F. Cummins
Plants 2025, 14(10), 1523; https://doi.org/10.3390/plants14101523 - 19 May 2025
Cited by 1 | Viewed by 1079
Abstract
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas [...] Read more.
The red seaweed Asparagopsis taxiformis (Bonnemaisoniaceae, Rhodophyta) produces a bioactive natural product, bromoform, which, when fed to ruminant livestock, can eradicate methane emissions. However, to cultivate enough A. taxiformis to produce a yield that would have a meaningful impact on global greenhouse gas emissions, we need to advance our current understanding of the biology of this seaweed species. Here, we used both a domesticated diploid tetrasporophyte (>1.5 years in culture) and wild samples to establish a high-quality draft nuclear genome for A. taxiformis (lineage 6 based upon phylogenetic analyses using the cox2-3 spacer). The constructed nuclear genome is 142 Mb in size (including 70.67% repeat regions) and was determined to encode for approximately 10,474 protein-coding genes, including those associated with secondary metabolism, photosynthesis, and defence. To obtain information regarding molecular differences between cultured and wild tetrasporophytes, we further explored differential gene expression relating to their different growth environments. Cultured tetrasporophytes, which contained a relatively higher level of bromoform compared to wild tetrasporophytes, demonstrated an enrichment of regulatory factors, such as protein kinases and transcription factors, whereas wild tetrasporophytes were enriched for the expression of defence and stress-related genes. Wild tetrasporophytes also expressed a relatively high level of novel secretory genes encoding proteins with von Willebrand factor A protein domains (named rhodophyte VWAs). Gene expression was further confirmed by proteomic investigation of cultured tetrasporophytes, resulting in the identification of over 400 proteins, including rhodophyte VWAs, and numerous enzymes and phycobiliproteins, which will facilitate future functional characterisation of this species. In summary, as the most comprehensive genomic resource for any Asparagopsis species, this resource for lineage 6 provides a novel avenue for seaweed researchers to interrogate genomic information, which will greatly assist in expediating production of Asparagopsis to meet demand by both aquaculture and agriculture, and to do so with economic and environmental sustainability. Full article
(This article belongs to the Special Issue Molecular Research of the Seaweeds)
Show Figures

Figure 1

18 pages, 8336 KB  
Article
Metformin-Enhanced Secretome from Periodontal Ligament Stem Cells Promotes Functional Recovery in an Inflamed Periodontal Model: In Vitro Study
by Han Na Suh, Ju Young Ji and Jung Sun Heo
J. Funct. Biomater. 2025, 16(5), 177; https://doi.org/10.3390/jfb16050177 - 13 May 2025
Viewed by 1051
Abstract
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a [...] Read more.
Objective: Secretory factors, termed the secretome, in the conditioned medium (CM) from dental mesenchymal stem cells (MSCs) have shown anti-inflammatory, anti-apoptotic, and tissue regenerative potential. This cell-free product could be further developed by preconditioning cells with various biochemical agents, which lead to a change in secretome and CM profiles. Among the favorable candidates for CM production, metformin as an anti-diabetic medication is currently considered a potential agent for dental hard tissue and periodontal regeneration. Here, we aimed to assess the composition of CM from periodontal ligament stem cells (PDLSCs) grown in metformin-preconditioned media (Met-CM) compared to normal PDLSC-CM and assess the ability of Met-CM to recover the function of inflamed PDLSCs. Methods: Met-CM and normal CM were collected from PDLSCs grown with or without 50 µM metformin, respectively, under healthy culture conditions. Mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS) were performed to comparatively evaluate the proteomic profiles in PDLSC-CM versus Met-CM. We then treated the PDLSC cultures with lipopolysaccharide (LPS) from Porphyromonas gingivalis to induce inflammation and evaluated the osteogenic/cementogenic differentiation in the presence of Met-CM or normal PDLSC-CM by assessing alkaline phosphatase activity, intracellular calcium levels, and mRNA expression of osteogenic and cementogenic factors, including RUNX2, OCN, OSX, and CEMP-1. Subsequently, we performed RNA sequencing to identify transcriptomic changes in the treated cells. Results: We identified 202 differentially expressed proteins, 175 of which were significant, in Met-CM versus normal PDLSC-CM. Among the analyzed groups, the top three protein classes were protein-binding activity modulator, cytoskeletal protein, and extracellular matrix (ECM) protein. Treatment of PDLSCs with LPS significantly attenuated ALP activity, [Ca2+]i, and the mRNA expression levels of RUNX2, OCN, OSX, and CEMP-1, whereas treatment with Met-CM alone markedly enhanced PDLSC differentiation activity compared with the control. Moreover, osteogenic/cementogenic differentiation of the LPS-treated PDLSCs was recovered through incubation in Met-CM. Transcriptomic analysis identified 511 and 3591 differentially expressed genes in the control versus Met-CM and LPS versus LPS + Met-CM groups, respectively. The enrichment of biological processes includes positive regulation of DNA-templated transcription and skeletal system morphogenesis in the control versus Met-CM comparison, as well as positive regulation of transcription from the RNA polymerase II promoter and negative regulation of the apoptotic process in the LPS versus LPS + Met-CM comparison. Molecular function analysis demonstrated the enrichment of protein-binding terms among the DEGs from each comparison. Conclusions: Metformin preconditioning enhanced the recovery effect of PDLSC-CM on LPS-induced inflamed PDLSCs. These findings suggest that metformin preconditioning could represent a practical formula for PDLSC-secretome, which may contribute to the development of future cell-free periodontal regenerative strategies. Full article
(This article belongs to the Special Issue Natural Biomaterials for Biomedical Applications)
Show Figures

Figure 1

29 pages, 3410 KB  
Review
HOXA10 and HOXA11 in Human Endometrial Benign Disorders: Unraveling Molecular Pathways and Their Impact on Reproduction
by Lorin-Manuel Pîrlog, Andrada-Adelaida Pătrășcanu, Mara-Diana Ona, Andreea Cătană and Ioana Cristina Rotar
Biomolecules 2025, 15(4), 563; https://doi.org/10.3390/biom15040563 - 10 Apr 2025
Cited by 3 | Viewed by 1890
Abstract
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial [...] Read more.
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial polyps. These genes are dynamically regulated by estrogen and progesterone, with peak expression during the secretory phase of the menstrual cycle when implantation takes place. The molecular mechanisms underlying their action include the modulation of extracellular matrix (ECM) remodeling via metalloproteinases, cytokines like leukemia inhibitory factor, and cell adhesion molecules such as β3-integrin, all of which are essential for the differentiation of epithelial and stromal cells, as well as for trophoblast invasion. Aberrant HOX gene expression, driven by DNA hypermethylation or altered histone acetylation, compromises endometrial receptivity and implantation. For instance, reduced HOXA10 expression in endometriosis stems from hypermethylation and chronic inflammation, disrupting immune modulation and cytokine signaling. Similarly, adenomyosis alters HOXA11-regulated ECM remodeling and β3-integrin expression, impairing embryo attachment. Furthermore, regulatory pathways involving vitamin D and retinoic acid offer promising therapeutic avenues pathways, as they enhance HOXA10/HOXA11 expression and endometrial receptivity. This review underscores the critical molecular roles of HOXA10/HOXA11 genes as biomarkers and therapeutic targets to optimize fertility outcomes and address reproductive pathologies. Full article
Show Figures

Figure 1

19 pages, 5004 KB  
Article
Integrative Analysis of Chromatin Accessibility and Transcriptional Landscape Identifies Key Genes During Muscle Development in Pigs
by Dongjie Zhang, Qian Zhang, Xiaoxu Wu, Liang Wang, Xiaohan Zhang, Di Liu and Xiuqin Yang
Cells 2024, 13(24), 2118; https://doi.org/10.3390/cells13242118 - 20 Dec 2024
Cited by 1 | Viewed by 866
Abstract
Many efforts have been made to reveal the mechanisms underlying skeletal muscle development because of its importance in animals. However, knowledge on chromatin accessibility, a prerequisite for gene expression, remains limited. Here, dynamic changes in chromatin accessibility were analyzed in the skeletal muscles [...] Read more.
Many efforts have been made to reveal the mechanisms underlying skeletal muscle development because of its importance in animals. However, knowledge on chromatin accessibility, a prerequisite for gene expression, remains limited. Here, dynamic changes in chromatin accessibility were analyzed in the skeletal muscles of Min pigs at the ages of 30, 90, and 210 d using an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq). A total of 16,301 differentially accessible regions (DARs) associated with 7455 genes were identified among three developmental stages. Seven out of eight DARs selected for a functional analysis were found to regulate reporter gene expression significantly (p < 0.05), indicating that DARs are active in gene expression. A total of 2219 differentially expressed genes (DEGs) were identified with RNA sequencing (RNA-seq). Through integrated analyses of ATAC-seq and RNA-seq data, 54 DEG_DAR_genes and 61 transcription factors (TFs) were characterized as critical for muscle development. Among them, Kruppel-like factor 5 (KLF5), targeted to 36 DEG_DAR_genes, was the most important TF. The effects of KLF5 on DEG_DAR_gene expression were then analyzed with molecular biology techniques. KLF5 was found to regulate SLPI (secretory leukocyte proteinase inhibitor) expression by directly binding to the promoter; KLF5 was also involved in APOA1 (apolipoprotein A-I) expression through affecting the regulatory role of DAR located in the intron. These results indicate that the TFs identified were functional. Altogether, the chromatin accessibility region, TFs, and genes important for muscle development in Min pigs were identified. The results provide novel data for further revealing the mechanisms underlying the epigenetic regulation of muscle development. Full article
(This article belongs to the Special Issue Skeletal Muscle Differentiation and Epigenetics - Volume II)
Show Figures

Figure 1

15 pages, 1648 KB  
Article
Effect of Comparable Carbon Chain Length Short- and Branched-Chain Fatty Acids on Adipokine Secretion from Normoxic and Hypoxic Lipopolysaccharide-Stimulated 3T3-L1 Adipocytes
by Ala Alzubi and Jennifer M. Monk
Biomedicines 2024, 12(11), 2621; https://doi.org/10.3390/biomedicines12112621 - 16 Nov 2024
Cited by 1 | Viewed by 1434
Abstract
Background: Microbial fermentation of non-digestible carbohydrates and/or protein produces short-chain fatty acids (SCFA), whereas branched-chain fatty acids (BCFA) are produced from protein fermentation. The effects of individual SCFA and BCFA of comparable carbon chain length on adipocyte inflammation have not been investigated. Objective [...] Read more.
Background: Microbial fermentation of non-digestible carbohydrates and/or protein produces short-chain fatty acids (SCFA), whereas branched-chain fatty acids (BCFA) are produced from protein fermentation. The effects of individual SCFA and BCFA of comparable carbon chain length on adipocyte inflammation have not been investigated. Objective: To compare the effects of SCFA and BCFA on inflammatory mediator secretion in an adipocyte cell culture model designed to recapitulate obesity-associated adipocyte inflammation under normoxic and hypoxic conditions. Methods: The 3T3-L1 adipocytes were cultured (24 h) without (Control, Con) and with 1 mmol/L of SCFA (butyric acid (But) or valeric acid (Val)) or 1 mmol/L of BCFA (isobutyric acid (IsoBut) or isovaleric acid (IsoVal)) and were unstimulated (cells alone, n = 6/treatment), or stimulated with 10 ng/mL lipopolysaccharide (LPS, inflammatory stimulus, n = 8/treatment) or 10 ng/mL LPS + 100 µmol/L of the hypoxia memetic cobalt chloride (LPS/CC, inflammatory/hypoxic stimulus, n = 8/treatment). Results: Compared to Con + LPS, But + LPS reduced secreted protein levels of interleukin (IL)-1β, IL-6, macrophage chemoattractant protein (MCP)-1/chemokine ligand (CCL)2, MCP3/CCL7, macrophage inflammatory protein (MIP)-1α/CCL3 and regulated upon activation, normal T cell expressed, and secreted (RANTES)/CCL5 and decreased intracellular protein expression of the ratio of phosphorylated to total signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B (NFκB) p65 (p < 0.05). Val + LPS reduced IL-6 secretion and increased MCP-1/CCL2 secretion compared to Con + LPS and exhibited a different inflammatory mediator secretory profile from But + LPS (p < 0.05), indicating that individual SCFA exert individual effects. There were no differences in the secretory profile of the BCFA IsoBut + LPS and IsoVal + LPS (p > 0.05). Alternatively, under inflammatory hypoxic conditions (LPS/CC) Val, IsoVal, and IsoBut all increased secretion of IL-6, MCP-1/CCL2 and MIP-1α/CCL3 compared to Con (p < 0.05), whereas mediator secretion did not differ between But and Con (p > 0.05), indicating that the proinflammatory effects of SCFA and BCFA was attenuated by But. Interestingly, But + LPS/CC decreased STAT3 activation versus Con + LPS/CC (p < 0.05). Conclusions: The decreased secretion of inflammatory mediators that is attributable to But highlights the fact that individual SCFA and BCFA exert differential effects on adipocyte inflammation under normoxic and hypoxic conditions. Full article
(This article belongs to the Special Issue Recent Advances in Adipokines—2nd Edition)
Show Figures

Figure 1

21 pages, 7821 KB  
Article
Single-Cell Analysis Reveals the Cellular and Molecular Changes of Liver Injury and Fibrosis in Mice During the Progression of Schistosoma japonicum Infection
by Julu Lu, Xinyue Zhang, Panpan Dong, Congjin Mei, Yingying Yang, Chuanxin Yu and Lijun Song
Curr. Issues Mol. Biol. 2024, 46(11), 11906-11926; https://doi.org/10.3390/cimb46110707 - 23 Oct 2024
Cited by 1 | Viewed by 2766
Abstract
Schistosomiasis is a parasitic disease that poses a serious threat to human health. However, the pathogenic mechanism during the progression of Schistosoma japonicum infection remains unclear. In order to elucidate this mechanism, we used single-cell RNA sequencing (scRNA-seq) to investigate the transcriptome characteristics [...] Read more.
Schistosomiasis is a parasitic disease that poses a serious threat to human health. However, the pathogenic mechanism during the progression of Schistosoma japonicum infection remains unclear. In order to elucidate this mechanism, we used single-cell RNA sequencing (scRNA-seq) to investigate the transcriptome characteristics of the cellular (single-cell) landscape in the livers of mice infected with Schistosoma japonicum, which were divided into three groups: uninfected mice (0 week (w)), infected mice at 6 w post-infection (the acute phase), and infected mice at 10 w post-infection (the chronic phase). A total of 31,847 liver cells were included and clustered into 21 groups. The cells and T-cells had high heterogeneity in the liver during the progression of schistosome infection. The number and intensity of the intercellular interactions significantly increased at 6 w after infection but decreased at 10 w. The inflammatory signaling pathways chemoattractant cytokine ligand (CCL)5-chemokine C-C-motif receptor (CCR)5 between macrophages and T-cells were predominant at 6 w post-infection; the CCL6-CCR2 signaling pathway between macrophages was predominant at 10 w. The CD80 signaling pathway related to T-cell activation was increased at 6 w after infection, and increased expression of its receptor CD28 on the surfaces of CD4+ and CD8+ T-cells was confirmed by flow cytometry, suggesting an increase in their activation. In addition, scRNA-seq and quantitative reverse transcription polymerase chain reaction (qRT-PCR) confirmed that the intercellular communication between secretory phosphoprotein 1 (SPP1)-cluster of differentiation (CD44), insulin-like growth factor (IGF)-1-IGF1r and visfatin-insulin receptor (Insr) associated with bone metabolism and insulin metabolism was increased and enhanced in the liver at 6 w post-infection. Overall, we provide the comprehensive single-cell transcriptome landscape of the liver in mice during the progression of schistosome infection and delineate the key cellular and molecular events involved in schistosome infection-induced liver injury and fibrosis. The elevated CCL5-CCR5 and CCL6-CCR2 signaling pathways in the liver may be a drug target for liver injury and fibrosis caused by schistosome infection, respectively. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

16 pages, 2434 KB  
Article
CREB Is Critically Implicated in Skin Mast Cell Degranulation Elicited via FcεRI and MRGPRX2
by Zhuoran Li, Jean Schneikert, Shiva Raj Tripathi, Manqiu Jin, Gürkan Bal, Torsten Zuberbier and Magda Babina
Cells 2024, 13(20), 1681; https://doi.org/10.3390/cells13201681 - 11 Oct 2024
Cited by 1 | Viewed by 2017
Abstract
Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF) with over 4,000 binding sites [...] Read more.
Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF) with over 4,000 binding sites in the genome, was recently found to form a feedforward loop with KIT, maintaining MC survival. The most selective MC function is degranulation with its acute release of prestored mediators. Herein, we asked whether CREB contributes to the expression and function of the degranulation-competent receptors FcεRI and MRGPRX2. Interference with CREB by pharmacological inhibition (CREBi, 666-15) or RNA interference only slightly affected the expression of these receptors, while KIT was strongly attenuated. Interestingly, MRGPRX2 surface expression moderately increased following CREB-knockdown, whereas MRGPRX2-dependent exocytosis simultaneously decreased. FcεRI expression and function were regulated consistently, although the effect was stronger at the functional level. Preformed MC mediators (tryptase, histamine, β-hexosaminidase) remained comparable following CREB attenuation, suggesting that granule synthesis did not rely on CREB function. Collectively, in contrast to KIT, FcεRI and MRGPRX2 moderately depend on unperturbed CREB function. Nevertheless, CREB is required to maintain MC releasability irrespective of stimulus, insinuating that CREB may operate by safeguarding the degranulation machinery. To our knowledge, CREB is the first factor identified to regulate MRGPRX2 expression and function in opposite direction. Overall, the ancient TF is an indispensable component of skin MCs, orchestrating not only survival and proliferation but also their secretory competence. Full article
(This article belongs to the Collection Mast Cells in Health and Diseases)
Show Figures

Figure 1

17 pages, 6815 KB  
Article
Effects of High-Linear-Energy-Transfer Heavy Ion Radiation on Intestinal Stem Cells: Implications for Gut Health and Tumorigenesis
by Santosh Kumar, Shubhankar Suman, Jerry Angdisen, Bo-Hyun Moon, Bhaskar V. S. Kallakury, Kamal Datta and Albert J. Fornace
Cancers 2024, 16(19), 3392; https://doi.org/10.3390/cancers16193392 - 4 Oct 2024
Viewed by 2181
Abstract
Heavy ion radiation, prevalent in outer space and relevant for radiotherapy, is densely ionizing and poses a risk to intestinal stem cells (ISCs), which are vital for maintaining intestinal homeostasis. Earlier studies have shown that heavy-ion radiation can cause chronic oxidative stress, persistent [...] Read more.
Heavy ion radiation, prevalent in outer space and relevant for radiotherapy, is densely ionizing and poses a risk to intestinal stem cells (ISCs), which are vital for maintaining intestinal homeostasis. Earlier studies have shown that heavy-ion radiation can cause chronic oxidative stress, persistent DNA damage, cellular senescence, and the development of a senescence-associated secretory phenotype (SASP) in mouse intestinal mucosa. However, the specific impact on different cell types, particularly Lgr5+ intestinal stem cells (ISCs), which are crucial for maintaining cellular homeostasis, GI function, and tumor initiation under genomic stress, remains understudied. Using an ISCs-relevant mouse model (Lgr5+ mice) and its GI tumor surrogate (Lgr5+Apc1638N/+ mice), we investigated ISCs-specific molecular alterations after high-LET radiation exposure. Tissue sections were assessed for senescence and SASP signaling at 2, 5 and 12 months post-exposure. Lgr5+ cells exhibited significantly greater oxidative stress following 28Si irradiation compared to γ-ray or controls. Both Lgr5+ cells and Paneth cells showed signs of senescence and developed a senescence-associated secretory phenotype (SASP) after 28Si exposure. Moreover, gene expression of pro-inflammatory and pro-growth SASP factors remained persistently elevated for up to a year post-28Si irradiation. Additionally, p38 MAPK and NF-κB signaling pathways, which are critical for stress responses and inflammation, were also upregulated after 28Si radiation. Transcripts involved in nutrient absorption and barrier function were also altered following irradiation. In Lgr5+Apc1638N/+ mice, tumor incidence was significantly higher in those exposed to 28Si radiation compared to the spontaneous tumorigenesis observed in control mice. Our results indicate that high-LET 28Si exposure induces persistent DNA damage, oxidative stress, senescence, and SASP in Lgr5+ ISCs, potentially predisposing astronauts to altered nutrient absorption, barrier function, and GI carcinogenesis during and after a long-duration outer space mission. Full article
(This article belongs to the Special Issue Radiation Exposure, Inflammation and Cancers)
Show Figures

Figure 1

Back to TopTop