Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = seagrass beds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1947 KiB  
Article
Benthic Macrofauna in the Loukkos Estuary, Morocco: Patterns and Environmental Drivers
by Feirouz Touhami
Ecologies 2025, 6(3), 53; https://doi.org/10.3390/ecologies6030053 - 1 Aug 2025
Viewed by 190
Abstract
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), [...] Read more.
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), polychaetes (23%), and crustaceans (21%). Species richness varied considerably along the estuarine gradient, ranging from fewer than five species in the upstream sector to up to 30 species downstream. Overall, higher diversity was observed in the downstream areas and during the dry season. Macrofaunal density also exhibited substantial variability, ranging from 95 ind.m−2 to 14,852 ind.m−2, with a mean density of 2535 ± 4058 ind.m−2. Multivariate analyses identified four distinct benthic assemblages structured primarily by spatial factors (ANOSIM R = 0.86, p = 0.002), with negligible seasonal effect (R = −0.03, p = 0.6). Assemblages ranged from marine-influenced communities at the estuary mouth dominated by Cerastoderma edule, through rich and diverse seagrass-associated communities in the lower estuary dominated by Bittium reticulatum, and moderately enriched mid-estuary communities characterized by Scrobicularia plana and Hediste diversicolor, to species-poor upstream communities dominated by the tolerant species H. diversicolor. Canonical analysis showed that salinity and vegetation explain nearly 40% of the variation in benthic assemblages, highlighting the key role of Zostera seagrass beds as structuring habitats. Moreover, upstream anthropogenic pressures alter environmental conditions, reducing benthic diversity and favoring tolerant species. Full article
Show Figures

Figure 1

15 pages, 1752 KiB  
Article
Suitability Evaluation of the Water Environment for Seagrass Growth Areas in the Changshan Archipelago
by Yanzhen Song, Yanzhao Fu, Jun Song, Jun Yang, Yahe Wang, Wei Hu and Junru Guo
Sustainability 2025, 17(10), 4645; https://doi.org/10.3390/su17104645 - 19 May 2025
Viewed by 505
Abstract
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This [...] Read more.
Seagrass beds provide essential ecosystem services, such as habitat for marine life, water quality purification, carbon sequestration, and climate regulation. For the Changshan Archipelago, which relies heavily on marine resources, the growth and development of seagrass beds are key factors affecting aquaculture. This study is based on data collected from a survey conducted in the nearshore waters of the Changshan Archipelago in August 2022, encompassing seagrass distribution and water sample data. The water samples were analyzed for various parameters, including salinity, suspended solids, pH, dissolved oxygen, sea temperature, nitrite-nitrogen, nitrate-nitrogen, and ammonia-nitrogen concentrations. A habitat suitability assessment of the seagrass beds in the Changshan Archipelago was conducted. The study calculated the suitability index for each environmental variable based on the abundance index, and then established a Habitat Suitability Index model using a weighted allocation method. The results indicate that the seagrass bed area in the study region is primarily composed of excellent and suitable habitats. The concentration of inorganic nutrients is a key factor influencing seagrass growth. The HSI model not only identifies the hierarchical distribution of habitats in seagrass areas, but also detects potential suitable habitats for seagrass. This provides scientific reference for future seagrass bed resource protection and artificial cultivation efforts. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

14 pages, 2446 KiB  
Article
Role of Seagrass as a Food Source for Benthos in Tidal Flats: Toward Conservation and Restoration of Resilient Ecosystems
by Yumi Nagahama, Munehiro Nomura and Osamu Nishimura
Animals 2025, 15(8), 1098; https://doi.org/10.3390/ani15081098 - 10 Apr 2025
Viewed by 753
Abstract
Seagrass is a key primary producer in coastal ecosystems; however, most studies on seagrass-benthos interactions have focused on subtidal zones. Some species such as Zostera japonica grow in intertidal flats; however, their ecological functions remain unclear. Understanding whether intertidal seagrass beds contribute to [...] Read more.
Seagrass is a key primary producer in coastal ecosystems; however, most studies on seagrass-benthos interactions have focused on subtidal zones. Some species such as Zostera japonica grow in intertidal flats; however, their ecological functions remain unclear. Understanding whether intertidal seagrass beds contribute to benthic abundance and diversity can provide insights that facilitate tidal flat conservation. The present study clarifies the role of intertidal Z. japonica as a food source for benthos. Field surveys were conducted in an intertidal flat in Matsushima Bay, Japan. Five benthic species (Batillaria cumingii, Umbonium costatum, Phacosoma japonicum, Nereididae, and Paguroidea) were identified. Carbon and nitrogen stable isotope ratios (δ13C, δ15N) and fatty acid compositions of sediment organic matter, seawater, and target benthos were analyzed to determine food sources. The results showed that B. cumingii actively consumed Z. japonica-derived organic matter present in both seagrass and sandy sediments. Z. japonica also influenced bacterial community structure, providing a favorable habitat for Nereididae. Filter feeders (U. costatum and P. japonicum) exhibited minimal reliance on Z. japonica-derived organic matter. The findings suggest that, similar to subtidal seagrass ecosystems, intertidal seagrass meadows support benthic communities by supplying organic matter and enhancing bacterial production. Full article
(This article belongs to the Special Issue Conservation and Restoration of Aquatic Animal Habitats)
Show Figures

Figure 1

8 pages, 2886 KiB  
Article
Bleaching and a Corallivore of the Coral Siderastrea radians in the Florida Keys
by William K. Fitt
J. Mar. Sci. Eng. 2025, 13(4), 650; https://doi.org/10.3390/jmse13040650 - 25 Mar 2025
Viewed by 466
Abstract
The tropical coral Siderasterea radians is typically found in mangrove areas, seagrass beds, and environments tolerated by few other scleractinians in the Caribbean and South Florida. Siderastrea radians experience bleaching stress in Buttonwood Sound in Florida Bay during April–May, a time when the [...] Read more.
The tropical coral Siderasterea radians is typically found in mangrove areas, seagrass beds, and environments tolerated by few other scleractinians in the Caribbean and South Florida. Siderastrea radians experience bleaching stress in Buttonwood Sound in Florida Bay during April–May, a time when the seawater is below bleaching temperatures. Stress first appears as a pink coloration due to the presence of fluorescent pigments protecting the coral tissue and algal symbionts from exposure to excessive sunlight/UV light. Surveys of S. radians in areas frequented by parrotfish showed that up to 38.5% of the corals were pink, with about a quarter of all the corals having bite marks. In areas not frequented by parrotfish, only 3.2% of the corals were pink, and none had bite marks. A seasonal analysis in parrotfish-frequented seawater showed S. radians contained among the lowest tissue biomass and density of symbiotic algae during April–May 2010–2017, often looking pink. It is hypothesized that seawater temperature is not the cause of bleaching in Buttonwood Sound during April–May but rather predation by the rainbow parrotfish Scarus guacamaia. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

22 pages, 2450 KiB  
Article
Impact of Ecological Restoration on Carbon Sink Function in Coastal Wetlands: A Review
by Xiaoqun Guo, Yanjin Liu, Tian Xie, Yina Li, Hongxi Liu and Qing Wang
Water 2025, 17(4), 488; https://doi.org/10.3390/w17040488 - 9 Feb 2025
Cited by 2 | Viewed by 4310
Abstract
Reducing carbon emissions and increasing carbon sinks have become the core issues of the international community. Although coastal blue carbon ecosystems (such as mangroves, seagrass beds, coastal salt marshes and large algae) account for less than 0.5% of the seafloor area, they contain [...] Read more.
Reducing carbon emissions and increasing carbon sinks have become the core issues of the international community. Although coastal blue carbon ecosystems (such as mangroves, seagrass beds, coastal salt marshes and large algae) account for less than 0.5% of the seafloor area, they contain more than 50% of marine carbon reserves, occupying an important position in the global carbon cycle. However, with the rapid development of the economy and the continuous expansion of human activities, coastal wetlands have suffered serious damage, and their carbon sequestration capacity has been greatly limited. Ecological restoration has emerged as a key measure to reverse this trend. Through a series of measures, including restoring the hydrological conditions of damaged wetlands, cultivating suitable plant species, effectively managing invasive species and rebuilding habitats, ecological restoration is committed to restoring the ecological functions of wetlands and increasing their ecological service value. Therefore, this paper first reviews the research status and influencing factors of coastal wetland carbon sinks, discusses the objectives, types and measures of various coastal wetland ecological restoration projects, analyzes the impact of these ecological restoration projects on wetland carbon sink function, and proposes suggestions for incorporating carbon sink enhancement into wetland ecological restoration. Full article
(This article belongs to the Special Issue Wetland Conservation and Ecological Restoration)
Show Figures

Figure 1

15 pages, 2392 KiB  
Article
Dual Regulation of Ionic Effect on Zostera marina L. Seed Germination and Leaf Differentiation in Low-Salinity Conditions
by Peilong Li, Yaping Gao, Zengjie Jiang, Linjie Wang, Xiaoli Sun, Jiaqi Wang, Jing Wang, Haidong Sui, Junwei Wang and Yitao Zhang
Plants 2025, 14(2), 254; https://doi.org/10.3390/plants14020254 - 17 Jan 2025
Viewed by 1018
Abstract
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of Zostera marina L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences. To investigate the impacts of salinity and [...] Read more.
Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of Zostera marina L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences. To investigate the impacts of salinity and osmotic pressure on the germination and early development of Zostera marina seeds, this study utilized seawater with different salinity conditions and PEG-6000 solutions to simulate various non-ionic osmotic pressures and examine the germination, cotyledon growth, and leaf differentiation over 28 days, as well as determine the biochemical traits on days 1, 3, 5, and 7. The results show that the cumulative germination rate in LS-0 was 91.6%, but it was not significantly affected by the PEG solutions. The different salinities (5, 10, and 15) had no significant effect on the germination rate, which ranged from 76.4% to 78.8%: low salinity and low osmotic pressure stimulated the germination by accelerating the water uptake through increased osmotic pressure differences. The leaf differentiation was regulated by the osmotic pressure and salinity. In LS-10, the most used condition, the leaf differentiation rate was 35.2%, while PEG-10 displayed 6.4%. The total soluble sugar and soluble protein in the seeds decreased. Antioxidant enzyme activities were activated under low-salinity conditions, which supported germination within a tolerable oxidative stress range. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants)
Show Figures

Figure 1

10 pages, 2074 KiB  
Communication
Environmental DNA Detection in Marine Macrophyte Ecosystems as a Potential Blue Carbon Source in Sediments
by Qikun Xing, Samuel J. Kim and Charles Yarish
Coasts 2024, 4(4), 687-696; https://doi.org/10.3390/coasts4040036 - 20 Nov 2024
Viewed by 1639
Abstract
“Blue carbon” refers to the carbon sequestered by the world’s oceanic and coastal ecosystems, particularly through coastal vegetation such as mangroves, salt marshes, seagrasses, and marine macroalgae. These ecosystems play a crucial role in the global carbon cycle by serving as significant carbon [...] Read more.
“Blue carbon” refers to the carbon sequestered by the world’s oceanic and coastal ecosystems, particularly through coastal vegetation such as mangroves, salt marshes, seagrasses, and marine macroalgae. These ecosystems play a crucial role in the global carbon cycle by serving as significant carbon sinks, absorbing carbon dioxide from the atmosphere and storing it in biomass and sediments over long periods. This study explores the use of environmental DNA (eDNA) to detect marine macrophytes and microalgae assemblages contributing to blue carbon in sediments across various coastal ecosystems. The research addresses the challenges of traditional monitoring methods by utilizing high-throughput sequencing of the 18S-V9 region amplified using eDNA from sediment samples collected at eight locations in the United States and South Korea. The results reveal a diverse array of taxa, underscoring the variability in community composition across different conditions. Notably, sites with seagrass beds and Ulva blooms showed distinct patterns in microalgal community structure. This study underscores the potential of eDNA analysis in providing comprehensive insights into the biodiversity of marine macrophyte ecosystems, thus informing conservation efforts and enhancing the understanding of marine ecological dynamics. Full article
Show Figures

Figure 1

19 pages, 3739 KiB  
Article
Standard Descriptors and Selected Biomarkers in Assessment of Posidonia oceanica (L.) Delile Environmental Response
by Željka Vidaković-Cifrek, Mirta Tkalec, Tatjana Bakran-Petricioli, Jasna Dolenc Koce, Jelena Bobetić, Adam Cvrtila, Ana Grbčić, Janja Maroević, Nina Mikec, Jelena Samac and Mateja Smiljanec
J. Mar. Sci. Eng. 2024, 12(11), 2072; https://doi.org/10.3390/jmse12112072 - 16 Nov 2024
Cited by 2 | Viewed by 1230
Abstract
Endemic Mediterranean seagrass Posidonia oceanica is highly endangered today as it lives in a narrow infralittoral zone intensely exposed to human impact. P. oceanica beds are especially endangered in the Adriatic Sea as the central and northern Adriatic could be considered as a [...] Read more.
Endemic Mediterranean seagrass Posidonia oceanica is highly endangered today as it lives in a narrow infralittoral zone intensely exposed to human impact. P. oceanica beds are especially endangered in the Adriatic Sea as the central and northern Adriatic could be considered as a naturally suboptimal area for P. oceanica growth. In this research, we used some standard descriptors of Posidonia meadows at different locations and depths and determined the biochemical parameters (phenolic compounds, photosynthetic pigments, and enzyme activities) in its leaves in order to find possible correlations among the measured parameters and environmental conditions. Photosynthetic pigments were shown to be sensitive biomarkers in the assessment of P. oceanica response to different light conditions, but more research is needed to elucidate the impact of other environmental factors. Overall, the results of this research show that the studied parameters are good bioindicators of a meadow’s environmental state, but it is necessary to analyze a number of diverse indicators together to properly characterize the state of a particular P. oceanica meadow. This approach would be very useful in the determination of P. oceanica conservation status, which is the first step towards improving monitoring protocols and implementing appropriate conservation measures. Full article
Show Figures

Figure 1

13 pages, 5480 KiB  
Article
The Complete Mitochondrial Genome of the Chemosymbiotic Lucinid Bivalve Pillucina pisidium (Dunker, 1860) Occurring in Seagrass Zostera marina Bed in a Lagoon in Jeju Island, Korea
by Jong-Seop Shin, Chi-une Song, Hyeongwoo Choi, Sung Hyun Yang, Kae Kyoung Kwon, Seong-il Eyun and Kwang-Sik Choi
J. Mar. Sci. Eng. 2024, 12(5), 847; https://doi.org/10.3390/jmse12050847 - 20 May 2024
Viewed by 1676
Abstract
Commonly found in tropic and subtropic seagrass beds, lucinid clams host sulfur-oxidizing bacteria within their gills. These symbionts are crucial in converting phytotoxic sulfide in the sediment into less harmful sulfate, thus enhancing the environment for seagrasses and associated biota. We recently uncovered [...] Read more.
Commonly found in tropic and subtropic seagrass beds, lucinid clams host sulfur-oxidizing bacteria within their gills. These symbionts are crucial in converting phytotoxic sulfide in the sediment into less harmful sulfate, thus enhancing the environment for seagrasses and associated biota. We recently uncovered small clams within a Zostera marina seagrass bed situated in a lagoon on Jeju Island, off the south coast of Korea. These bivalves, with shell lengths of up to 7 mm, exhibited distinct features, including thick and hypertrophied gills, inflated and ovoid shells with a shell height/shell length ratio of 0.99, and the absence of a sulcus on the external shell surface. These characteristics align closely with those of Pillucina pisidium, a lucinid clam species originally reported in Japan. Analysis of the cytochrome b gene partial sequences of the clams from Jeju Island revealed a 100% match with P. pisidium reported in Japan, confirming their identity. Moreover, we successfully assembled the complete mitochondrial genome of P. pisidium for the first time, revealing a circular genome spanning 21,059 bp. Additionally, we constructed a phylogenetic tree using 13 protein-coding genes (PCGs) extracted from the mitochondrial genome of P. pisidium. Notably, P. pisidium formed a distinct clade within the subclass Autobranchia alongside other lucinid clams in the phylogenetic tree. However, within the family Lucinidae, synteny analysis of the 13 PCGs revealed diverse gene arrangement patterns, indicating considerable divergence. This divergence underscores the need for an extensive examination of Lucinidae mitochondrial genomes to elucidate the phylogenetic ties more precisely within the family, highlighting P. pisidium’s distinct evolutionary path within the family Lucinidae. Full article
(This article belongs to the Special Issue Biodiversity and Population Ecology of Marine Invertebrates)
Show Figures

Figure 1

14 pages, 670 KiB  
Article
Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay
by Emily French, Ashley R. Smyth, Laura K. Reynolds and Kenneth A. Moore
Nitrogen 2024, 5(2), 315-328; https://doi.org/10.3390/nitrogen5020021 - 18 Apr 2024
Viewed by 1925
Abstract
Eelgrass (Zostera marina) loss occurs worldwide due to increasing water temperatures and decreasing water quality. In the U.S., widgeongrass (Ruppia maritima), a more heat-tolerant seagrass species, is replacing eelgrass in certain areas. Seagrasses enhance sediment denitrification, which helps to mitigate [...] Read more.
Eelgrass (Zostera marina) loss occurs worldwide due to increasing water temperatures and decreasing water quality. In the U.S., widgeongrass (Ruppia maritima), a more heat-tolerant seagrass species, is replacing eelgrass in certain areas. Seagrasses enhance sediment denitrification, which helps to mitigate excess nitrogen in coastal systems. Widgeongrass and eelgrass have different characteristics, which may affect sediment nitrogen cycling. We compared net N2 fluxes from vegetated areas (eelgrass and widgeongrass beds, using intact cores that included sediment and plants) and adjacent unvegetated areas from the York River, in the lower Chesapeake Bay during the spring and summer of one year. We found that seagrass biomass, sediment organic matter, and NH4+ fluxes were significantly higher in eelgrass beds than in widgeongrass beds. Eelgrass was also net denitrifying during both seasons, while widgeongrass was only net denitrifying in the summer. Despite differences in the spring, the seagrass beds had a similar rate of N2 production in the summer and both had higher denitrification rates than unvegetated sediments. Both species are important ecosystem components that can help to mitigate eutrophication in coastal areas. However, as the relative composition of these species continues to change, differences in sediment nitrogen cycling may affect regional denitrification capacity. Full article
Show Figures

Graphical abstract

20 pages, 4343 KiB  
Article
Multi-Scale Coral Reef and Seascape Habitat Variables Combine to Influence Reef Fish Assemblages
by Katie T. Sievers, Eva C. McClure, Rene A. Abesamis and Garry R. Russ
Fishes 2024, 9(4), 137; https://doi.org/10.3390/fishes9040137 - 15 Apr 2024
Cited by 1 | Viewed by 2636
Abstract
While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish [...] Read more.
While benthic characteristics of coral reef habitats are a major driver of the structure of coral reef fish assemblages, non-reef habitats adjacent to coral reefs (e.g., mangroves, seagrass beds, and macroalgal beds) can affect reef fish assemblages. Here, we investigate how reef fish assemblages respond to local-scale benthic habitats within a coral reef and larger-scale adjacent seascape features (habitats within 500 m of coral reefs) on Siquijor Island in the Philippines. We examined an abundance of species for the entire reef fish assemblage and within the assemblages of parrotfishes (subfamily Scarinae) and wrasses (family Labridae). Five distinct habitat types were identified in a cluster analysis, which incorporated benthic characteristics within coral reefs and habitats adjacent to coral reefs. We found that the diversity and structure of coral reef fish assemblages were affected by benthic characteristics within coral reefs and also by benthic habitat types adjacent to coral reefs. Individual species responses and juveniles of certain species demonstrated uniquely high abundances in habitat clusters characterized by the non-reef habitats surrounding coral reefs. Considering coral reef habitats and adjacent non-reef habitats as a holistic, interconnected seascape will provide better estimations of the drivers of the structures of coral reef fish assemblages. Full article
Show Figures

Figure 1

12 pages, 4636 KiB  
Article
Coastal Ecological Connectivity between Seagrass Bed and Marine Ranching 30 km Apart: A Case STUDY of Apostichopus japonicus Feeding on Seagrass Debris in the Bohai Sea, China
by Shaochun Xu, Xu Wang, Shidong Yue, Xiaomei Zhang, Yunling Zhang, Chenggang Lin and Yi Zhou
Sustainability 2024, 16(7), 2944; https://doi.org/10.3390/su16072944 - 2 Apr 2024
Cited by 1 | Viewed by 2570
Abstract
Coastal ecosystems form interconnected networks that are essential for the maintenance of marine biodiversity. This study investigates the dietary patterns of Apostichopus japonicus (sea cucumber) within a marine ranching ecosystem and reveals the influence of Zostera marina (seagrass) leaves from a distant bed [...] Read more.
Coastal ecosystems form interconnected networks that are essential for the maintenance of marine biodiversity. This study investigates the dietary patterns of Apostichopus japonicus (sea cucumber) within a marine ranching ecosystem and reveals the influence of Zostera marina (seagrass) leaves from a distant bed on nutrient availability and trophic connectivity. Samples collected between September 2020 and March 2021 from Xiangyun Bay included A. japonicus, macroalgae, phytoplankton, and seagrass leaves. Stable isotope analysis (δ13C and δ15N), in conjunction with Bayesian mixing models, elucidated the contributions of different food sources to A. japonicus’ diet. Macroalgae constituted more than 50% of A. japonicus’ diet, while seagrass contributions ranged between 5.7% and 11.3%. The isotopic analysis confirmed the presence of seagrass debris in the marine ranching environment, indicating significant nutrient transport from a remote seagrass bed. This study underscores the crucial role played by macroalgae as the primary source of nutrients for A. japonicus within a marine ranching setting. Furthermore, detecting seagrass debris from a distant habitat highlights previously unrecognized ecological connectivity between seagrass ecosystems and artificial reef environments along coastal areas. This understanding of long-range nutrient transfers is vital for effective management and conservation strategies in coastal marine systems, emphasizing intricate yet significant ecological interdependencies across coastal environments. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

20 pages, 2885 KiB  
Article
Study of Velocity Changes Induced by Posidonia oceanica Surrogate and Sediment Transport Implications
by Carlos Astudillo-Gutierrez, Iván Cáceres Rabionet, Vicente Gracia Garcia, Joan Pau Sierra Pedrico and Agustín Sánchez-Arcilla Conejo
J. Mar. Sci. Eng. 2024, 12(4), 569; https://doi.org/10.3390/jmse12040569 - 27 Mar 2024
Cited by 3 | Viewed by 1373
Abstract
An analysis of the interactions between wave-induced velocities and seagrass meadows has been conducted based on the large-scale CIEM wave flume data. Incident irregular wave trains act on an initial 1:15 sand beach profile with measurement stations from the offshore of a surrogate [...] Read more.
An analysis of the interactions between wave-induced velocities and seagrass meadows has been conducted based on the large-scale CIEM wave flume data. Incident irregular wave trains act on an initial 1:15 sand beach profile with measurement stations from the offshore of a surrogate meadow until the outer breaking zone, after crossing the seagrass meadow. The analysis considers variability and peaks of velocities, together with their skewness and asymmetry, to determine the effects of the seagrass meadow on the near bed sediment transport. Velocity variability was characterized by the standard deviation, and the greatest changes were found in the area right behind the meadow. In this zone, the negative peak velocities decreased by up to 20.3%, and the positive peak velocities increased by up to 11.7%. For more onshore positions, the negative and positive peak velocities similarly decreased and increased in most of the studied stations. A progressive increase in skewness as the waves passed through the meadow, together with a slight decrease in asymmetry, was observed and associated with the meadow effect. Moving shoreward along the profile, the values of skewness and asymmetry increased progressively relative to the position of the main sandbar. The megaripple-like bedforms appeared earlier when the meadow was present due to the higher skewness, showing a belated development in the layout without the meadow, when skewness increased further offshore due to the proximity of the breaker sandbar. To assess the sediment transport capacity of a submerged meadow, the SANTOSS formula was applied, showing that in front of the meadow, there was a higher sediment transport capacity, whereas behind the meadow, that capacity could be reduced by up to 41.3%. In addition, this formula was able to produce a suitable estimate of sediment transport across the profile, although it could not properly estimate the sediment volumes associated with the bedforms generated in the profile. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

19 pages, 9694 KiB  
Article
Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning
by Martin Meister and John J. Qu
Remote Sens. 2024, 16(7), 1165; https://doi.org/10.3390/rs16071165 - 27 Mar 2024
Cited by 3 | Viewed by 3705
Abstract
Seagrasses, rooted aquatic plants growing completely underwater, are extremely important for the coastal ecosystem. They are an important component of the total carbon burial in the ocean, they provide food, shelter, and nursery to many aquatic organisms in coastal ecosystems, and they improve [...] Read more.
Seagrasses, rooted aquatic plants growing completely underwater, are extremely important for the coastal ecosystem. They are an important component of the total carbon burial in the ocean, they provide food, shelter, and nursery to many aquatic organisms in coastal ecosystems, and they improve water quality. Due to human activity, seagrass coverage has been rapidly declining, and there is an urgent need to monitor seagrasses consistently. Seagrass coverage has been closely monitored in the Chesapeake Bay since 1970 using air photos and ground samples. These efforts are costly and time-consuming. Many studies have used remote sensing data to identify seagrass bed outlines, but few have mapped seagrass bed density. This study used Sentinel-2 satellite data and machine learning in Google Earth Engine and the Chesapeake Bay Program field data to map seagrass density. We used seagrass density data from the Chincoteague and Sinepuxent Bay to train machine learning algorithms and evaluate their accuracies. Out of the four machine learning models tested (Naive Bayes (NB), Classification and Regression Trees (CART), Support Vector Machine (SVM), and Random Forest (RF)), the RF model outperformed the other three models with overall accuracies of 0.874 and Kappa coefficients of 0.777. The SVM and CART models performed similarly and NB performed the poorest. We tested two different approaches to assess the models’ accuracy. When we used all the available ground samples to train the models, whereby our analysis showed that model performance was associated with seagrass density class, and that higher seagrass density classes had better consumer accuracy, producer accuracy, and F1 scores. However, the association of model performance with seagrass density class disappeared when using the same training data size for each class. Very sparse and dense seagrass classes had replacedhigherbetter accuracies than the sparse and moderate seagrass density classes. This finding suggests that training data impacts machine learning model performance. The uneven training data size for different classes can result in biased assessment results. Selecting proper training data and machine learning models are equally important when using machine learning and remote sensing data to map seagrass density. In summary, this study demonstrates the potential to map seagrass density using satellite data. Full article
Show Figures

Graphical abstract

23 pages, 5079 KiB  
Article
Supply Chain-Based Coral Conservation: The Case of Mozuku Seaweed Farming in Onna Village, Okinawa
by Reiko Omoto, Masato Uehara, Daigo Seki and Masaru Kinjo
Sustainability 2024, 16(7), 2713; https://doi.org/10.3390/su16072713 - 26 Mar 2024
Cited by 1 | Viewed by 3462
Abstract
Blue foods, including seaweed, have been overlooked in food systems analysis and policy-making due to a lack of available data. However, seaweed cultivation is gaining attention as a restorative aquaculture that could contribute to ocean health by serving as blue carbon or nurturing [...] Read more.
Blue foods, including seaweed, have been overlooked in food systems analysis and policy-making due to a lack of available data. However, seaweed cultivation is gaining attention as a restorative aquaculture that could contribute to ocean health by serving as blue carbon or nurturing seagrass beds. Commercial restorative aquaculture may provide market-based solutions for improving ocean health. The Onna Village Fisheries Cooperative producers have been restoring corals, knowing empirically that when the coral weakens, the yield of Mozuku seaweed drops. Furthermore, measures taken to reduce red soil run-off prevent the reduction in Mozuku quality and quantity and protect seagrass beds, since Mozuku cultivators have continued to use them as an important nursery. The fishery cooperative and the seaweed processing company, Igeta Takeuchi Co., Ltd., have jointly developed high-quality Mozuku that is resistant to climate change and extreme weather conditions through strain selection. Based on this case, this paper examines the following questions: (1) What quality assurance technique is necessary to continue restorative aquaculture as a market-based solution over the long term? (2) What social platforms and communication channels are available to stakeholders to maintain restorative aquaculture in the long run? To answer these questions, Japanese consumer cooperatives that established “the Mozuku Fund” are also examined. This case study of Mozuku highlights how the sustainability and quality of marine products are maintained throughout the whole supply chain, focusing on the power of the Japanese consumers’ cooperative. Full article
(This article belongs to the Special Issue Sustainability in the Seafood Chain and Impacts on Product Quality)
Show Figures

Figure 1

Back to TopTop