Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection
Abstract
1. Introduction
2. Results
2.1. Demographics and Clinical Characteristics of Patients
2.2. Microbiology
2.3. Primary Efficacy Outcome
2.3.1. Overall Clinical Deterioration in Standard Group vs. Optimised Group
2.3.2. Clinical Deterioration Stratified by IWGDF/IDSA DFI Classification
2.3.3. Clinical Deterioration Stratified by Presence of Sensitive Gram-Positive Organisms or Polymicrobial Growth of Organisms Isolated
2.3.4. Clinical Deterioration Stratified by MIC of Enterobacterales Isolated
2.4. Secondary Efficacy Outcomes
2.5. Safety Outcomes
3. Discussion
3.1. Results Interpretation and Implications
3.2. Antimicrobial Stewardship
3.3. Limitations
4. Materials and Methods
4.1. Study Design
4.2. Microbiology
4.3. Data Collection
4.4. Primary Efficacy Outcome
4.5. Secondary Efficacy Outcomes
4.6. Safety Outcomes
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Ang, Y.; Yap, C.W.; Saxena, N.; Lin, L.-K.; Heng, B.H. Diabetes-related lower extremity amputations in Singapore. Proc. Singap. Healthc. 2016, 26, 76–80. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Diabetes: The War Continues. 2017. Available online: https:///www.moh.gov.sg/newsroom/diabetes-the-war-continues (accessed on 6 June 2025).
- Agency of Care Effectiveness (ACE) Clinical Guidance: Type 2 Diabetes Mellitus—Personalising Management with Non-Insulin Medications. 2023. Available online: https://www.ace-hta.gov.sg/healthcare-professionals/ace-clinical-guidances/t2dm-personalising-medications (accessed on 6 June 2025).
- Armstrong, D.G.; Tan, T.-W.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers: A Review. JAMA 2023, 330, 62–75. [Google Scholar] [CrossRef]
- Senneville, E.; Albalawi, Z.; Asten, S.A.V.; Abbas, Z.G.; Allison, G.; Aragón-Sánchez, J.; Embil, J.M.; A Lavery, L.; Alhasan, M.; Oz, O.; et al. IWGDF/IDSA Guidelines on the Diagnosis and Treatment of Diabetes-related Foot Infections (IWGDF/IDSA 2023). Clin. Infect. Dis. 2023, 79, 286. [Google Scholar] [CrossRef]
- Citron, D.M.; Goldstein, E.J.C.; Merriam, C.V.; Lipsky, B.A.; Abramson, M.A. Bacteriology of Moderate-to-Severe Diabetic Foot Infections and In Vitro Activity of Antimicrobial Agents. J. Clin. Microbiol. 2007, 45, 2819–2828. [Google Scholar] [CrossRef]
- Gilbert, D.N.; Chambers, H.F.; Saag, M.S.; Pavia, A.T.; Boucher, H.W.; Black, D.; Freedman, D.O.; Kim, K.; Schwartz, B.S. The Sanford Guide to Antimicrobial Therapy 2024, 54th ed.; Antimicrobial Therapy, Inc.: Dallas, TX, USA, 2024. [Google Scholar]
- Thabit, A.K.; Fatani, D.F.; MSBamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef]
- Merchant, S.; Proudfoot, E.M.; Quadri, H.N.; McElroy, H.J.; Wright, W.R.; Gupta, A.; Sarpong, E.M. Risk factors for Pseudomonas aeruginosa infections in Asia-Pacific and consequences of inappropriate initial antimicrobial therapy: A systematic literature review and meta-analysis. J. Glob. Antimicrob Resist. 2018, 14, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Curam® 1000mg + 200mg Powder for Intravenous Solution. Available online: https://www.nps.org.au/assets/medicines/266668a5-1ea5-4fc8-87c2-a96600a1a942.pdf (accessed on 16 July 2025).
- Huttner, A.; Bielicki, J.; Clements, M.N.; Frimodt-Møller, N.; Muller, A.; Paccaud, J.-P.; Mouton, J. Oral amoxicillin and amoxicillin-clavulanic acid: Properties, indications and usage. Clin. Microbiol. Infect. 2020, 26, 871–879. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.0. 2023. Available online: https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=518&cHash=2509b0db92646dffba041406dcc9f20c (accessed on 13 July 2025).
- Narayanan, N.; Mathers, A.J.; Wenzler, E.; Moore, N.M.; Giske, C.G.; Mendes, R.E.; Edelstein, P.H. Amoxicillin-Clavulanate Breakpoints Against Enterobacterales: Rationale for Revision by the Clinical and Laboratory Standards Institute. Clin. Infect. Dis. 2024, 79, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Haeseker, M.; Havenith, T.; Stolk, L.; Neef, C.; Bruggeman, C.; Verbon, A. Is the standard dose of amoxicillin-clavulanic acid sufficient? BMC Pharmacol. Toxicol. 2014, 15, 38. [Google Scholar] [CrossRef]
- CLSI M100-ED35; Performance Standards for Antimicrobial Susceptibility Testing. 35th ed. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025.
- The European Committee on Antimicrobial Susceptibility Testing. Dosages Used to Define Breakpoints. Version 13.0. 2023. Available online: https://www.eucast.org/eucast_news/news_singleview?tx_ttnews%5Btt_news%5D=518&cHash=2509b0db92646dffba041406dcc9f20c (accessed on 16 July 2025).
- Gregory, J.; Huynh, B.; Taylor, B.; Korgaonkar-Cherala, C.; Garrison, G.; Ata, A.; Sorum, P. High-Dose vs Standard-Dose Amoxicillin Plus Clavulanate for Adults with Acute Sinusitis: A Randomised Clinical Trial. JAMA Netw. Open 2021, 4, e212713. [Google Scholar] [CrossRef]
- Cheng, A.C.; Chierakul, W.; Chaowagul, W.; Chetchotisakd, P.; Limmathurotsakul, D.; Dance, D.A.B.; Peacock, S.J.; Currie, B.J. Consensus Guidelines for Dosing of Amoxicillin-Clavulanate in Melioidosis. Am. J. Trop. Med. Hyg. 2008, 78, 208–209. [Google Scholar] [CrossRef] [PubMed]
- deLemos, A.S.; Ghabril, M.; Rockey, D.C.; Gu, J.; Barnhart, H.X.; Fontana, R.J.; Kleiner, D.E.; Bonkovsky, H.L.; Drug-Induced Liver Injury Network (DILIN). Amoxicillin-Clavulanate-Induced Liver Injury. Dig. Dis. Sci. 2016, 61, 2406–2416. [Google Scholar] [CrossRef]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, Amoxicillin-Clavulanate; 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548517/ (accessed on 5 June 2025).
- Huang, H.; Li, L.; Wu, M.; Liu, Z.; Zhao, Y.; Peng, J.; Ren, X.; Chen, S. Antibiotics and antibiotic-associated diarrhea: A real-world disproportionality study of the FDA adverse event reporting system from 2004 to 2022. BMC Pharmacol. Toxicol. 2023, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Valverde, M.; Valiente-Mendez, A.; Torres, E.; Almirante, B.; Gómez-Zorrilla, S.; Borrell, N.; Aller-García, A.I.; Gurgui, M.; Almela, M.; Sanz, M.; et al. MIC of amoxicillin/clavulanate according to CLSI and EUCAST: Discrepancies and clinical impact in patients with bloodstream infections due to Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 1478–1487. [Google Scholar] [CrossRef]
- Primadhi, R.A.; Septrina, R.; Hapsari, P.; Kusumawati, M. Amputation in diabetic foot ulcer: A treatment dilemma. World J. Orthop. 2023, 14, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Chua, N.G.; Loo, L.; Hee, D.K.H.; Lim, T.P.; Ng, T.M.; Hoo, G.S.R.; Soong, J.L.; Ong, J.C.L.; Tang, S.S.L.; Zhou, Y.P.; et al. Therapeutic drug monitoring of meropenem and piperacillin-tazobactam in the Singapore critically ill population—A prospective, multi-center, observational study (BLAST 1). J. Crit. Care 2022, 68, 107–113. [Google Scholar] [CrossRef]
- Marti, C.; Stirnemann, J.; Lescuyer, P.; Tonoli, D.; von Dach, E.; Huttner, A. Therapeutic drug monitoring and clinical outcomes in severely ill patients receiving amoxicillin: A single-centre prospective cohort study. Int. J. Antimicrob. Agents 2022, 59, 106601. [Google Scholar] [CrossRef]
- McFarland, L.V. Antibiotic-associated diarrhea: Epidemiology, trends and treatment. Future Microbiol. 2008, 3, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health. 2024, 2, 100081. [Google Scholar] [CrossRef]
- Dhaese, S.A.M.; Hoste, E.A.; De Waele, J.J. Why We May Need Higher Doses of Beta-Lactam Antibiotics: Introducing the ‘Maximum Tolerable Dose’. Antibiotics 2022, 11, 889. [Google Scholar] [CrossRef]
- Pereira, J.G.; Fernandes, J.; Duarte, A.R.; Fernandes, S.M. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics 2022, 11, 1839. [Google Scholar] [CrossRef]
- Tilanus, A.; Drusano, G. Optimising the Use of Beta-Lactam Antibiotics in Clinical Practice: A Test of Time. Open Forum Infect. Dis. 2023, 10, ofad305. [Google Scholar] [CrossRef]
- Altmann, D.; Waibel, F.W.A.; Forgo, G.; Grigorean, A.; Lipsky, B.A.; Uçkay, I.; Schöni, M. Timing of Revascularization and Parenteral Antibiotic Treatment Associated with Therapeutic Failures in Ischemic Diabetic Foot Infections. Antibiotics 2023, 12, 685. [Google Scholar] [CrossRef] [PubMed]
- McDermott, K.; Fang, M.; Boulton, A.J.M.; Selvin, E.; Hicks, C.W. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care 2023, 46, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Hurley, H.; Kellegher, E.; Gallen, T.; Cornally, D.; Williams, N.; Feeney, E.; Dowdall, J.; Barry, M.C. Development of a coor-dinated acute diabetic foot pathway for management of acute diabetic foot infection and ulceration. Ir. J. Med. Sci. 2023, 192, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Kaukonen, K.M.; Bailey, M.; Pilcher, D.; Cooper, D.J.; Bellomo, R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N. Engl. J. Med. 2015, 372, 1629–1638. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Drug-Induced liver injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef]
- Cymbal, M.; Chatterjee, A.; Baggott, B.; Auron, M. Management of Clostridioides difficile Infection: Diagnosis, Treatment, and Future Perspectives. Am. J. Med. 2024, 137, 571–576. [Google Scholar] [CrossRef]
- Johnson, S.; Lavergne, V.; Skinner, A.M.; Gonzales-Luna, A.J.; Garey, K.W.; Kelly, C.P.; Wilcox, M.H. Clinical Practice Guideline by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA): 2021 Focused Update Guidelines on Management of Clostridioides difficile Infection in Adults. Clin. Infect. Dis. 2021, 73, e1029–e1044. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Naranjo, C.A.; Busto, U.; Sellars, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A method for estimating the probability of adverse drug reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Standard Group IVCA 1.2 g Q8H (n = 94) | Optimised Group IVCA 1.2 g Q6H (n = 95) | p-Value |
---|---|---|---|
Age (years) | 65 (54–70) | 60 (52–64) | <0.05 |
Male | 69 (73.4%) | 69 (72.6%) | 0.91 |
Actual body weight (kg) | 75 (67–87) | 79 (71–88) | 0.13 |
BMI range (kg/m2) | |||
≤27.4 | 54 (57.5%) | 48 (50.5%) | 0.34 |
27.5–29.9 | 13 (13.8%) | 22 (23.2%) | 0.10 |
≥30 | 27 (28.7%) | 25 (26.3%) | 0.71 |
Smoker | 24 (25.5%) | 27 (28.4%) | 0.66 |
HbA1c within last 3 months (%) | 7.8 (7–9.2) | 8.9 (7–10.3) | 0.09 |
IWGDF/IDSA DFI classification | |||
2 | 25 (26.6%) | 22 (23.2%) | 0.59 |
3 | 22 (23.4%) | 14 (14.7%) | 0.13 |
3 (Osteomyelitis) | 29 (30.9%) | 31 (32.6%) | 0.79 |
4 | 8 (8.5%) | 15 (15.8%) | 0.13 |
4 (Osteomyelitis) | 10 (10.6%) | 13 (13.7%) | 0.52 |
≥1 organism(s) isolated in initial cultures | 75 (79.8%) | 81 (85.3%) | 0.32 |
≥1 Gram (+) organisms ¥ | 56 (58.9%) | 65 (68.4%) | 0.21 |
Arcanobacterium | 0 (0%) | 6 (6.3%) | <0.05 |
Sensitive to co-amoxiclav | 0 (0%) | 2 (2.1%) | 0.50 |
Intermediate to co-amoxiclav | 0 (0%) | 4 (4.2%) | 0.12 |
Corynebacterium | 6 (6.4%) | 6 (6.3%) | 0.99 |
Intermediate to co-amoxiclav | 5 (5.3%) | 6 (6.3%) | 0.77 |
Resistant to co-amoxiclav | 1 (1.1%) | 0 (0%) | 0.50 |
Enterococcus | 19 (20.2%) | 10 (10.5%) | 0.07 |
Resistant to co-amoxiclav | 3 (3.2%) | 3 (3.2%) | >0.99 |
≥1 Staphylococcus ¥ | 33 (35.1%) | 40 (42.1%) | 0.32 |
CoNS | 8 (8.5%) | 7 (11.8%) | 0.77 |
Resistant to co-amoxiclav | 0 (0%) | 1 (1.1%) | >0.99 |
MRSA | 5 (5.3%) | 6 (9.8%) | 0.77 |
MSSA | 22 (23.4%) | 30 (31.6%) | 0.21 |
Streptococcus | 21 (22.3%) | 36 (37.9%) | <0.05 |
Other Gram (+) organisms * | 0 (0%) | 3 (3.2%) | 0.25 |
≥1 Gram (−) organisms ¥ | 60 (63.8%) | 57 (60%) | 0.59 |
≥1 Enterobacterales ** ¥ | 51 (54.3%) | 46 (48.4%) | 0.42 |
MIC ≤ 2 | 21 (22.3%) | 15 (16.0%) | 0.25 |
MIC 4–8 | 19 (20.2%) | 14 (14.7%) | 0.32 |
MIC > 8 | 27 (28.7%) | 24 (25.3%) | 0.59 |
Unknown MIC | 3 (3.2%) | 3 (3.2%) | 0.99 |
Non-fermenters | 16 (17.0%) | 11 (11.6%) | 0.29 |
Pseudomonas | 14 (14.9%) | 11 (11.6%) | 0.50 |
Stenotrophomonas | 2 (2.1%) | 0 (0%) | 0.25 |
Anaerobes | 8 (8.5%) | 12 (12.6%) | 0.36 |
Fungi | 2 (2.1%) | 3 (3.2%) | >0.99 |
Duration of IVCA therapy (days) | 6 (5–8) | 6 (5–9) | 0.76 |
Underwent lower limb debridement | 56 (59.6%) | 49 (51.6%) | 0.27 |
Efficacy Outcomes | Standard Group IVCA 1.2 g Q8H (n = 94) | Optimised Group IVCA 1.2 g Q6H (n = 95) | p-Value |
---|---|---|---|
Clinical response at end of IVCA therapy | |||
Clinical deterioration | 30 (31.9%) | 16 (16.8%) | <0.05 |
≥1 Enterobacterale(s) isolated from culture | 23 (76.7%) | 10 (62.5%) | 0.31 |
Empiric escalation of IVCA therapy | 14 (14.9%) | 6 (6.3%) | 0.06 |
30-day readmission (from day of discharge) | 28 (29.8%) | 18 (18.9%) | 0.08 |
Readmission due to DFI | 25 (26.6%) | 11 (11.6%) | <0.05 |
30-day mortality (from start of IVCA therapy) | 5 (5.3%) | 0 (0%) | <0.05 |
Mortality due to DFI | 1 (1.1%) | 0 (0%) | 0.50 |
Length of hospitalisation due to DFI (days) | 11 (6–19) | 9 (5–15) | 0.13 |
Lower limb amputations performed | 44 (46.8%) | 42 (44.2%) | 0.72 |
Standard Group IVCA 1.2 g Q8H (n = 94) | Optimised Group IVCA 1.2 g Q6H (n = 95) | p-Value | |
---|---|---|---|
IWGDF/IDSA DFI classification | |||
2 (Mild) | 25 (26.6%) | 22 (23.2%) | 0.30 |
Clinical improvement | 25 (100%) | 22 (100%) | >0.99 |
3 (Moderate) | 51 (54.2%) | 45 (47.4%) | 0.34 |
Clinical deterioration | 20 (39.2%) | 9 (20.0%) | <0.05 |
Clinical improvement | 31 (60.8%) | 36 (80.0%) | <0.05 |
4 (Severe) | 18 (19.1%) | 28 (29.5%) | 0.10 |
Clinical deterioration | 10 (55.6%) | 7 (25.0%) | <0.05 |
Clinical improvement | 8 (44.4%) | 21 (75.0%) | <0.05 |
≥1 Gram (+) organism(s) isolated from culture | 56 (58.9%) | 65 (68.4%) | 0.21 |
≥1 sensitive Gram (+) organism(s) to IVCA * | 43 (45.7%) | 53 (55.8%) | 0.17 |
Clinical deterioration | 18 (41.9%) | 8 (15.1%) | <0.05 |
Clinical improvement | 25 (58.1%) | 45 (84.9%) | <0.05 |
≥1 Enterobacterale(s) isolated from culture ** | 51 (54.3%) | 49 (51.6%) | 0.71 |
MIC ≤ 2 µg/mL | 21 (22.3%) | 15 (16.0%) | 0.25 |
Clinical deterioration | 7 (33.3%) | 2 (13.3%) | 0.25 |
Clinical improvement | 14 (66.7%) | 13 (86.7%) | 0.17 |
MIC 4–8 µg/mL | 19 (20.2%) | 14 (14.7%) | 0.32 |
Clinical deterioration | 4 (21.1%) | 4 (28.6%) | 0.70 |
Clinical improvement | 15 (78.9%) | 10 (71.4%) | 0.62 |
MIC > 8 µg/mL | 27 (28.7%) | 23 (24.2%) | 0.48 |
Clinical deterioration | 20 (74.1%) | 6 (26.1%) | <0.05 |
Clinical improvement | 7 (25.9%) | 17 (73.9%) | <0.05 |
Unknown MIC | 3 (3.2%) | 3 (3.2%) | >0.99 |
Clinical deterioration | 2 (66.7%) | 1 (33.3%) | >0.99 |
Clinical improvement | 1 (33.3%) | 2 (66.7%) | >0.99 |
Polymicrobial organisms isolated from culture | 56 (59.6%) | 55 (57.9%) | 0.82 |
Clinical deterioration | 25 (44.6%) | 12 (21.8%) | <0.05 |
Clinical improvement | 31 (55.4%) | 43 (78.2%) | <0.05 |
Safety Outcomes | Standard Group IVCA 1.2 g Q8H (n = 94) | Optimised Group IVCA 1.2 g Q6H (n = 95) | p-Value |
---|---|---|---|
Hepatotoxicity | 2 (2.1%) | 1 (1.1%) | 0.62 |
Diarrhoea | 7 (7.4%) | 10 (10.5%) | 0.46 |
Clostridioides difficile infection present | 2 (28.6%) | 0 (0%) | 0.15 |
Renal Toxicity | 0 (0%) | 0 (0%) | >0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.J.; Zhou, P.Y.; Lim, J.L.; Liu, F.; Kwa, L.H.A. Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection. Antibiotics 2025, 14, 758. https://doi.org/10.3390/antibiotics14080758
Tan JJ, Zhou PY, Lim JL, Liu F, Kwa LHA. Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection. Antibiotics. 2025; 14(8):758. https://doi.org/10.3390/antibiotics14080758
Chicago/Turabian StyleTan, Jun Jie, Peijun Yvonne Zhou, Jia Le Lim, Fang Liu, and Lay Hoon Andrea Kwa. 2025. "Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection" Antibiotics 14, no. 8: 758. https://doi.org/10.3390/antibiotics14080758
APA StyleTan, J. J., Zhou, P. Y., Lim, J. L., Liu, F., & Kwa, L. H. A. (2025). Optimising Regimen of Co-Amoxiclav (ORCA)—The Safety and Efficacy of Intravenous Co-Amoxiclav at Higher Dosing Frequency in Patients with Diabetic Foot Infection. Antibiotics, 14(8), 758. https://doi.org/10.3390/antibiotics14080758