Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,020)

Search Parameters:
Keywords = secondary spectrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5449 KiB  
Article
Comparisons of the Effects of Polymer and Alcohol Varnishes on Norway Spruce Wood Surface Modifications
by Mariana Domnica Stanciu, Maria Cristina Timar, Mircea Mihalcica, Mihaela Cosnita and Florin Dinulică
Polymers 2025, 17(15), 2131; https://doi.org/10.3390/polym17152131 (registering DOI) - 1 Aug 2025
Abstract
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, [...] Read more.
Spruce wood is a natural polymeric material, consisting of cellulose, lignin, hemicelluloses and other secondary components, which gives it a unique chemical footprint and architecture. Varnishes are used in musical instruments to protect the wood against humidity variations, wood being a hygroscopic material, but also to protect the wood from dirt. The varnishes used both to protect the wood from resonance and to ensure a special aesthetic appearance are either polymeric varnishes (nitrocellulose, oil-based) or volatile solvents (spirit). In this study, the color changes, the surface morphology and the chemical spectrum produced by three types of varnishes, applied in 5, 10 and 15 layers, on resonance spruce plates were analyzed. The results revealed significant changes in the color parameters: the lightness decreased by approximately 17% after the first layer, by 50% after 5 layers, by 65% after 10 layers and by 70% after 15 layers. The color parameters are most influenced by the anatomical quality of spruce wood (annual ring width and earlywood/latewood ratio) in the case of oil-based varnishes and least influenced in the case of nitrocellulose varnishes. The chemical fingerprint was determined by FTIR spectrum analysis, which revealed that the most pronounced absorptions were the double band 2926–2858 cm−1, corresponding to aliphatic methylene and methyl groups (asymmetric and symmetrical C-H stretch), and the bands at 1724 cm−1 (oil-based varnish), 1722 cm−1 (nitrocellulose varnish) and 1708 cm−1 (spirit varnish), all assigned to non-conjugated carbonyl groups in either carboxylic acids, esters aldehydes or ketones. The novelty of the study lies in the comparative analysis of three types of varnishes used in the musical instrument industry, applied to samples of spruce resonance wood with different macroscopic characteristics in three different layer thicknesses. Full article
(This article belongs to the Special Issue Advances in Wood Based Composites, 2nd Edition)
Show Figures

Figure 1

26 pages, 1171 KiB  
Review
Current Context of Cannabis sativa Cultivation and Parameters Influencing Its Development
by Andreia Saragoça, Ana Cláudia Silva, Carla M. R. Varanda, Patrick Materatski, Alfonso Ortega, Ana Isabel Cordeiro and José Telo da Gama
Agriculture 2025, 15(15), 1635; https://doi.org/10.3390/agriculture15151635 - 29 Jul 2025
Viewed by 271
Abstract
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential [...] Read more.
Cannabis sativa L. is a versatile plant with significant medicinal, industrial, and recreational applications. Its therapeutic potential is attributed to cannabinoids like THC and CBD, whose production is influenced by environmental factors, such as radiation, temperature, and humidity. Radiation, for instance, is essential for photosynthetic processes, acting as both a primary energy source and a regulator of plant growth and development. This review covers key factors affecting C. sativa cultivation, including photoperiod, light spectrum, cultivation methods, environmental controls, and plant growth regulators. It highlights how these elements influence flowering, biomass, and cannabinoid production across different growing systems, offering insights for optimizing both medicinal and industrial cannabis cultivation. Studies indicate that photoperiod sensitivity varies among cultivars, with some achieving optimal flowering and cannabinoid production under extended light periods rather than the traditional 12/12 h cycle. Light spectrum adjustments, especially red, far-red, and blue wavelengths, significantly impact photosynthesis, plant morphology, and secondary metabolite accumulation. Advances in LED technology allow precise spectral control, enhancing energy efficiency and cannabinoid profiles compared to conventional lighting. The photoperiod plays a vital role in the cultivation of C. sativa spp., directly impacting the plant’s developmental cycle, biomass production, and the concentration of cannabinoids and terpenes. The response to photoperiod varies among different cannabis cultivars, as demonstrated in studies comparing cultivars of diverse genetic origins. On the other hand, indoor or in vitro cultivation may serve as an excellent alternative for plant breeding programs in C. sativa, given the substantial inter-cultivar variability that hinders the fixation of desirable traits. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

14 pages, 281 KiB  
Article
Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection
by Jun Jie Tan, Peijun Yvonne Zhou, Jia Le Lim, Fang Liu and Lay Hoon Andrea Kwa
Antibiotics 2025, 14(8), 758; https://doi.org/10.3390/antibiotics14080758 - 28 Jul 2025
Viewed by 191
Abstract
Background: With increasing pharmacokinetic evidence suggesting the inadequacy of conventional dose intravenous co-amoxiclav (IVCA) 1.2 g Q8H in targeting Enterobacterales, our institution antibiotic guidelines optimised dosing recommendations for diabetic foot infection (DFI) management to 1.2 g Q6H in August 2023. In [...] Read more.
Background: With increasing pharmacokinetic evidence suggesting the inadequacy of conventional dose intravenous co-amoxiclav (IVCA) 1.2 g Q8H in targeting Enterobacterales, our institution antibiotic guidelines optimised dosing recommendations for diabetic foot infection (DFI) management to 1.2 g Q6H in August 2023. In this study, we aim to evaluate the efficacy and safety of the optimised dose IVCA in DFI treatment. Methods: In this single-centre cohort study, patients ≥ 21 years with DFI, creatinine clearance ≥ 50 mL/min, and weight > 50 kg, who were prescribed IVCA 1.2 g Q8H (standard group (SG)), were compared with those prescribed IVCA 1.2 g Q6H (optimised group (OG)). Patients who were pregnant, immunocompromised, had nosocomial exposure in last 3 months, or received < 72 h of IVCA were excluded. The primary efficacy outcome was clinical deterioration at end of IVCA monotherapy. The secondary efficacy outcomes include 30-day readmission and mortality, empiric escalation of antibiotics, lower limb amputation, and length of hospitalisation. The safety outcomes include hepatotoxicity, renal toxicity, and diarrhoea. Results: There were 189 patients (94 in SG; 95 in OG) included. Patients in SG (31.9%) were twice as likely to experience clinical deterioration compared to OG (16.8%) (odds ratio: 2.31, 95% confidence interval: 1.16–4.62, p < 0.05). There were statistically more patients who had 30-day all-cause mortality in SG (5.3%) compared to OG (0%) (p < 0.05). Furthermore, 30-day readmission due to DFI in SG (26.6%) was higher compared to OG (11.6%) (p < 0.05). Empiric escalation of IV antibiotics was required for 14.9% patients in SG and 6.3% patients in OG (p = 0.06). There was no statistical difference for lower limb amputation (p = 0.72), length of hospitalisation (p = 0.13), and the occurrence of safety outcomes in both groups. Conclusions: This study suggests IVCA 1.2 g Q6H is associated with the decreased likelihood of clinical deterioration and is likely as safe as IVCA 1.2 g Q8H. The optimised dose of IVCA may help reduce the use of broad-spectrum antibiotics due to clinical deterioration. Full article
(This article belongs to the Special Issue Antimicrobial Stewardship—from Projects to Standard of Care)
Show Figures

Graphical abstract

24 pages, 13886 KiB  
Article
Complete Genome Analysis and Antimicrobial Mechanism of Burkholderia gladioli ZBSF BH07 Reveal Its Dual Role in the Biocontrol of Grapevine Diseases and Growth Promotion in Grapevines
by Xiangtian Yin, Chundong Wang, Lifang Yuan, Yanfeng Wei, Tinggang Li, Qibao Liu, Xing Han, Xinying Wu, Chaoping Wang and Xilong Jiang
Microorganisms 2025, 13(8), 1756; https://doi.org/10.3390/microorganisms13081756 - 28 Jul 2025
Viewed by 188
Abstract
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the [...] Read more.
Burkholderia gladioli is a multifaceted bacterium with both pathogenic and beneficial strains, and nonpathogenic Burkholderia species have shown potential as plant growth-promoting rhizobacteria (PGPRs) and biocontrol agents. However, the molecular mechanisms underlying their beneficial functions remain poorly characterized. This study systematically investigated the antimicrobial mechanisms and plant growth-promoting properties of B. gladioli strain ZBSF BH07, isolated from the grape rhizosphere, by combining genomic and functional analyses, including whole-genome sequencing, gene annotation, phylogenetic and comparative genomics, in vitro antifungal assays, and plant growth promotion evaluations. The results showed that ZBSF BH07 exhibited broad-spectrum antifungal activity, inhibiting 14 grape pathogens with an average inhibition rate of 56.58% and showing dual preventive/curative effects against grape white rot, while also significantly promoting grape seedling growth with increases of 54.9% in plant height, 172.9% in root fresh weight, and 231.34% in root dry weight. Genomic analysis revealed an 8.56-Mb genome (two chromosomes and one plasmid) encoding 7431 genes and 26 secondary metabolite biosynthesis clusters (predominantly nonribosomal peptide synthetases), supporting its capacity for antifungal metabolite secretion, and functional analysis confirmed genes for indole-3-acetic acid (IAA) synthesis, phosphate solubilization, and siderophore production. These results demonstrate that ZBSF BH07 suppresses pathogens via antifungal metabolites and enhances grape growth through phytohormone regulation and nutrient acquisition, providing novel insights into the dual mechanisms of B. gladioli as a biocontrol and growth-promoting agent and laying a scientific foundation for developing sustainable grapevine disease management strategies. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

22 pages, 6689 KiB  
Article
Design and Implementation of a Sun Outage Simulation System with High Uniformity and Stray Light Suppression Capability
by Zhen Mao, Zhaohui Li, Yong Liu, Limin Gao and Jianke Zhao
Sensors 2025, 25(15), 4655; https://doi.org/10.3390/s25154655 - 27 Jul 2025
Viewed by 288
Abstract
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable [...] Read more.
To enable accurate evaluation of satellite laser communication terminals under solar outage interference, this paper presents the design and implementation of a solar radiation simulation system targeting the 1540–1560 nm communication band. The system reconstructs co-propagating interference conditions through standardized and continuously tunable output, based on high irradiance and spectral uniformity. A compound beam homogenization structure—combining a multimode fiber and an apodizator—achieves 85.8% far-field uniformity over a 200 mm aperture. A power–spectrum co-optimization strategy is introduced for filter design, achieving a spectral matching degree of 78%. The system supports a tunable output from 2.5 to 130 mW with a 50× dynamic range and maintains power control accuracy within ±0.9%. To suppress internal background interference, a BRDF-based optical scattering model is established to trace primary and secondary stray light paths. Simulation results show that by maintaining the surface roughness of key mirrors below 2 nm and incorporating a U-shaped reflective light trap, stray light levels can be reduced to 5.13 × 10−12 W, ensuring stable detection of a 10−10 W signal at a 10:1 signal-to-background ratio. Experimental validation confirms that the system can faithfully reproduce solar outage conditions within a ±3° field of view, achieving consistent performance in spectrum shaping, irradiance uniformity, and background suppression. The proposed platform provides a standardized and practical testbed for ground-based anti-interference assessment of optical communication terminals. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 207
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

17 pages, 560 KiB  
Article
Redefining Body-Self Relationships Through Outdoor Physical Activity: Experiences of Women Navigating Illness, Injury, and Disability
by Joelle Breault-Hood, Tonia Gray, Jacqueline Ullman and Son Truong
Behav. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/bs15081006 - 24 Jul 2025
Viewed by 231
Abstract
Physical challenges such as illness, injury, and disability significantly alter women’s relationships with their bodies, disrupting established notions of functionality and self-worth. This study re-examines the Holistic Model of Positive Body Image and Outdoor Physical Activity through secondary analysis focusing on women with [...] Read more.
Physical challenges such as illness, injury, and disability significantly alter women’s relationships with their bodies, disrupting established notions of functionality and self-worth. This study re-examines the Holistic Model of Positive Body Image and Outdoor Physical Activity through secondary analysis focusing on women with illness, injury, and disability. From the original sample of N = 553 female participants, open-ended survey responses were identified from n = 84 participants (15.2%) who self-disclosed as having illness, injury, or disability to examine how outdoor settings facilitate positive body image. Through reflexive thematic analysis, the study revealed three key mechanisms: (1) personalized redefinition of functionality transcending standardized metrics, (2) therapeutic engagement with natural environments fostering embodied acceptance, and (3) cyclical reinforcement between physical capability and psychological wellbeing. The findings confirm the model’s utility while indicating necessary adaptations to address the fluctuating nature of body functionality. The adapted model emphasizes how outdoor recreational activities create contexts for reimagining body-self relationships across the spectrum of physical experiences—from temporary recovery to ongoing adaptation of persistent conditions—with implications for rehabilitation professionals, outdoor educators, and healthcare providers. Full article
Show Figures

Figure 1

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 267
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

10 pages, 226 KiB  
Article
Application of White Noise in Minors with Autism Spectrum Disorder
by Miquel Salmerón Medina, Ana Blázquez, Amanda Cercos and Rosa Calvo
Behav. Sci. 2025, 15(7), 988; https://doi.org/10.3390/bs15070988 - 21 Jul 2025
Viewed by 243
Abstract
Individuals with Autism Spectrum Disorder (ASD) often experience sensory hyperreactivities that interfere with daily life activities. White noise, characterized by its uniformity and its ability to mask environmental sounds, may serve as a tool to improve sensory and emotional regulation in children with [...] Read more.
Individuals with Autism Spectrum Disorder (ASD) often experience sensory hyperreactivities that interfere with daily life activities. White noise, characterized by its uniformity and its ability to mask environmental sounds, may serve as a tool to improve sensory and emotional regulation in children with ASD. The primary objective was to evaluate the response to white noise in improving self-regulation in minors with ASD. As a secondary objective, the study assessed whether there were differences in the response to white noise between patients with ASD and those with ASD and Intellectual Disability (ID). This study was conducted in the Child and Adolescent Psychiatry and Psychology Department of Hospital Clínic of Barcelona. A total of 54 patients, aged between 7 and 17 years, were included. The patients were divided into two groups: Group 1 consisted of patients diagnosed with ASD (n = 21), and Group 2 included patients diagnosed with ASD and ID (n = 33). White noise was offered to the patients, and their response was evaluated before and after the exposure using the Conners Teacher Rating Scale. Overall, the response to white noise in the sample was positive, with a significant difference in scores on the Conners Teacher Rating Scale (p < 0.001). When dividing the sample into the ASD group and the ASD + ID group, it was observed that the ASD + ID group tolerated white noise better and had a longer exposure time, although both groups showed improved scores on the Conners Teacher Rating Scale. White noise may be a valuable tool to enhance well-being in individuals with ASD, reduce motor restlessness, and increase attention span and emotional stability. However, its effectiveness varies across individuals. It is recommended to tailor its use to individual needs and to extend future research by incorporating physiological measures and larger sample sizes. Full article
20 pages, 552 KiB  
Review
Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review
by Constantin Radu Vrabie, Andreea Ioana Parosanu and Cornelia Nitipir
Medicina 2025, 61(7), 1307; https://doi.org/10.3390/medicina61071307 - 20 Jul 2025
Viewed by 243
Abstract
Background and Objectives: Urothelial bladder carcinoma includes a spectrum of malignant lesions with heterogeneous molecular, biological, and clinical features and a variable risk of progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive disease (MIBC) and ultimately to metastatic urothelial carcinoma (mUC). Sarcopenia, [...] Read more.
Background and Objectives: Urothelial bladder carcinoma includes a spectrum of malignant lesions with heterogeneous molecular, biological, and clinical features and a variable risk of progression from non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive disease (MIBC) and ultimately to metastatic urothelial carcinoma (mUC). Sarcopenia, a condition secondary to a catabolic state, is characterized by progressive loss of skeletal muscle mass and function and is highly prevalent across all stages of bladder cancer. This review aims to synthesize current evidence regarding the clinical impact of sarcopenia and its dynamic changes throughout the disease course. Materials and Methods: A narrative literature review was conducted using PubMed, Scopus, and Cochrane databases, incorporating the most relevant published sources. Search terms included “bladder carcinoma”, “sarcopenia”, “body composition”, “NMIBC”, and “MIBC”. Case reports and congress abstracts were excluded. Results: In NMIBC treated with intravesical Bacillus Calmette–Guérin (BCG), sarcopenia has been shown to have a negative predictive value in some studies. Among patients receiving neoadjuvant chemotherapy (NAC) for MIBC, sarcopenia has been associated with increased toxicity, dose reductions, and treatment delays. In the context of radical surgery, sarcopenia correlates with increased postoperative mortality and a higher rate of severe complications. In mUC, low muscle mass is a negative prognostic factor regardless of treatment type and is associated with chemotherapy-related hematologic toxicity, although it does not appear to predict immune-related adverse events (irAEs). Conclusions: Sarcopenia is a highly prevalent and clinically relevant phenotype of urothelial bladder cancer patients, impacting prognosis, treatment response, and chemotherapy toxicity. Incorporating sarcopenia with other relevant components of body composition (BC) and systemic inflammatory markers may facilitate the development of more robust risk scores. Current evidence is primarily limited by the retrospective design of most studies. Future prospective research is needed to clarify the prognostic role of sarcopenia and support its integration into routine clinical decision-making. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

19 pages, 2360 KiB  
Article
Novel N-Alkyl 3-(3-Benzyloxyquinoxalin-2-yl) Propanamides as Antiproliferative Agents: Design, Synthesis, In Vitro Testing, and In Silico Mechanistic Study
by Samar A. Abubshait
Molecules 2025, 30(14), 3025; https://doi.org/10.3390/molecules30143025 - 18 Jul 2025
Viewed by 401
Abstract
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline [...] Read more.
A series of eleven new N-alkyl 3-(3-benzyloxyquinoxalin-2-yl) propanamides were prepared based on the azide coupling of 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide with a variety of primary and secondary amines and the consequent conjunction of a broad spectrum of lipophile and hydrophile characters to a quinoxaline ring system. 3-(3-benzyloxyquinoxalin-2-yl) propanhydrazide was produced in a two-step reaction of methyl 3-(3-oxo-3,4-dihydroquinoxalin-2-yl) propanoate with benzyl chloride followed by the hydrazinolysis of the corresponding ester. The antiproliferative activity of the compounds was tested in various cancer cell lines, including PC-3, Hela, HCT-116, and MCF-7; they showed a wide spectrum of activity for most of the tested compounds. Compound 6k exhibited the highest activity, which was comparable to that of doxorubicin, with IC50 (µM) values of 12.17 ± 0.9, 9.46 ± 0.7, 10.88 ± 0.8, and 6.93 ± 0.4 µM compared to 8.87 ± 0.6, 5.57 ± 0.4, 5.23 ± 0.3, and 4.17 ± 0.2 µM for doxorubicin against Hela, HCT-116, and MCF-7, respectively. The in silico mechanistic study revealed the inhibition of HDAC-6 through the binding of the unique zinc finger ubiquitin-binding domain (HDAC6 Zf-UBD). The docking results showed a specific binding pattern that emphasized the crucial role of the quinoxaline ring and its substituents. The newly developed derivatives were evaluated for antitumor effects against four cancer cell lines PC-3, HeLa, HCT-116, and MCF-7. This research led to the identification of a quinoxaline-based scaffold exhibiting broad-spectrum antiproliferative activity and a distinct mechanism involving binding to HDAC6 Zf-UBD. The findings highlight its potential for further optimization and preclinical studies to support future anticancer drug development. Full article
(This article belongs to the Special Issue Molecular Docking in Drug Discovery, 2nd Edition)
Show Figures

Figure 1

23 pages, 1102 KiB  
Review
Protective Potential of Satureja montana-Derived Polyphenols in Stress-Related Central Nervous System Disorders, Including Dementia
by Stela Dragomanova, Lyubka Tancheva, Silviya Abarova, Valya B. Grigorova, Valentina Gavazova, Dana Stanciu, Svetlin Tzonev, Vladimir Prandjev and Reni Kalfin
Curr. Issues Mol. Biol. 2025, 47(7), 556; https://doi.org/10.3390/cimb47070556 - 17 Jul 2025
Viewed by 264
Abstract
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental [...] Read more.
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental health is affected by the nature and quality of dietary consumption. Results: Ethnopharmacological research underscores the potential of SM in influencing various chronic ailments, including depression and anxiety. This plant is distinguished by a rich variety of secondary metabolites that display a broad spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, antiviral, and antifungal effects. Particularly, two of its active phenolic compounds, rosmarinic acid and carvacrol, reveal notable anxiolytic and antidepressive properties. This review aims to explore the capacity of SM to improve mental health through its plentiful phenolic components. Recent studies indicate their efficacy in addressing Alzheimer’s-type dementia. A notable correlation exists among depression, anxiety, and cognitive decline, which includes dementia. Considering that Alzheimer’s disease (AD) is a multifaceted condition, it requires multi-targeted therapeutic strategies for both prevention and management. Conclusions: Satureja montana is recognized as potential candidate for both the prevention and management of various mental health disorders, including dementia. Full article
Show Figures

Graphical abstract

15 pages, 3505 KiB  
Article
Far-Red Component Enhances Paramylon Production in Photoautotrophic Euglena gracilis
by Zhaida I. Aguilar-Gonzalez, Anaiza Rico-Luna, Tóshiko Takahashi-Íñiguez and Héctor V. Miranda-Astudillo
Bioengineering 2025, 12(7), 763; https://doi.org/10.3390/bioengineering12070763 - 15 Jul 2025
Viewed by 430
Abstract
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis [...] Read more.
In recent years, microalgae have gained significant biotechnological importance as a sustainable source of various metabolites of industrial interest. Among these, paramylon, a polysaccharide produced by the microalga Euglena gracilis, stands out for its diverse applications in biomedicine and pharmaceuticals. E. gracilis is an adaptable secondary eukaryote capable of growing photoautotrophically, heterotrophically and mixotrophically. During photoautotrophic growth, varying light conditions impact biomass and paramylon production. To investigate the effects of varying illumination more thoroughly, we designed and built a modular photobioreactor that allowed us to simultaneously evaluate the photoautotrophic growth of E. gracilis under twelve different light conditions: seven single-spectrum lights (ultraviolet, royal blue, blue, green, red, far-red, and infrared) and five composite-spectrum lights (3000 K, 10,000 K, and 30,000 K white lights, amber light, and “Full-spectrum” light). The 24-day growing kinetics were recorded, and the growth parameters were calculated for each light regime. Both growth curves and pigment composition present differences attributable to the light regime used for cell culture. Additionally, photosynthetic and respiratory machinery functionality were proven by oximetry. Finally, our results strongly suggest that the far-red component enhances paramylon production during the stationary phase. Full article
(This article belongs to the Special Issue Microalgae Biotechnology and Microbiology: Prospects and Applications)
Show Figures

Graphical abstract

14 pages, 684 KiB  
Article
Diversity and Biological Activity of Secondary Metabolites Produced by the Endophytic Fungus Penicillium ochrochlorae
by Jian Hu and Dan Qin
Fermentation 2025, 11(7), 394; https://doi.org/10.3390/fermentation11070394 - 10 Jul 2025
Viewed by 447
Abstract
In order to investigate bioactive natural products derived from the endophytic fungus Penicillium ochrochloron SWUKD4.1850, a comprehensive study focusing on secondary metabolites was conducted. This research led to the isolation of twenty distinct compounds, including a novel nortriterpenoid (compound 20), alongside nineteen [...] Read more.
In order to investigate bioactive natural products derived from the endophytic fungus Penicillium ochrochloron SWUKD4.1850, a comprehensive study focusing on secondary metabolites was conducted. This research led to the isolation of twenty distinct compounds, including a novel nortriterpenoid (compound 20), alongside nineteen compounds that had been previously characterized (compounds 119). The chemical structures of these compounds were elucidated using spectroscopic techniques and nuclear magnetic resonance (NMR) analyses. Compounds 117 were isolated for the first time as metabolites of P. ochrochloron. Except for compounds 114, significant structural similarity was discerned between the metabolites of the endophytic fungus and those of the host plant. Compound 20 is noted as the inaugural instance of a naturally occurring 27-nor-3,4-secocycloartane schinortriterpenoid, while compound 17 was identified in fungi for the first time. An antifungal assay showed that compound 10 displayed a broader antifungal spectrum and a stronger inhibitory effect towards four important plant pathogens, at inhibitory rates of 74.9 to 85.3%. The in vitro radical scavenging activities of compounds 1, 3, 8, 15, and 16 showed higher antioxidant activity than vitamin C. Moreover, a cytotoxic assay revealed that compound 20 had moderate cytotoxicity against the HL-60, SMMC-7721, and MCF-7 cell lines (IC50 6.5–17.8 μM). Collectively, these findings indicate that P. ochrochloron has abundant secondary metabolite synthesis ability in microbial metabolism and that these metabolites have good biological activity and have the potential to enhance plant disease resistance. Full article
Show Figures

Figure 1

13 pages, 1184 KiB  
Case Report
Reconceptualizing Pediatric Strabismus as a Condition Rooted in Sensory Processing Disorder: A Novel Case-Based Hypothesis
by Mirjana Bjeloš, Ana Ćurić, Mladen Bušić, Katja Rončević and Adrian Elabjer
Children 2025, 12(7), 904; https://doi.org/10.3390/children12070904 - 9 Jul 2025
Viewed by 238
Abstract
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a [...] Read more.
Background/Objectives: A direct link between sensory processing disorder (SPD) and strabismus has not been systematically investigated, though prior studies suggest sensory modulation may influence visual behaviors. Traditional approaches view strabismus through a binary lens—either normal or pathological motor deviation. This report presents a proof-of-concept case suggesting strabismus may represent a neurobehavioral manifestation of sensory processing imbalance, rooted within the broader framework of SPD. Methods: We report a pediatric case marked by episodic monocular eye closure triggered by environmental stimuli, without identifiable ophthalmologic or neurologic pathology. The child’s symptoms were most consistent with sensory over-responsivity (SOR), a subtype of SPD, manifesting as stimulus-bound monocular eye closure and secondary self-regulatory behaviors. Results: We propose the Fusion Dysregulation Hypothesis, suggesting that exotropia and esotropia represent opposing outcomes along a continuum of sensory connectivity: exotropia arising from neural underwiring (hyporesponsivity and fusion instability), and esotropia from overwiring (hyperresponsivity and excessive fusion drive). Our case, marked by sensory hyperresponsivity, showed frequent monocular eye closure that briefly disrupted but did not impair fusion. This suggests an “overwired” binocular system maintaining single vision despite sensory triggers. In early-onset esotropia, such overconnectivity may become maladaptive, leading to sustained convergence. Conversely, autism spectrum disorder, typically associated with hypoconnectivity, may predispose to exotropia through reduced fusion maintenance. Conclusions: These findings highlight the need for interdisciplinary evaluation. We advocate for structured sensory profiling in children presenting with strabismus and, conversely, for ophthalmologic assessment in those diagnosed with SPD. While our findings remain preliminary, they support a bidirectional screening approach and suggest that sensory modulation may play a previously under-recognized role in the spectrum of pediatric strabismus presentations. Full article
Show Figures

Figure 1

Back to TopTop