Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Role of Sarcopenia in NMIBC
3.2. Role of Sarcopenia in MIBC Treated with NAC
3.3. Impact of Sarcopenia on Surgical and Oncological Outcomes in MIBC
3.4. Impact of Sarcopenia in Advanced Urothelial Bladder Carcinoma
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NMIBC | non-muscle-invasive bladder cancer |
mUC | metastatic urothelial carcinoma |
MIBC | muscle-invasive disease |
BCG | Bacillus Calmette–Guérin |
NAC | neoadjuvant chemotherapy |
irAEs | immune-related adverse events |
BMI | body mass index |
BC | body composition |
HR | hazard ratio |
SMA | skeletal muscle area |
SMI | skeletal muscle index |
TURBT | Transurethral resection of bladder tumor |
OS | overall survival |
RFS | relapse-free survival |
CSS | cancer-specific survival |
FMI | fat mass index |
VFI | visceral fat index |
References
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. Available online: https://www.mdpi.com/2072-6694/15/2/485 (accessed on 24 May 2025). [CrossRef] [PubMed]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Baracos, V.E.; Arribas, L. Sarcopenic obesity: Hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann. Oncol. 2018, 29, ii1–ii9. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0923753419316795 (accessed on 24 May 2025). [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. Available online: https://academic.oup.com/ageing/article/48/1/16/5126243 (accessed on 24 May 2025). [CrossRef]
- Anjanappa, M.; Corden, M.; Green, A.; Roberts, D.; Hoskin, P.; McWilliam, A.; Choudhury, A. Sarcopenia in cancer: Risking more than muscle loss. Tech. Innov. Patient Support Radiat. Oncol. 2020, 16, 50–57. Available online: https://linkinghub.elsevier.com/retrieve/pii/S240563242030024X (accessed on 24 May 2025). [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. Available online: https://ascopubs.org/doi/10.1200/JCO.2012.45.2722 (accessed on 24 May 2025). [CrossRef]
- Prado, C.M.; Lieffers, J.R.; McCargar, L.J.; Reiman, T.; Sawyer, M.B.; Martin, L.; Baracos, V.E. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: A population-based study. Lancet Oncol. 2008, 9, 629–635. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1470204508701530 (accessed on 24 May 2025). [CrossRef]
- Hartmann, V.; Engelmann, S.U.; Pickl, C.; Haas, M.; Kälble, S.; Goßler, C.; Eckl, C.; Hofmann, A.; Pichler, R.; Burger, M.; et al. Impact of sarcopenia and fat distribution on outcomes in penile cancer. Sci. Rep. 2024, 14, 25422. Available online: https://www.nature.com/articles/s41598-024-73602-6 (accessed on 25 May 2025). [CrossRef]
- Matulewicz, R.S.; Steinberg, G.D. Non–muscle-invasive Bladder Cancer: Overview and Contemporary Treatment Landscape of Neoadjuvant Chemoablative Therapies. Rev. Urol. 2020, 22, 43–51. [Google Scholar]
- Alam, S.M.; Larson, M.; Srinivasan, P.; Genz, N.; Fleer, R.; Sardiu, M.; Thompson, J.; Lee, E.; Hamilton-Reeves, J.; Wulff-Burchfield, E. Evaluation of sarcopenia in patients receiving intravesical Bacillus Calmette-Guérin for non-muscle invasive bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2023, 41, 431.e15–431.e20. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1078143923001989 (accessed on 2 February 2025). [CrossRef] [PubMed]
- Soria, F.; D’Andrea, D.; Barale, M.; Gust, K.M.; Pisano, F.; Mazzoli, S.; De Bellis, M.; Rosazza, M.; Livoti, S.; Dutto, D.; et al. Sarcopenia Predicts Disease Progression in Patients with T1 High-grade Non–muscle-invasive Bladder Cancer Treated with Adjuvant Intravesical Bacillus Calmette-Guérin: Implications for Decision-making? Eur. Urol. Open Sci. 2023, 50, 17–23. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2666168323000964 (accessed on 2 February 2025). [CrossRef] [PubMed]
- Liu, P.; Chen, S.; Gao, X.; Liang, H.; Sun, D.; Shi, B.; Zhang, Q.; Guo, H. Preoperative sarcopenia and systemic immune-inflammation index can predict response to intravesical Bacillus Calmette-Guerin instillation in patients with non-muscle invasive bladder cancer. Front. Immunol. 2022, 13, 1032907. Available online: https://www.frontiersin.org/articles/10.3389/fimmu.2022.1032907/full (accessed on 2 February 2025). [CrossRef] [PubMed]
- Huang, L.K.; Lin, Y.C.; Chuang, H.H.; Chuang, C.K.; Pang, S.T.; Wu, C.T.; Chang, Y.-H.; Yu, K.-J.; Lin, P.-H.; Kan, H.-C.; et al. Body composition as a predictor of oncological outcome in patients with non-muscle-invasive bladder cancer receiving intravesical instillation after transurethral resection of bladder tumor. Front. Oncol. 2023, 13, 1180888. Available online: https://www.frontiersin.org/articles/10.3389/fonc.2023.1180888/full (accessed on 7 July 2025). [CrossRef]
- Yin, M.; Joshi, M.; Meijer, R.P.; Glantz, M.; Holder, S.; Harvey, H.A.; Kaag, M.; van de Putte, E.E.F.; Horenblas, S.; Drabick, J.J. Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer: A Systematic Review and Two-Step Meta-Analysis. Oncologist 2016, 21, 708–715. Available online: https://academic.oup.com/oncolo/article/21/6/708/6401464 (accessed on 31 March 2025). [CrossRef]
- Stangl-Kremser; Mari, A.; D’Andrea, D.; Kimura, S.; Resch, I.; Shariat, S.F.; Klatte, T. Sarcopenia as a Predictive Factor for Response to Upfront Cisplatin-Based Chemotherapy in Patients with Muscle-Invasive Urothelial Bladder Cancer. Urol. Int. 2018, 101, 197–200. Available online: https://karger.com/UIN/article/doi/10.1159/000489013 (accessed on 9 February 2025). [CrossRef]
- Lyon, T.D.; Frank, I.; Takahashi, N.; Boorjian, S.A.; Moynagh, M.R.; Shah, P.H.; Tarrell, R.F.; Cheville, J.C.; Viers, B.R.; Tollefson, M.K. Sarcopenia and Response to Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer. Clin. Genitourin. Cancer 2019, 17, 216–222.e5. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1558767319301028 (accessed on 9 February 2025). [CrossRef]
- Regnier, P.; De Luca, V.; Brunelle, S.; Sfumato, P.; Walz, J.; Rybikowski, S.; Maubon, T.; Branger, N.; Fakhfakh, S.; Durand, M.; et al. Impact of sarcopenia status of muscle-invasive bladder cancer patients on kidney function after neoadjuvant chemotherapy. Minerva Urol. Nephrol. 2021, 73, 215–224. Available online: https://www.minervamedica.it/index2.php?show=R19Y2021N02A0215 (accessed on 9 February 2025). [CrossRef]
- Rimar, K.J.; Glaser, A.P.; Kundu, S.; Schaeffer, E.M.; Meeks, J.; Psutka, S.P. Changes in Lean Muscle Mass Associated with Neoadjuvant Platinum-Based Chemotherapy in Patients with Muscle Invasive Bladder Cancer. Bladder Cancer 2018, 4, 411–418. Available online: https://journals.sagepub.com/doi/10.3233/BLC-180188 (accessed on 9 February 2025). [CrossRef]
- Zargar, H.; Almassi, N.; Kovac, E.; Ercole, C.; Remer, E.; Rini, B.; Stephenson, A.; Garcia, J.A.; Grivas, P. Change in Psoas Muscle Volume as a Predictor of Outcomes in Patients Treated with Chemotherapy and Radical Cystectomy for Muscle-Invasive Bladder Cancer. Bladder Cancer 2017, 3, 57–63. Available online: https://journals.sagepub.com/doi/10.3233/BLC-160080?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed (accessed on 9 February 2025). [CrossRef]
- MacDonald, L.; Rendon, R.A.; Thana, M.; Wood, L.; MacFarlane, R.; Bell, D.; Duplisea, J.; Mason, R. An in-depth analysis on the effects of body composition in patients receiving neoadjuvant chemotherapy for urothelial cell carcinoma. Can. Urol. Assoc. J. 2024, 18, 180–184. Available online: https://cuaj.ca/index.php/journal/article/view/8542 (accessed on 9 February 2025). [CrossRef] [PubMed]
- Diamantopoulos, L.N.; Ngo, S.; Maldonado, R.; O’Malley, R.B.; Laidlaw, G.; Fintelmann, F.J.; Holt, S.K.; Gore, J.L.; Schade, G.R.; Lin, D.W.; et al. Associations between baseline body composition and cancer-specific mortality following neoadjuvant chemotherapy and radical cystectomy for bladder cancer. J. Clin. Oncol. 2020, 38, e17015. [Google Scholar] [CrossRef]
- Aminoltejari, K.; Black, P.C. Radical cystectomy: A review of techniques, developments and controversies. Transl. Androl. Urol. 2020, 9, 3073–3081. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, S.; Ghoreifi, A.; Douglawi, A.; Ahmadi, H.; Miranda, G.; Cai, J.; Aron, M.; Schuckman, A.; Desai, M.; Gill, I.; et al. Perioperative mortality for radical cystectomy in the modern Era: Experience from a tertiary referral center. Int. Braz. J. Urol. 2023, 49, 351–358. [Google Scholar] [CrossRef]
- Maibom, S.L.; Joensen, U.N.; Poulsen, A.M.; Kehlet, H.; Brasso, K.; Røder, M.A. Short-term morbidity and mortality following radical cystectomy: A systematic review. BMJ Open 2021, 11, e043266. Available online: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2020-043266 (accessed on 10 April 2025). [CrossRef]
- Razdan, S.; Sljivich, M.; Pfail, J.; Wiklund, P.K.; Sfakianos, J.P.; Waingankar, N. Predicting morbidity and mortality after radical cystectomy using risk calculators: A comprehensive review of the literature. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 109–120. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1078143920304683 (accessed on 10 April 2025). [CrossRef]
- Saitoh-Maeda, Y.; Kawahara, T.; Miyoshi, Y.; Tsutsumi, S.; Takamoto, D.; Shimokihara, K.; Hayashi, Y.; Mochizuki, T.; Ohtaka, M.; Nakamura, M.; et al. A low psoas muscle volume correlates with a longer hospitalization after radical cystectomy. BMC Urol. 2017, 17, 87. Available online: http://bmcurol.biomedcentral.com/articles/10.1186/s12894-017-0279-2 (accessed on 9 February 2025). [CrossRef]
- Ying, T.; Borrelli, P.; Edenbrandt, L.; Enqvist, O.; Kaboteh, R.; Trägårdh, E.; Ulén, J.; Hayashi, Y.; Kjölhede, H. Automated artificial intelligence-based analysis of skeletal muscle volume predicts overall survival after cystectomy for urinary bladder cancer. Eur. Radiol. Exp. 2021, 5, 50. Available online: https://eurradiolexp.springeropen.com/articles/10.1186/s41747-021-00248-8 (accessed on 9 February 2025). [CrossRef]
- Smith, A.B.; Deal, A.M.; Yu, H.; Boyd, B.; Matthews, J.; Wallen, E.M.; Pruthi, R.S.; Woods, M.E.; Muss, H.; Nielsen, M.E. Sarcopenia as a Predictor of Complications and Survival Following Radical Cystectomy. J. Urol. 2014, 191, 1714–1720. Available online: http://www.jurology.com/doi/10.1016/j.juro.2013.12.047 (accessed on 9 February 2025). [CrossRef]
- Psutka, S.P.; Carrasco, A.; Schmit, G.D.; Moynagh, M.R.; Boorjian, S.A.; Frank, I.; Stewart, S.B.; Thapa, P.; Tarrell, R.F.; Cheville, J.C.; et al. Sarcopenia in patients with bladder cancer undergoing radical cystectomy: Impact on cancer-specific and all-cause mortality. Cancer 2014, 120, 2910–2918. Available online: https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/cncr.28798 (accessed on 9 February 2025). [CrossRef]
- Ha, Y.S.; Kim, S.W.; Kwon, T.G.; Chung, S.K.; Yoo, E.S. Decrease in skeletal muscle index one year after radical cystectomy as a prognostic indicator in patients with urothelial bladder cancer. Int. Braz. J. Urol. 2019, 45, 686–694. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-55382019000400686&tlng=en (accessed on 9 February 2025). [CrossRef]
- Yamashita, S.; Iguchi, T.; Koike, H.; Wakamiya, T.; Kikkawa, K.; Kohjimoto, Y.; Hara, I. Impact of preoperative sarcopenia and myosteatosis on prognosis after radical cystectomy in patients with bladder cancer. Int. J. Urol. 2021, 28, 757–762. Available online: https://onlinelibrary.wiley.com/doi/10.1111/iju.14569 (accessed on 9 February 2025). [CrossRef]
- Hirasawa, Y.; Nakashima, J.; Yunaiyama, D.; Sugihara, T.; Gondo, T.; Nakagami, Y.; Horiguchi, Y.; Ohno, Y.; Namiki, K.; Ohori, M.; et al. Sarcopenia as a Novel Preoperative Prognostic Predictor for Survival in Patients with Bladder Cancer Undergoing Radical Cystectomy. Ann. Surg. Oncol. 2016, 23 Suppl. 5, 1048–1054. Available online: http://link.springer.com/10.1245/s10434-016-5606-4 (accessed on 9 February 2025). [CrossRef]
- Mayr, R.; Fritsche, H.M.; Zeman, F.; Reiffen, M.; Siebertz, L.; Niessen, C.; Pycha, A.; van Rhijn, B.W.G.; Burger, M.; Gierth, M. Sarcopenia predicts 90-day mortality and postoperative complications after radical cystectomy for bladder cancer. World J. Urol. 2018, 36, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, S.U.; Pickl, C.; Haas, M.; Kaelble, S.; Hartmann, V.; Firsching, M.; Lehmann, L.; Gužvić, M.; van Rhijn, B.W.G.; Breyer, J.; et al. Body Composition of Patients Undergoing Radical Cystectomy for Bladder Cancer: Sarcopenia, Low Psoas Muscle Index, and Myosteatosis Are Independent Risk Factors for Mortality. Cancers 2023, 15, 1778. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Ma, B.; Wang, K.; Wu, J.; Xu, B.; Geng, J.; Zhang, H.; Chen, M. Sarcopenia predicts prognosis of bladder cancer patients after radical cystectomy: A study based on the Chinese population. Clin. Transl. Med. 2020, 10, e105. [Google Scholar] [CrossRef] [PubMed]
- Mayr, R.; Gierth, M.; Zeman, F.; Reiffen, M.; Seeger, P.; Wezel, F.; Pycha, A.; Comploj, E.; Bonatti, M.; Ritter, M.; et al. Sarcopenia as a comorbidity-independent predictor of survival following radical cystectomy for bladder cancer. J. Cachexia Sarcopenia Muscle 2018, 9, 505–513. [Google Scholar] [CrossRef]
- Von Der Maase, H.; Sengelov, L.; Roberts, J.T.; Ricci, S.; Dogliotti, L.; Oliver, T.; Moore, M.J.; Zimmermann, A.; Arning, M. Long-Term Survival Results of a Randomized Trial Comparing Gemcitabine Plus Cisplatin, With Methotrexate, Vinblastine, Doxorubicin, Plus Cisplatin in Patients With Bladder Cancer. J. Clin. Oncol. 2005, 23, 4602–4608. Available online: https://ascopubs.org/doi/10.1200/JCO.2005.07.757 (accessed on 10 April 2025). [CrossRef]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. Available online: http://www.nejm.org/doi/10.1056/NEJMoa2002788 (accessed on 10 April 2025). [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. Available online: http://www.nejm.org/doi/10.1056/NEJMoa1613683 (accessed on 10 April 2025). [CrossRef]
- Powles, T.; Valderrama, B.P.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N. Engl. J. Med. 2024, 390, 875–888. Available online: http://www.nejm.org/doi/10.1056/NEJMoa2312117 (accessed on 10 April 2025). [CrossRef]
- Choi, M.H.; Yoon, S.B. Sarcopenia in pancreatic cancer: Effect on patient outcomes. World J. Gastrointest. Oncol. 2022, 14, 2302–2312. Available online: https://www.wjgnet.com/1948-5204/full/v14/i12/2302.htm (accessed on 11 April 2025). [CrossRef] [PubMed]
- Borrelli, A.; Pecoraro, M.; Del Giudice, F.; Cristofani, L.; Messina, E.; Dehghanpour, A.; Landini, N.; Roberto, M.; Perotti, S.; Muscaritoli, M.; et al. Standardization of Body Composition Status in Patients with Advanced Urothelial Tumors: The Role of a CT-Based AI-Powered Software for the Assessment of Sarcopenia and Patient Outcome Correlation. Cancers 2023, 15, 2968. Available online: https://www.mdpi.com/2072-6694/15/11/2968 (accessed on 10 April 2025). [CrossRef] [PubMed]
- Abe, H.; Takei, K.; Uematsu, T.; Tokura, Y.; Suzuki, I.; Sakamoto, K.; Nishihara, D.; Yamaguchi, Y.; Mizuno, T.; Nukui, A.; et al. Significance of sarcopenia as a prognostic factor for metastatic urothelial carcinoma patients treated with systemic chemotherapy. Int. J. Clin. Oncol. 2018, 23, 338–346. Available online: http://link.springer.com/10.1007/s10147-017-1207-x (accessed on 10 April 2025). [CrossRef] [PubMed]
- Gao, Z.; Pang, Y.; Qin, X.; Li, G.; Wang, Z.; Zhang, L.; Wang, J.; Qi, N.; Li, H. Sarcopenia is associated with leukopenia in urothelial carcinoma patients who receive tislelizumab combined with gemcitabine and cisplatin therapy. Int. J. Clin. Oncol. 2024, 29, 592–601. Available online: https://link.springer.com/10.1007/s10147-023-02448-1 (accessed on 10 April 2025). [CrossRef]
- Taguchi, S.; Akamatsu, N.; Nakagawa, T.; Gonoi, W.; Kanatani, A.; Miyazaki, H.; Fujimura, T.; Fukuhara, H.; Kume, H.; Homma, Y. Sarcopenia Evaluated Using the Skeletal Muscle Index Is a Significant Prognostic Factor for Metastatic Urothelial Carcinoma. Clin. Genitourin. Cancer 2016, 14, 237–243. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1558767315001883 (accessed on 10 April 2025). [CrossRef]
- Yumioka, T.; Honda, M.; Nishikawa, R.; Teraoka, S.; Kimura, Y.; Iwamoto, H.; Morizane, S.; Hikita, K.; Takenaka, A. Sarcopenia as a significant predictive factor of neutropenia and overall survival in urothelial carcinoma patients underwent gemcitabine and cisplatin or carboplatin. Int. J. Clin. Oncol. 2020, 25, 158–164. Available online: http://link.springer.com/10.1007/s10147-019-01544-5 (accessed on 11 April 2025). [CrossRef]
- Fukushima, H.; Yokoyama, M.; Nakanishi, Y.; Tobisu, K.; Koga, F. Sarcopenia as a Prognostic Biomarker of Advanced Urothelial Carcinoma. PLoS ONE 2015, 10, e0115895. [Google Scholar] [CrossRef]
- Fukushima, H.; Fukuda, S.; Moriyama, S.; Uehara, S.; Yasuda, Y.; Tanaka, H.; Yoshida, S.; Yokoyama, M.; Matsuoka, Y.; Fujii, Y. Impact of sarcopenia on the efficacy of pembrolizumab in patients with advanced urothelial carcinoma: A preliminary report. Anticancer Drugs 2020, 31, 866–871. Available online: https://journals.lww.com/10.1097/CAD.0000000000000982 (accessed on 10 April 2025). [CrossRef]
- Martini, D.J.; Shabto, J.M.; Goyal, S.; Liu, Y.; Olsen, T.A.; Evans, S.T.; Magod, B.L.; Ravindranathan, D.; Brown, J.T.; Yantorni, L.; et al. Body Composition as an Independent Predictive and Prognostic Biomarker in Advanced Urothelial Carcinoma Patients Treated with Immune Checkpoint Inhibitors. Oncologist 2021, 26, 1017–1025. Available online: https://academic.oup.com/oncolo/article/26/12/1017/6511639 (accessed on 10 April 2025). [CrossRef]
- Shimizu, T.; Miyake, M.; Hori, S.; Ichikawa, K.; Omori, C.; Iemura, Y.; Owari, T.; Itami, Y.; Nakai, Y.; Anai, S.; et al. Clinical Impact of Sarcopenia and Inflammatory/Nutritional Markers in Patients with Unresectable Metastatic Urothelial Carcinoma Treated with Pembrolizumab. Diagnostics 2020, 10, 310. Available online: https://www.mdpi.com/2075-4418/10/5/310 (accessed on 10 April 2025). [CrossRef]
- Fukushima, H.; Kataoka, M.; Nakanishi, Y.; Sakamoto, K.; Takemura, K.; Suzuki, H.; Ito, M.; Tobisu, K.I.; Fujii, Y.; Koga, F. Posttherapeutic skeletal muscle mass recovery predicts favorable prognosis in patients with advanced urothelial carcinoma receiving first-line platinum-based chemotherapy. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 156.e9–156.e16. [Google Scholar] [CrossRef]
- Cambier, S.; Sylvester, R.J.; Collette, L.; Gontero, P.; Brausi, M.A.; Van Andel, G.; Kirkels, W.J.; Silva, F.C.; Oosterlinck, W.; Prescott, S.; et al. EORTC Nomograms and Risk Groups for Predicting Recurrence, Progression, and Disease-specific and Overall Survival in Non–Muscle-invasive Stage Ta–T1 Urothelial Bladder Cancer Patients Treated with 1–3 Years of Maintenance Bacillus Calmette-Guérin. Eur. Urol. 2016, 69, 60–69. [Google Scholar] [CrossRef]
- Freedman, R.J.; Aziz, N.; Albanes, D.; Hartman, T.; Danforth, D.; Hill, S.; Sebring, N.; Reynolds, J.C.; Yanovski, J.A. Weight and Body Composition Changes during and after Adjuvant Chemotherapy in Women with Breast Cancer. J. Clin. Endocrinol. Metab. 2004, 89, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F. Forcing the vicious circle: Sarcopenia increases toxicity, decreases response to chemotherapy and worsens with chemotherapy. Ann. Oncol. 2017, 28, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Conte, E.; Bresciani, E.; Rizzi, L.; Cappellari, O.; De Luca, A.; Torsello, A.; Liantonio, A. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 1242. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Konishi, M.; Butler, J.; Kalantar-Zadeh, K.; Von Haehling, S.; Anker, S.D. Kidney function in cachexia and sarcopenia: Facts and numbers. J. Cachexia Sarcopenia Muscle 2023, 14, 1589–1595. [Google Scholar] [CrossRef]
- Chargi, N.; Molenaar-Kuijsten, L.; Huiskamp, L.F.J.; Devriese, L.A.; De Bree, R.; Huitema, A.D.R. The association of cisplatin pharmacokinetics and skeletal muscle mass in patients with head and neck cancer: The prospective PLATISMA study. Eur. J. Cancer 2022, 160, 92–99. [Google Scholar] [CrossRef]
- Knoedler, S.; Schliermann, R.; Knoedler, L.; Wu, M.; Hansen, F.J.; Matar, D.Y.; Obed, D.; Vervoort, D.; Haug, V.; Hundeshagen, G.; et al. Impact of sarcopenia on outcomes in surgical patients:A systematic review and meta-analysis. Int. J. Surg. 2023, 109, 4238–4262. Available online: https://journals.lww.com/10.1097/JS9.0000000000000688 (accessed on 9 July 2025). [CrossRef]
- Wang, H.; Yang, R.; Xu, J.; Fang, K.; Abdelrahim, M.; Chang, L. Sarcopenia as a predictor of postoperative risk of complications, mortality and length of stay following gastrointestinal oncological surgery. Ann. R. Coll. Surg. Engl. 2021, 103, 630–637. [Google Scholar] [CrossRef]
- Hilmi, M.; Jouinot, A.; Burns, R.; Pigneur, F.; Mounier, R.; Gondin, J.; Neuzillet, C.; Goldwasser, F. Body composition and sarcopenia: The next-generation of personalized oncology and pharmacology? Pharmacol. Ther. 2019, 196, 135–159. [Google Scholar] [CrossRef]
- Fukushima, H.; Takemura, K.; Suzuki, H.; Koga, F. Impact of Sarcopenia as a Prognostic Biomarker of Bladder Cancer. Int. J. Mol. Sci. 2018, 19, 2999. [Google Scholar] [CrossRef]
- Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.D.; Sun, P.Y.; Davies, K.J.A.; Grune, T. Sarcopenia—Molecular mechanisms and open questions. Ageing Res. Rev. 2021, 65, 101200. [Google Scholar] [CrossRef]
Authors (Year) | Patients No. | Age (Years) | Stage | Assessment | Sarcopenia Cut-Off | Sarcopenic (%) | Study Results | |
---|---|---|---|---|---|---|---|---|
Men (cm2/m2) Women (cm2/m2) | ||||||||
Alam et al. (2023) [11]. | 90 | 75.2 | Ta T1 | CT–L3 | <55 | <39 | 61% | RR*, RC*, TRE*; no association with SMI |
Soria et al. (2023) [12]. | 185 | 71 | T1 | CT-L3 | <55 | <39 | 70% | SMI predictive of DP* (HR: 2.72, 95% CI: 1.05–7.02; p < 0.04), but no association with OS and CSS |
Liu et al. (2022) [13]. | 183 | 62.3 | Ta T1 | CT-L3 | <43 for BMI < 25 kg/m2 <53 for BMI > 25 kg/m2 | <43 | 39.9% | Sarcopenia predictive for RFS (p = 0.005) and BCG non-response (p < 0.0001) |
Huang et al. (2023) [14]. | 269 | 66 | Ta T1 | CT-L3 | <45.4 | <34.4 | 29.7% | Sarcopenia predicts poorer RFS and OS (p = 0.030 and p = 0.033) |
Authors (Year) | Patient No. | Follow-Up | Method of Assessment | Sarcopenia Cut Off | Sarcopenia Prevalence | Muscle Loss | Study Results | |
---|---|---|---|---|---|---|---|---|
Men (cm2/m2) Women (cm2/m2) | ||||||||
Stangl-Kremser et al. (2018) [16]. | 30 | NR | CT-L3, SMI | <55 cm2/m2 | <39 cm2/m2 | 53.3% | 3% | No association of SMI (p = 0.78 and p = 0.59), sarcopenia (p = 0.65 and p = 0.16) or SMI kinetics (p = 0.54 and p = 0.77) with CR or PR |
Lyon et al. (2019) [17]. | 183 | 36 months | CT-L3, SMI | <55 cm2/m2 | <39 cm2/m2 | 55% | 8.4% | Post-NAC sarcopenia correlates with CSM (HR, 1.90; 95% CI: 1.02–3.56; p = 0.04). No BC measurements associated with OS or treatment response |
Regnier et al. (2021) [18]. | 82 | 26 months | CT-L3, SMI | <50 cm2/m2 | 35 cm2/m2 | 57.3% | NR | Sarcopenia is not associated with RFS, CSS, OS, or PR (p = 0.066) but predicts cisplatin renal toxicity (OR 3.01; 95% CI: 1.13–8.05; p = 0.02) and early postoperative complications (≤90 days) (OR 4.08; 95% CI: 1.06–15.6; p = 0.04) |
Rimar et al. (2018) [19]. | 26 | NR | CT-L3, SMI | <55 cm2/m2 | <38.5 cm2/m2 | 69.2% | 6.4% | Sarcopenia is not associated with treatment response (p = 0.66) |
Zargar et al. (2017) [20]. | 60 | NR | CT, PMV | NR | NR | NR | 4.9% | PMV loss was not associated with RFS (HR 0.98; 95% CI: 0.91–1.05; p = 0.55), CSS (HR 1.003; 95% CI: 0.92–1.09; p = 0.95) or OS (HR 1.01, 95% CI: 0.95–1.08; p = 0.74) |
MacDonald et al. (2024) [21] | 70 | NR | CT-L3, SMI | <55 cm2/m2 | <39 cm2/m2 | 54% | 3.4% | NAC decreases SMI. SO predictive of severe NAC toxicity (≥grade 3) (OR 8.37; 95% CT: 2.06–34.6; p = 0.003) |
Diamantopoulos et al. (2020) [22]. | 143 | 2.7 years | CT-L3, SMI | <55 cm2/m2 | <39 cm2/m2 | 60% | NR | Sarcopenia + normal FMI 3-year CSS (55%) vs. sarcopenia + FMI-obesity (79%), normal SMI with FMI-obesity (69%), and normal BC (88%, p = 0.03) |
Authors (Year) | Patients No. | Age (Median) | Follow-Up | Assessment Method | Sarcopenia Cut-Off (cm2/m2) | Prevalence | Oncological Outcomes | Surgical Outcomes |
---|---|---|---|---|---|---|---|---|
Psutka et al. (2014) [30]. | 205 | 71 | 6.7 years | CT-L3, SMI | Men: <55, Women: <39 | 68.8% before RC | Sarcopenia independently predicted CSS (HR 2.14; p = 0.007), OS (HR 1.63, p = 0.007) and all-cause mortality (HR, 1.93; p = 0.004) | A trend towards higher 90-day mortality rate, 7.8% in sarcopenic pts vs. 1.6% in nonsarcopenic pts (p = 0.07) |
Mayr et al. (2018) [34]. | 327 | 70 | 90 days | CT-L3, SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 33% before RC | NR | Sarcopenia independently predicted 90 dM (OR 2.59; 95% CI 1.13–5.95; p = 0.025) and a higher rate of major complications; Clavien–Dindo ≥ 3b-5 (OR 2.84 (1.33–6.01) p = 0.007) |
Smith et al. (2017) [29]. | 200 | 66.6 | 1.4 years | CT-L3, TPA | Men: <653, Women: <523 | 50% before RC | No association between OS and sarcopenia (p = 0.36) | Sarcopenia in women is an independent predictor of major complications (OR 2.2, 95% CI 1.1–4.6, p = 0.02) |
Saitoh-Maeda et al. (2017) [27]. | 78 | NR | NR | CT-umbilical level, PMI | Low PMI < 400, High PMI ≥ 400 | NR | High PMI and better OS vs. low PMI (p = 0.023) | Low PMI patients’ complication rate was 82.9% vs. 31.8% (p < 0.001), and low PMI predicts high-grade surgical complications (Clavien grade ≥ 3, 19.5% vs. 0%, p < 0.001) |
Ying et al. (2021) [28]. | 292 | 74 | 3.8 years | CT-AI calculated SMV | NR | NR | Low MV independently predicts OS (HR 1.62 (1.07–2.44, p = 0.022) | MV below the median was not associated with high-grade complications (OR 1.30, 95% CI 0.73–2.32; p = 0.380) |
Engelmann et al. (2023) [35]. | 657 | 70 | 40 months | CT-L3, SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 51.8% before RC | Sarcopenia independent prognostic factor for OS (HR = 1.59, CI: 1.27–2.00; p < 0.01); CSS (HR 1.87, CI: 1.40–2.51, p < 0.01) | NR |
Ha et al. (2019) [31]. | 81 | NR | 46.2 months | CT-L3, SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 32.5% sarcopenic before RC and 50.0% sarcopenic after RC | Patients with post-RC sarcopenia had higher all-cause mortality rates than those without sarcopenia (p = 0.012). SMI loss of ≥2.2 cm2/m2 after RC (HR: 2.689, 95% CI: 1.007–7.719, p = 0.048) was found to be an independent predictor of OS | NR |
Yamashita et al. (2021) [32]. | 123 | 74 | 39 months | CT-L3 SMI | Men: <40.8; Women: <34.9 | 39% before RC | Sarcopenia independently predicts poor OS (p = 0.02) and CSS (p < 0.01) | NR |
Hirasawa et al. (2016) [33]. | 136 | 68.6 | 46.7 months | CT-L3 SMI | Men: <55 Women: <39 | 47.8% before RC | Sarcopenia independently predicts poor CSS (HR = 2.3; p = 0.015) | NR |
Mao et al. (2020) [36]. | 200 | 66.0 | NR | CT-L3 TPI | Women: <385 mm2/m2 or TPI <545 mm2/m2 for Male Patients. | 33.5% before RC | Sarcopenia has prognostic value regarding OS (p = 0.016) and DFS (p = 0.023). | NR |
Mayr et al. [37]. | 500 | 72 | 22 months | CT-L3 SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Woman: <41 | 37.8% before RC | Sarcopenia predicted OS (HR 1.42; 95% CI, 1.00–2.02; p = 0.048) and CSS (HR 1.42; 95% CI, 1.00–2.02; p = 0.048) | NR |
Authors (Year) | N | Age (Median) | Follow-Up Months | Assessment Method | Sarcopenia Cut-Off (cm2/m2) | Prevalence | Treatment Regimen | Treatment Toxicity | Meaningful Findings |
---|---|---|---|---|---|---|---|---|---|
Gao et al. (2024) [45]. | 112 | 56 | NR | CT-L3 PMI | Men: 4.5 cm2/m2 Women: 3.3 cm2/m2 | 38.4% before treatment | Tislelizumab + GC | Leukopenia (OR 2.969, 95% CI 1.028–8.575, p = 0.044) | No difference in ORR (p = 0.606) or DCR (p = 0.988). |
Taguchi et al. (2015) [46]. | 64 | 68 | NR | CT-L3, SMI, TPA | Men: <55, Women: <39 | NR | MVAC, GC, GCa, DIP | NR | Sarcopenia predicts poor CSS (HR, 2.07; 95% CI: 1.01–4.67, p = 0.045) |
Abe et al. (2017) [44]. | 87 | 73 | 15.4 | CT-L3, SMI, TPA, PSMI | Men: <55, Women: <39 | 89% before treatment | GC, GCa | NR | Sarcopenia stratified by obesity (BMI > 25) independently predicted OS (HR 3.102, 95% CI: 1.149–8.374, p = 0.026) |
Fukushima et al. (2014) [48]. | 88 | 68 | 13 | CT-L3 SMI | Men: <43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 60% before treatment | NR | NR | OS: 11 months for sarcopenic and 31 months for non-sarcopenic patients (p < 0.001), and an independent predictor of shorter OS (HR 3.36; p < 0.001) |
Fukushima et al. (2020) [49]. | 30 | 74 | 6 | CT-L3 SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 68% | Pembrolizumab 2L | irAEs not related to sarcopenia | ORR: 67% for non-sarcopenic vs. 21% for sarcopenic pts (p = 0.019). Trend towards better OS for non-sarcopenic: median, not reached vs. 7 months (p = 0.086). PFS: sarcopenic pts (median, 3 vs. 15 months, p = 0.038 for non-sarcopenic pts) |
Borelli et al. (2023) [43]. | 97 | NR | 17.3 | CT-L3, SMI, AI software | Men: <55, Women: <39 | 53.6% | GC, GCa | NR | Baseline sarcopenia did not predict OS, but post-CHT sarcopenic status, both by SMI-L3 coefficient and cut-off, was found to independently predict clinical benefits (OR: 0.93, 95% CI: 0.88–0.98, p = 0.006 and OR: 2.31, 95% CI: 1.15–5.78, p = 0.038) |
Yumioka et al. (2019) [47]. | 80 | 71.6 | NR | CT-L3, TPA | Men: 4.57 cm2/m2 Women: 3.35 cm2/m2 | 48.7% | GC, GCa | Sarcopenia predictive of neutropenia (OR: 3.526, CI 95% 1.128–11.01, p = 0.030) | No impact on treatment response (p = 0.406). Sarcopenia was an independent predictive factor of OS in multivariate analysis (HR 2.309; 95% CI: 1.021–5.225, p = 0.045) |
Martini et al. (2021) [50]. | 70 | 69.5 | 20.1 | CT-L3, SMI | NR | NR | ICI 2L and 3L | NR | High- and intermediate-risk BC patients had worse prognosis OS (2.7 months versus 8.9 months versus not reached; p = 0.0011) and PFS (1.9 months versus 3.4 months versus 10.4 months; p = 0.0014) compared with low-risk patients |
Shimizu et al. (2020) [51]. | 29 | NR | 7 | CT-L3, PMI | Men: 6.36 cm2/m2 Women: 3.92 cm2/m2 | 56% | 2L or 3L pembrolizumab | NR | Sarcopenia independently predicts poor OS (HR 1.99, 95% CI: 0.50–7.49, p= 0.040) and PFS (HR 2.79, 95% CI 1.14–7.32, p = 0.030) |
Fukushima et al. (2017) [52]. | 72 | 68 | 13 | CT-L3, SMI | Men < 43 for BMI < 25 kg/m2, and <53 for BMI ≥ 25 kg/m2 and Women: <41 | 67% ΔSMI median −5.2 (−22.1 to 23.5) | MVAC, GC, GCA | PSR not associated with toxicity, p = 0.071 | ΔSMI predicted PFS (HR = 0.94, p = 0.001) and OS (HR = 0.93, p = 0.001). PSR was an independent predictor for both PFS (HR = 0.24, p < 0.001) and OS (HR = 0.21, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrabie, C.R.; Parosanu, A.I.; Nitipir, C. Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review. Medicina 2025, 61, 1307. https://doi.org/10.3390/medicina61071307
Vrabie CR, Parosanu AI, Nitipir C. Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review. Medicina. 2025; 61(7):1307. https://doi.org/10.3390/medicina61071307
Chicago/Turabian StyleVrabie, Constantin Radu, Andreea Ioana Parosanu, and Cornelia Nitipir. 2025. "Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review" Medicina 61, no. 7: 1307. https://doi.org/10.3390/medicina61071307
APA StyleVrabie, C. R., Parosanu, A. I., & Nitipir, C. (2025). Sarcopenia in Urothelial Bladder Carcinoma: A Narrative Review. Medicina, 61(7), 1307. https://doi.org/10.3390/medicina61071307