Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poloczanska, E.S.; Burrows, M.T.; Brown, C.J.; García Molinos, J.C.; Halpern, B.S.; Ehoegh-Guldberg, O.; Kappel, C.V.; Moore, P.J.; Richardson, A.J.; Schoeman, D.S.; et al. Responses of Marine Organisms to Climate Change across Oceans. Front. Mar. Sci. 2016, 3, 62. [Google Scholar] [CrossRef]
- Pinsky, M.L.; Selden, R.L.; Kitchel, Z.J. Climate-Driven Shifts in Marine Species Ranges: Scaling from Organisms to Communities. Annu. Rev. Mar. Sci. 2019, 12, 153–179. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.A.; Jarvis, J.C. Estuarine Seagrass and Climate Change. In Climate Change and Estuaries; Kennish, H., Paerl, J.C., Eds.; CRC Press: Boca Raton, Fl, USA, 2024; pp. 401–430. [Google Scholar]
- Vergés, A.; Steinberg, P.D.; Hay, M.E.; Poore, A.G.B.; Campbell, A.H.; Ballesteros, E.; Heck, K.L.; Booth, D.J.; Coleman, M.A.; Feary, D.A.; et al. The Tropicalization of Temperate Marine Ecosystems: Climate-Mediated Changes in Herbivory and Community Phase Shifts. Proc. R. Soc. B Biol. Sci. 2014, 281, 20140846. [Google Scholar] [CrossRef] [PubMed]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Thomson, J.A.; Burkholder, D.A.; Heithaus, M.R.; Fourqurean, J.W.; Fraser, M.W.; Statton, J.; Kendrick, G.A. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Chang. Biol. 2015, 21, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Hyndes, G.A.; Heck, K.L.; Vergés, A.; Harvey, E.S.; Kendrick, G.A.; Lavery, P.S.; McMahon, K.; Orth, R.J.; Pearce, A.; Vanderklift, M.; et al. Accelerating Tropicalization and the Transformation of Temperate Seagrass Meadows. BioScience 2016, 66, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.B.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L., Jr.; Hughes, A.R.; et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef]
- Hensel, M.J.S.; Patrick, C.J.; Orth, R.J.; Wilcox, D.J.; Dennison, W.C.; Gurbisz, C.; Hannam, M.P.; Landry, J.B.; Moore, K.A.; Murphy, R.R.; et al. Rise of Ruppia in Chesapeake Bay: Climate Change–Driven Turnover of Foundation Species Creates New Threats and Management Opportunities. Proc. Natl. Acad. Sci. USA 2023, 120, e2220678120. [Google Scholar] [CrossRef] [PubMed]
- Lefcheck, J.S.; Wilcox, D.J.; Murphy, R.R.; Marion, S.R.; Orth, R.J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol. 2017, 23, 3474–3483. [Google Scholar] [CrossRef]
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global seagrass distribution and diversity: A bioregional model. J. Exp. Mar. Biol. Ecol. 2007, 350, 3–20. [Google Scholar] [CrossRef]
- Kilminster, K.; McMahon, K.; Waycott, M.; Kendrick, G.A.; Scanes, P.; McKenzie, L.; O’Brien, K.R.; Lyons, M.; Ferguson, A.; Maxwell, P.; et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 2015, 534, 97–109. [Google Scholar] [CrossRef] [PubMed]
- French, E.; Moore, K. Canopy Functions of R. maritima and Z. marina in the Chesapeake Bay. Front. Mar. Sci. 2018, 5, 97–409. [Google Scholar] [CrossRef]
- Bijak, A.L.; Reynolds, L.K.; Smyth, A.R. Seagrass meadow stability and composition influence carbon storage. Landsc. Ecol. 2023, 38, 4419–4437. [Google Scholar] [CrossRef]
- Moore, A.; Duffy, J. Foundation species identity and trophic complexity affect experimental seagrass communities. Mar. Ecol. Prog. Ser. 2016, 556, 105–121. [Google Scholar] [CrossRef]
- Aoki, L.R.; McGlathery, K.J.; Oreska, M.P.J. Seagrass restoration reestablishes the coastal nitrogen filter through enhanced burial. Limnol. Oceanogr. 2019, 33, 1–12. [Google Scholar] [CrossRef]
- Orth, R.J.; Heck, K.L. Structural Components of Eelgrass (Zostera marina) Meadows in the Lower Chesapeake Bay: Fishes. Estuaries 1980, 3, 278–288. [Google Scholar] [CrossRef]
- Moore, K.A.; Shields, E.C.; Parrish, D.B. Impacts of Varying Estuarine Temperature and Light Conditions on Zostera marina (Eelgrass) and its Interactions with Ruppia maritima (Widgeongrass). Estuaries Coasts 2013, 37, 20–30. [Google Scholar] [CrossRef]
- Bologna, P.A.; Gibbons-Ohr, S.; Downes-Gastrich, M. Recovery of eelgrass (Zostera marina) after a major disturbance event in Little Egg Harbor, New Jersey, USA. Bull. N.J. Acad. Sci. 2007, 1, 1–6. [Google Scholar]
- Richardson, J.; Lefcheck, J.; Orth, R. Warming temperatures alter the relative abundance and distribution of two co-occurring foundational seagrasses in Chesapeake Bay, USA. Mar. Ecol. Prog. Ser. 2018, 599, 65–74. [Google Scholar] [CrossRef]
- Shields, E.C.; Parrish, D.; Moore, K. Short-Term Temperature Stress Results in Seagrass Community Shift in a Temperate Estuary. Estuaries Coasts 2019, 42, 755–764. [Google Scholar] [CrossRef]
- Evans, A.S.; Webb, K.L.; Penhale, P.A. Photosynthetic temperature acclimation in two coexisting seagrasses, Zostera marina L. and Ruppia maritima L. Aquat. Bot. 1986, 24, 185–197. [Google Scholar] [CrossRef]
- Short, F.T.; Burdick, D.M.; Kaldy, J.E.; Iii, J.E.K. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr. 1995, 40, 740–749. [Google Scholar] [CrossRef]
- Orth, R.J.; Moore, K.A. Distribution of Zostera marina L. and Ruppia maritima L. sensu lato along depth gradients in the lower Chesapeake Bay, U.S.A. Aquat. Bot. 1988, 32, 291–305. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Riosmena-Rodríguez, R.; Rodríguez-Baron, J.M.; Carrión-Cortez, J.; Torre, J.; Meling-López, A.; Hinojosa-Arango, G.; Hernández-Carmona, G.; García-Hernández, J. Outstanding appearance of Ruppia maritima along Baja California Sur, México and its influence in trophic networks. Mar. Biodivers. 2010, 40, 293–300. [Google Scholar] [CrossRef]
- Eyre, B.D.; Maher, D.; Oakes, J.M.; Erler, D.V.; Glasby, T.M. Differences in benthic metabolism, nutrient fluxes, and denitrification in Caulerpa taxifolia communities compared to uninvaded bare sediment and seagrass (Zostera capricorni) habitats. Limnol. Oceanogr. 2011, 56, 1737–1750. [Google Scholar] [CrossRef]
- Smyth, A.R.; Thompson, S.P.; Siporin, K.N.; Gardner, W.S.; McCarthy, M.J.; Piehler, M.F. Assessing Nitrogen Dynamics Throughout the Estuarine Landscape. Estuaries Coasts 2012, 36, 44–55. [Google Scholar] [CrossRef]
- Aoki, L.R.; McGlathery, K.J. Restoration enhances denitrification and DNRA in subsurface sediments of Zostera marina seagrass meadows. Mar. Ecol. Prog. Ser. 2018, 602, 87–102. [Google Scholar] [CrossRef]
- Welsh, D.T.; Bartoli, M.; Nizzoli, D.; Castaldelli, G.; Riou, S.A.; Viaroli, P. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Mar. Ecol. Prog. Ser. 2000, 208, 65–77. [Google Scholar] [CrossRef]
- Eyre, B.; Ferguson, A. Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar. Ecol. Prog. Ser. 2002, 229, 43–59. [Google Scholar] [CrossRef]
- Zarnoch, C.B.; Hoellein, T.J.; Furman, B.T.; Peterson, B.J. Eelgrass meadows, Zostera marina (L.), facilitate the ecosystem service of nitrogen removal during simulated nutrient pulses in Shinnecock Bay, New York, USA. Mar. Pollut. Bull. 2017, 124, 376–387. [Google Scholar] [CrossRef]
- Hoffman, D.K.; McCarthy, M.J.; Newell, S.E.; Gardner, W.S.; Niewinski, D.N.; Gao, J.; Mutchler, T.R. Relative Contributions of DNRA and Denitrification to Nitrate Reduction in Thalassia testudinum Seagrass Beds in Coastal Florida (USA). Estuaries Coasts 2019, 42, 1001–1014. [Google Scholar] [CrossRef]
- Eyre, B.D.; Maher, D.T.; Sanders, C. The contribution of denitrification and burial to the nitrogen budgets of three geo-morphically distinct Australian estuaries: Importance of seagrass habitats. Limnol. Oceanogr. 2016, 61, 1144–1156. [Google Scholar] [CrossRef]
- Eyre, B.D.; Maher, D.T.; Squire, P. Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Glob. Biogeochem. Cycles 2013, 27, 1083–1095. [Google Scholar] [CrossRef]
- Garcias-Bonet, N.; Fusi, M.; Ali, M.; Shaw, D.R.; Saikaly, P.E.; Daffonchio, D.; Duarte, C.M. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences 2018, 15, 7333–7346. [Google Scholar] [CrossRef]
- Touchette, B.W.; Burkholder, J.M. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000, 250, 133–167. [Google Scholar] [CrossRef]
- Romero, J.; Lee, K.-S.; Rez, M.P.; Mateo, M.A.; Alcoverro, T. Nutrient Dynamics in Seagrass Ecosystems in Seagrasses: Biology, Ecology and Conservation; Larkum, A.W.D., Orth, R.J., Duarte, C.M., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 227–254. [Google Scholar]
- Moore, K.A. Influence of Seagrasses on Water Quality in Shallow Regions of the Lower Chesapeake Bay. J. Coast. Res. 2004, 10045, 162–178. [Google Scholar] [CrossRef]
- Thomsen, E.; Herbeck, L.S.; Viana, I.G.; Jennerjahn, T.C. Meadow trophic status regulates the nitrogen filter function of tropical seagrasses in seasonally eutrophic coastal waters. Limnol. Oceanogr. 2023, 68, 1906–1919. [Google Scholar] [CrossRef]
- Cole, L.; McGlathery, K. Nitrogen fixation in restored eelgrass meadows. Mar. Ecol. Prog. Ser. 2012, 448, 235–246. [Google Scholar] [CrossRef]
- Welsh, D.; Bourguès, S.; de Wit, R.; Auby, I. Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii. Aquat. Microb. Ecol. 1997, 12, 285–290. [Google Scholar] [CrossRef]
- McGlathery, K.; Risgaard-Petersen, N.; Christensen, P. Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar. Ecol. Prog. Ser. 1998, 168, 245–258. [Google Scholar] [CrossRef]
- Russell, B.D.; Connell, S.D.; Uthicke, S.; Muehllehner, N.; Fabricius, K.E.; Hall-Spencer, J.M. Future Seagrass Beds: Can Increased Productivity Lead to Increased Carbon Storage? Mar. Pollut. Bull. 2013, 73, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, Z.; Pedersen, M.; Larsen, M.; Kristensen, E. Glud Rhizosphere O2 dynamics in young Zostera marina and Ruppia maritima. Mar. Ecol. Prog. Ser. 2015, 518, 95–105. [Google Scholar] [CrossRef]
- Nielsen, O.I.; Gribsholt, B.; Kristensen, E.; Revsbech, N.P. Microscale distribution of oxygen and nitrate in sediment in-habited by Nereis diversicolor: Spatial patterns and estimated reaction rates. Aquat. Microb. Ecol. 2004, 34, 23–32. [Google Scholar] [CrossRef]
- Eyre, B.D.; Rysgaard, S.; Dalsgaard, T.; Christensen, P.B. Comparison of isotope pairing and N2: Ar methods for measuring sediment-denitrification-assumptions, modifications, and implications. Estuaries 2002, 25, 1077–1087. [Google Scholar] [CrossRef]
- Kana, T.M.; Darkangelo, C.; Hunt, M.D.; Oldham, J.B. Membrane inlet mass spectrometer for rapid high-precision de-termination of N2, O2, and Ar in environmental water samples. Anal. Chem. 1994, 66, 4166–4170. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.; Koch, E.W. Sediment geology methods for seagrass habitat. In Global seagrass research methods; Short, F.T., Coles, R.G., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 345–367. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Trevathan-Tackett, S.M.; Skilbeck, C.G.; Sanderman, J.; Curlevski, N.; Jacobsen, G.; Seymour, J.R. Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151537. [Google Scholar] [CrossRef]
- Lavrentyev, P.J.; Gardner, W.S.; Yang, L. Effects of the zebra mussel on nitrogen dynamics and the microbial community at the sediment-water interface. Aquat. Microb. Ecol. 2000, 21, 187–194. [Google Scholar] [CrossRef]
- Shieh, W.; Yang, J. Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J. Exp. Mar. Biol. Ecol. 1997, 218, 229–241. [Google Scholar] [CrossRef]
- Hammer, K.; Borum, J.; Hasler-Sheetal, H.; Shields, E.; Sand-Jensen, K.; Moore, K. High Temperatures Cause Reduced Growth, Plant Death and Metabolic Changes in Eelgrass Zostera Marina. Mar. Ecol. Prog. Ser. 2018, 604, 121–132. [Google Scholar] [CrossRef]
- Greve, T.M.; Borum, J.; Pedersen, O. Meristematic oxygen variability in eelgrass (Zostera marina). Limnol. Oceanogr. 2003, 48, 210–216. [Google Scholar] [CrossRef]
- Dahl, M.; Asplund, M.E.; Deyanova, D.; Franco, J.N.; Koliji, A.; Infantes, E.; Perry, D.; Björk, M.; Gullström, M. High Seasonal Variability in Sediment Carbon Stocks of Cold-Temperate Seagrass Meadows. J. Geophys. Res. Biogeosciences 2020, 125. [Google Scholar] [CrossRef]
- Haviland, K.A.; Howarth, R.W.; Marino, R.; Hayn, M. Variation in sediment and seagrass characteristics reflect multiple stressors along a nitrogen-enrichment gradient in a New England lagoon. Limnol. Oceanogr. 2022, 67, 660–672. [Google Scholar] [CrossRef]
- Kennedy, H.; Beggins, J.; Duarte, C.M.; Fourqurean, J.W.; Holmer, M.; Marbà, N.; Middelburg, J.J. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles 2010, 24, 6696–6705. [Google Scholar] [CrossRef]
- Delgado, M.; Cintra-Buenrostro, C.E.; Fierro-Cabo, A. Decomposition and nitrogen dynamics of turtle grass (Thalassia testudinum) in a subtropical estuarine system. Wetl. Ecol. Manag. 2017, 25, 667–681. [Google Scholar] [CrossRef]
- Ziegler, S.; Benner, R. Nutrient cycling in the water column of a subtropical seagrass meadow. Mar. Ecol. Prog. Ser. 1999, 188, 51–62. [Google Scholar] [CrossRef]
- Orth, R.J.; Moore, K.A. Seasonal and year-to-year variations in the growth of Zostera marina L. (eelgrass) in the lower Chesapeake Bay. Aquat. Bot. 1986, 24, 335–341. [Google Scholar] [CrossRef]
- Welsh, D.T. Nitrogen fixation in seagrass meadows: Regulation, plant-bacteria interactions and significance to primary productivity. Ecol. Lett. 2000, 3, 58–71. [Google Scholar] [CrossRef]
- Cook, P.; Evrard, V.; Woodland, R. Factors controlling nitrogen fixation in temperate seagrass beds. Mar. Ecol. Prog. Ser. 2015, 525, 41–51. [Google Scholar] [CrossRef]
- Holmer, M.; Nielsen, S. Sediment sulfur dynamics related to biomass- density patterns in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. 1997, 146, 163–171. [Google Scholar] [CrossRef]
- Van Dam, B.R.; Zeller, M.A.; Lopes, C.; Smyth, A.R.; Böttcher, M.E.; Osburn, C.L.; Zimmerman, T.; Profrock, D.; Fourqurean, J.W.; Thomas, H. Calcification-driven CO2 emissions exceed “Blue Carbon” sequestration in a carbonate seagrass meadow. Sci. Adv. 2021, 7, eabj1372. [Google Scholar] [CrossRef]
- Cook, P.L.M.; Kessler, A.J.; Eyre, B.D. Does denitrification occur within porous carbonate sand grains? Biogeosciences 2017, 14, 4061–4069. [Google Scholar] [CrossRef]
- Russell, D.G.; Warry, F.Y.; Cook, P.L.M. The balance between nitrogen fixation and denitrification on vegetated and non-vegetated intertidal sediments. Limnol. Oceanogr. 2016, 61, 2058–2075. [Google Scholar] [CrossRef]
- Aoki, L.; McGlathery, K. High rates of N fixation in seagrass sediments measured via a direct 30N2 push-pull method. Mar. Ecol. Prog. Ser. 2019, 616, 1–11. [Google Scholar] [CrossRef]
- Kenworthy, W.; Thayer, G. Production and Decomposition of the Roots and Rhizomes of Seagrasses, Zostera Marina and Thalassia Testudinum, in Temperate and Subtropical Marine Ecosystems. Bull. Mar. Sci. 1984, 35, 364–379. [Google Scholar]
- Kenworthy, W.J.; Zieman, J.C.; Thayer, G.W. Evidence for the influence of seagrasses on the benthic nitrogen cycle in a coastal plain estuary near Beaufort, North Carolina (USA). Oecologia 1982, 54, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Salk, K.R.; Erler, D.V.; Eyre, B.D.; Carlson-Perret, N.; Ostrom, N.E. Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique. Geochim. Et Cosmochim. Acta 2017, 211, 64–78. [Google Scholar] [CrossRef]
- Orth, R.J.; Heck, K.L.; van Montfrans, J. Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 1984, 7, 339–350. [Google Scholar] [CrossRef]
- Rysgaard, S.; Christensen, P.; Nielsen, L. Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar. Ecol. Prog. Ser. 1995, 126, 111–121. [Google Scholar] [CrossRef]
Season | Date | Temp (°C) | Salinity | Dissolved O2 (mg/L) | NOx (μM) | NH4+ (μM) |
---|---|---|---|---|---|---|
Spring | 27 May 2014 | 26.5 | 15.8 | 7.3 ± 0.11 | 1.14 ± 0.02 | 01.8 ± 0.17 |
Summer | 2 September 2014 | 27.1 | 19.3 | 7.15 ± 0.19 | 0.31 ± 0.02 | 0.70 ± 0.06 |
Season | Habitat | n | AG Biomass (g DW/m2) | BG Biomass (g DW/m2) | Total Biomass | SOM (%) |
---|---|---|---|---|---|---|
Spring | Unvegetated | 3 | - | - | - | 0.98 ± 0.12 |
Widgeongrass | 3 | 42.73 ± 4.60 | 34.0 ± 2.86 | 76.73 ± 6.71 | 1.75 ± 0.20 | |
Eelgrass | 3 | 116.47 ± 31.18 | 141.89 ± 12.54 | 258.36 ± 39.42 | 3.17 ± 0.35 | |
Summer | Unvegetated | 4 | - | - | - | 0.86 ± 0.02 |
Widgeongrass | 4 | 53.94 ± 29.11 | 24.19 ± 4.70 | 78.13 ± 33.54 | 1.21 ± 0.10 | |
Eelgrass | 4 | 77.95 ± 23.99 | 71.79 ± 17.76 | 149.74 ± 40.66 | 2.25 ± 0.10 |
Season | Habitat | n | NOx (µmol N-NOx m−2 h−1) | NH4+ (µmol N-NH4+ m−2 h−1) | SOD (µmol O2 m−2 h−1) |
---|---|---|---|---|---|
Spring | Unvegetated | 3 | −7.29 ± 2.29 | 6.23 ± 2.24 | 2994.49 ± 149.03 |
Widgeongrass | 3 | −10.9 ± 1.96 | −16.06 ± 1.45 | 3306.22 ± 63.58 | |
Eelgrass | 3 | 0.24 ± 7.33 | 857.82 ± 494.06 | 3538.84 ± 67.29 | |
Summer | Unvegetated | 4 | −3.56 ± 0.44 | −7.55 ± 1.26 | 2147.39 ± 266.71 |
Widgeongrass | 4 | −3.4 ± 0.51 | 19.75 ± 13.40 | 4348.78 ± 450.15 | |
Eelgrass | 4 | −4.46 ± 0.29 | 1174.69 ± 830.02 | 5030.87 ± 44.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
French, E.; Smyth, A.R.; Reynolds, L.K.; Moore, K.A. Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay. Nitrogen 2024, 5, 315-328. https://doi.org/10.3390/nitrogen5020021
French E, Smyth AR, Reynolds LK, Moore KA. Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay. Nitrogen. 2024; 5(2):315-328. https://doi.org/10.3390/nitrogen5020021
Chicago/Turabian StyleFrench, Emily, Ashley R. Smyth, Laura K. Reynolds, and Kenneth A. Moore. 2024. "Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay" Nitrogen 5, no. 2: 315-328. https://doi.org/10.3390/nitrogen5020021
APA StyleFrench, E., Smyth, A. R., Reynolds, L. K., & Moore, K. A. (2024). Nitrogen Cycling in Widgeongrass and Eelgrass Beds in the Lower Chesapeake Bay. Nitrogen, 5(2), 315-328. https://doi.org/10.3390/nitrogen5020021