Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = satellite laser ranging (SLR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3553 KiB  
Article
Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology
by Wei Xiao, Zhengcheng Wu, Zongnan Li, Lei Fan, Shiwei Guo and Yilun Chen
Remote Sens. 2025, 17(14), 2342; https://doi.org/10.3390/rs17142342 - 8 Jul 2025
Viewed by 351
Abstract
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser [...] Read more.
The Beidou Global System (BDS-3) innovatively achieves autonomous navigation using inter-satellite links (ISL) across the entire constellation, but it still faces challenges such as the limitations of the prior constraint orbital accuracy and the overall constellation rotation. The gradual availability of satellite laser ranging (SLR) data, with advantages of high precision and no ambiguous parameters, can provide new ideas for solving the current problem. This work firstly deduces the mathematical model for orbit determination by combining inter-satellite links and the introduced satellite laser ranging observations, then designs orbit determination experiments with different prior orbit constraints and different observation data, and finally evaluates the impacts of the prior orbits and the introduction of SLR observations from two dimensions: orbit accuracy and constellation rotation. The experimental results using one month of measured data show the following: (1) There is good consistency among different days, and the accuracy of the prior orbits affects the performance of the orbit determination and the consistency. Compared with broadcast ephemerides, using precise ephemerides as prior constraints significantly improves the consistency, and the orbit accuracy can be increased by about 75%. (2) The type of observation data affects the performance of the orbit determination. Introducing SLR observations can improve the orbit accuracy by approximately 13% to 26%. (3) Regardless of whether broadcast ephemerides or precise ephemerides are used as prior constraints, the constellation translation and rotation still exist after introducing SLR observations. Among the translation parameters, TX is the largest, followed by TY, and TZ is the smallest; all three rotation parameters (RX, RY, and RZ) show relatively large values, which may be related to the limited number of available satellite laser ranging stations during this period. (4) After considering the constellation translation and rotation, the orbit accuracy under different prior constraints remains at the same level. The statistical root mean square error (RMSE) indicates that the orbit accuracy of inclined geosynchronous orbit (IGSO) satellites in three directions is better than 20 cm, while the accuracy of medium earth orbit (MEO) satellites in along-track, cross-track, and radial directions is better than 10 cm, 8 cm, and 5 cm, respectively. Full article
Show Figures

Figure 1

20 pages, 7507 KiB  
Article
Undifferenced Ambiguity Resolution for Precise Multi-GNSS Products to Support Global PPP-AR
by Junqiang Li, Jing Guo, Shengyi Xu and Qile Zhao
Remote Sens. 2025, 17(8), 1451; https://doi.org/10.3390/rs17081451 - 18 Apr 2025
Cited by 1 | Viewed by 631
Abstract
Precise point positioning ambiguity resolution (PPP-AR) is a key technique for high-precision global navigation satellite system (GNSS) observations, with phase bias products playing a critical role in its implementation. The multi-GNSS experiment analysis center at Wuhan University (WUM) has adopted the undifferenced ambiguity [...] Read more.
Precise point positioning ambiguity resolution (PPP-AR) is a key technique for high-precision global navigation satellite system (GNSS) observations, with phase bias products playing a critical role in its implementation. The multi-GNSS experiment analysis center at Wuhan University (WUM) has adopted the undifferenced ambiguity resolution (UDAR) approach to generate high-precision orbit, clock, and observable-specific bias (OSB) products to support PPP-AR since day 162 of 2023. This study presents the analysis strategy employed and assesses the impact of the transition to ambiguity resolution on the orbit precision, using metrics such as orbit boundary discontinuities (OBD) and satellite laser ranging (SLR) validation. Additionally, the stability of the OSB products and the overall performance of PPP-AR solutions are evaluated. The OBD demonstrates specific improvements of 7.1% and 9.5% for GPS and Galileo, respectively, when UDAR is applied. Notably, BDS-3 medium Earth orbit satellites show a remarkable 15.2% improvement compared to the double-differenced results. However, for the remaining constellations, the improvements are either minimal or result in degradation. Using GPS and GLONASS solutions from the International GNSS Service (IGS) and other solutions from the European Space Agency (ESA) as references, the orbit differences of WUM solutions based on UDAR exhibit a significant reduction. However, the improvements in SLR validation are limited, as the radial orbit precision is primarily influenced by the dynamic model. The narrow-lane ambiguity fixing rate for static PPP-AR, based on data from approximately 430 globally distributed stations, reaches 99.2%, 99.2%, 88.8%, and 98.6% for GPS, Galileo, BDS-2, and BDS-3, respectively. The daily repeatability of station coordinates is approximately 1.4 mm, 1.9 mm, and 3.9 mm in the east, north, and up directions, respectively. Overall, these results demonstrate the effectiveness and potential of WUM’s undifferenced ambiguity resolution approach in enhancing GNSS data processing and facilitating PPP-AR applications. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

17 pages, 3801 KiB  
Article
Solar Radiation Pressure Modeling and Validation for BDS-3 MEO Satellites
by Qiuli Chen, Xu Zhang, Chen Wang, Haihong Wang, Chen Ren, Fujian Ma and Xinglong Zhao
Remote Sens. 2025, 17(6), 1068; https://doi.org/10.3390/rs17061068 - 18 Mar 2025
Viewed by 595
Abstract
The solar radiation pressure (SRP) model, as a key factor affecting the precise orbit determination (POD) accuracy of navigation satellites, is related to the state and optical properties of the satellite surface. This study establishes a high-precision SRP model for BDS-3 medium earth [...] Read more.
The solar radiation pressure (SRP) model, as a key factor affecting the precise orbit determination (POD) accuracy of navigation satellites, is related to the state and optical properties of the satellite surface. This study establishes a high-precision SRP model for BDS-3 medium earth orbit (MEO) satellites manufactured by the China Academy of Space Technology based on the satellite engineering parameters, which comprises the satellites’ size and optical properties measured before launch. Then, the physical-based SRP model is re-constructed into the body-fixed coordinate as the function of the Sun elongation angle. The use of the hybrid SRP model, combining the reconstructed SRP model and the 5-parameter ECOM, results in a better POD performance. The orbit results, validated using satellite laser ranging (SLR) observations, show that the radial precision of approximately 3–4 cm can be achieved, with a reduction of the bias by up to 38% and a removal of the systematic error related to the Sun elongation angle in SLR residuals. Considering the possible degradation of the reconstructed SRP model with the engineering parameters, the evolution of SRP accelerations along with orbit quality based on a time series from over 5 years was studied. The results indicate that a variation of the total SRP acceleration for the BDS-3 satellites is minor and there is no apparent degradation in validations of 2019–2023, which proved the reliability and usability of the proposed SRP model for the BDS-3 MEO satellites. Full article
(This article belongs to the Special Issue BDS/GNSS for Earth Observation: Part II)
Show Figures

Figure 1

17 pages, 3795 KiB  
Review
Comprehensive Analysis of HY-2B/2C/2D Satellite-Borne GPS Data Quality and Reduced-Dynamic Precise Orbit Determination
by Xin Jin, Guangzhe Wang, Jinyun Guo, Hailong Peng, Yongjun Jia and Xiaotao Chang
Aerospace 2025, 12(2), 102; https://doi.org/10.3390/aerospace12020102 - 30 Jan 2025
Cited by 1 | Viewed by 838
Abstract
The deployment of the HY-2B/2C/2D satellite constellation marks a significant advancement in China’s marine dynamic environmental satellite program, forming a robust three-satellite network. All satellites are equipped with the “HY2_Receiver”, an indigenous technological achievement. Precise orbit determination using this receiver is critical for [...] Read more.
The deployment of the HY-2B/2C/2D satellite constellation marks a significant advancement in China’s marine dynamic environmental satellite program, forming a robust three-satellite network. All satellites are equipped with the “HY2_Receiver”, an indigenous technological achievement. Precise orbit determination using this receiver is critical for monitoring dynamic oceanic parameters such as sea surface wind fields and heights. This study presents a detailed analysis and comparison of the GPS data quality from the HY-2B/2C/2D satellites, emphasizing the impact of phase center variation (PCV) model corrections on orbit accuracy, with a particular focus on high-precision reduced-dynamic orbit determination. The experimental results demonstrate that the GPS data from the satellites exhibit consistent satellite visibility and minimal multipath errors, confirming the reliability and stability of the receivers. Incorporating PCV model corrections significantly enhances orbit accuracy, achieving improvements of approximately 0.3 cm. Compared to DORIS-derived orbits from the Centre National d’Études Spatiales (CNES), the GPS-derived reduced-dynamic orbits consistently reach radial accuracies of 1.5 cm and three-dimensional accuracies of 3 cm. Furthermore, validation using Satellite Laser Ranging (SLR) data confirms orbit accuracies better than 3.5 cm, with 3D root mean square (RMS) accuracies exceeding 3 cm in the radial (R), along-track (T), and cross-track (N) directions. Notably, the orbit determination accuracy remains consistent across all satellites within the HY-2B/2C/2D constellation. This comprehensive analysis highlights the consistent and reliable performance of the indigenous “HY2_Receiver” in supporting high-precision orbit determination for the HY-2B/2C/2D constellation, demonstrating its capability to meet the rigorous demands of marine dynamic environmental monitoring. Full article
Show Figures

Figure 1

34 pages, 14204 KiB  
Article
A Novel Algorithm for Precise Orbit Determination Using a Single Satellite Laser Ranging System Within a Single Arc for Space Surveillance and Tracking
by Dong-Gu Kim, Sang-Young Park and Eunji Lee
Aerospace 2024, 11(12), 989; https://doi.org/10.3390/aerospace11120989 - 29 Nov 2024
Viewed by 1684
Abstract
A satellite laser ranging (SLR) system uses lasers to measure the range from ground stations to space objects with millimeter-level precision. Recent advances in SLR systems have increased their use in space surveillance and tracking (SST). The problem we are addressing, the precise [...] Read more.
A satellite laser ranging (SLR) system uses lasers to measure the range from ground stations to space objects with millimeter-level precision. Recent advances in SLR systems have increased their use in space surveillance and tracking (SST). The problem we are addressing, the precise orbit determination (POD) using one-dimensional range observations within a single arc, is challenging owing to infinite solutions because of limited observability. Therefore, general orbit determination algorithms struggle to achieve reasonable accuracy. The proposed algorithm redefines the cost value for orbit determination by leveraging residual tendencies in the POD process. The tendencies of residuals are quantified as R-squared values using Fourier series fitting to determine velocity vector information. The algorithm corrects velocity vector errors through the grid search method and least squares (LS) with a priori information. This approach corrects all six dimensions of the state vectors, comprising position and velocity vectors, utilizing only one dimension of the range observations. Simulations of three satellites using real data validate the algorithm. In all cases, the errors of the two-line element data (three-dimensional position error of 1 km and velocity error of 1 m/s, approximately) used as the initial values were reduced by tens of meters and the cm/s level, respectively. The algorithm outperformed the general POD algorithm using only the LS method, which does not effectively reduce errors. This study offers a more efficient and accurate orbit determination method, which improves the safety, cost efficiency, and effectiveness of space operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 3810 KiB  
Article
Study on the Feasibility and Performance Evaluation of High-Orbit Spacecraft Orbit Determination Based on GNSS/SLR/VLBI
by Zhengcheng Wu, Shaojie Ni, Wei Xiao, Zongnan Li and Huicui Liu
Remote Sens. 2024, 16(22), 4214; https://doi.org/10.3390/rs16224214 - 12 Nov 2024
Cited by 2 | Viewed by 1663
Abstract
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. [...] Read more.
Deep space exploration utilizing high-orbit vehicles is a vital approach for extending beyond near-Earth space, with orbit information serving as the foundation for all functional capabilities. The performance of orbit determination is primarily influenced by observation types, errors, geometrical structures, and physical perturbations. Currently, research on orbit determination for high-orbit spacecraft predominantly focuses on single observation methods, error characteristics, multi-source fusion techniques, and algorithms. However, these approaches often suffer from low observation accuracy and increased costs. This paper advocates for the comprehensive utilization of existing multi-source observation methods, such as GNSS (Global Navigation Satellite System), SLR (Satellite Laser Ranging), and VLBI (Very Long Baseline Interferometry), in research. The decoupled Kalman filter reveals a positive correlation between measurement positioning accuracy and orbit determination accuracy, and it derives a simple orbit performance evaluation model that considers the influence of observation value types and geometric configurations, without the need to introduce complex dynamic models. Simulations are then employed to verify and analyze antenna gain, observation values, and performance evaluation. The results indicate the following: (1) Under simulated conditions, the optimal strategy involves employing the SLR/VLBI dual system during periods when VLBI orbit determination is feasible, yielding an average Weighted Position Dilution of Precision (WPDOP) of 26.79. (2) For periods when VLBI orbit determination is not feasible, the optimal approach is to utilize the GNSS/SLR/VLBI triple system, resulting in an average WPDOP of 16.32. (3) The orbit determination performance of the triple system is not significantly impacted by the use of global SLR stations compared to using only Chinese SLR stations. However, the global network enables continuous, round-the-clock orbit determination capabilities. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

18 pages, 9065 KiB  
Article
Modeling of Solar Radiation Pressure for BDS-3 MEO Satellites with Inter-Satellite Link Measurements
by Yifei Lv, Zihao Liu, Rui Jiang and Xin Xie
Remote Sens. 2024, 16(20), 3900; https://doi.org/10.3390/rs16203900 - 20 Oct 2024
Cited by 2 | Viewed by 1433
Abstract
As the largest non-gravitational force, solar radiation pressure (SRP) causes significant errors in precise orbit determination (POD) of the BeiDou global navigation satellite system (BDS-3) medium Earth orbit (MEO) satellite. This is mainly due to the imperfect modeling of the satellite’s cuboid body. [...] Read more.
As the largest non-gravitational force, solar radiation pressure (SRP) causes significant errors in precise orbit determination (POD) of the BeiDou global navigation satellite system (BDS-3) medium Earth orbit (MEO) satellite. This is mainly due to the imperfect modeling of the satellite’s cuboid body. Since the BDS-3’s inter-satellite link (ISL) can enhance the orbit estimation of BDS-3 satellites, the aim of this study is to establish an a priori SRP model for the satellite body using 281-day ISL observations to reduce the systematic errors in the final orbits. The adjustable box wind (ABW) model is employed to refine the optical parameters for the satellite buses. The self-shadow effect caused by the search and rescue (SAR) antenna is considered. Satellite laser ranging (SLR), day-boundary discontinuity (DBD), and overlapping Allan deviation (OADEV) are utilized as indicators to assess the performance of the a priori model. With the a priori model developed by both ISL and ground observation, the slopes of SLR residual for the China Academy of Space Technology (CAST) and Shanghai Engineering Center for Microsatellites (SECM) satellites decrease from −0.097 cm/deg and 0.067 cm/deg to −0.004 cm/deg and −0.009 cm/deg, respectively. The standard deviation decreased by 21.8% and 26.6%, respectively. There are slight enhancements in the average values of DBD and OADEV, and a reduced β-dependent variation is observed in the OADEV of the corresponding clock offset. We also found that considering the SAR antenna only slightly improves the orbit accuracy. These results demonstrate that an a priori model established for the BDS-3 MEO satellite body can reduce the systematic errors in orbits, and the parameters estimated using both ISL and ground observation are superior to those estimated using only ground observation. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

15 pages, 4718 KiB  
Technical Note
Precise Orbit Determination for Maneuvering HY2D Using Onboard GNSS Data
by Kexin Xu, Xuhua Zhou, Kai Li, Xiaomei Wang, Hailong Peng and Feng Gao
Remote Sens. 2024, 16(13), 2410; https://doi.org/10.3390/rs16132410 - 1 Jul 2024
Cited by 1 | Viewed by 1305
Abstract
The Haiyang-2D (HY2D) satellite is the fourth ocean dynamics environment monitoring satellite launched by China. The satellite operates on a re-entry frozen orbit, which necessitates orbital maneuvers to maintain its designated path once the satellite’s sub-satellite point deviates beyond a certain threshold. However, [...] Read more.
The Haiyang-2D (HY2D) satellite is the fourth ocean dynamics environment monitoring satellite launched by China. The satellite operates on a re-entry frozen orbit, which necessitates orbital maneuvers to maintain its designated path once the satellite’s sub-satellite point deviates beyond a certain threshold. However, the execution of orbit maneuvers presents a significant challenge to the field of Precise Orbit Determination (POD). The thesis selects the on-board GPS data of HY2D satellite in December 2023 and five maneuvering days of that year. Employing a multifaceted approach that includes the assessment of observational data quality, orbit overlap, external orbit validation, and SLR (Satellite Laser Ranging) verification, the research delves into precise orbit determination during both maneuver and non-maneuver periods. The results indicate that: (1) The average number of satellites tracked by the receiver is 6.4; (2) During the non-maneuver periods, the average RMS (Root Mean Square) value of the radial difference in the 6-h overlapping arc segment is 0.66 cm, and the three-dimensional position difference is about 1.16 cm; (3) When compared with the precision science orbits (PSO) provided by CNES (Centre National d’Études Spatiales), the average values of the RMS values of the differences in the radial (R), transverse (T), and normal (N) directions during the non-maneuver and maneuver periods are respectively 1.32 cm, 2.31 cm, 1.92 cm and 3.04 cm, 8.78 cm, 2.72 cm. (4) The SLR verification of the orbit revealed a residual RMS of 2.24 cm. This suggests that by incorporating the modeling of maneuver forces during the maneuver periods, the impact of orbital maneuvers on orbit determination can be mitigated. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

20 pages, 3230 KiB  
Article
SLR Validation and Evaluation of BDS-3 MEO Satellite Precise Orbits
by Ran Li, Chen Wang, Hongyang Ma, Yu Zhou, Chengpan Tang, Ziqian Wu, Guang Yang and Xiaolin Zhang
Remote Sens. 2024, 16(11), 2016; https://doi.org/10.3390/rs16112016 - 4 Jun 2024
Cited by 3 | Viewed by 1229
Abstract
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing [...] Read more.
Starting from February 2023, the International Laser Ranging Service (ILRS) began releasing satellite laser ranging (SLR) data for all BeiDou global navigation satellite system (BDS-3) medium earth orbit (MEO) satellites. SLR data serve as the best external reference for validating satellite orbits, providing a basis for comprehensive evaluation of the BDS-3 satellite orbit. We utilized the SLR data from February to May 2023 to comprehensively evaluate the orbits of BDS-3 MEO satellites from different analysis centers (ACs). The results show that, whether during the eclipse season or the yaw maneuver season, the accuracy was not significantly decreased in the BDS-3 MEO orbit products released from the Center for Orbit Determination in Europe (CODE), Wuhan University (WHU), and the Deutsches GeoForschungsZentrum (GFZ) ACs, and the STD (Standard Deviation) of SLR residuals of those three ACs are all less than 5 cm. Among these, CODE had the smallest SLR residuals, with 9% and 12% improvement over WHU and GFZ, respectively. Moreover, the WHU precise orbits exhibit the smallest systematic biases, whether during non-eclipse seasons, eclipse seasons, or satellite yaw maneuver seasons. Additionally, we found some BDS-3 satellites (C32, C33, C34, C35, C45, and C46) exhibit orbit errors related to the Sun elongation angle, which indicates that continued effort for the refinement of the non-conservative force model further to improve the orbit accuracy of BDS-3 MEO satellites are in need. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques (Third Edition))
Show Figures

Figure 1

21 pages, 12261 KiB  
Article
Earth Rotation Parameters Derived from BDS-3 New Signals B1C/B2a Dual-Frequency Combination Observations
by Zhenlong Fang, Tianhe Xu, Wenfeng Nie, Yuguo Yang and Min Li
Remote Sens. 2024, 16(8), 1322; https://doi.org/10.3390/rs16081322 - 9 Apr 2024
Viewed by 1559
Abstract
The Earth rotation parameters (ERP) play a crucial role in defining the global reference frame and the Global Navigation Satellite System (GNSS) is one of the important tools used to obtain ERP, including polar motion (PM), its rates, and length of day (LOD). [...] Read more.
The Earth rotation parameters (ERP) play a crucial role in defining the global reference frame and the Global Navigation Satellite System (GNSS) is one of the important tools used to obtain ERP, including polar motion (PM), its rates, and length of day (LOD). The latest IGS Repro3 ERP products, which provided the IGS contribution to the latest ITRF2020, were generated without consideration of the Beidou Navigation Satellite System (BDS) observations. The global BDS, namely the BDS-3 constellation, has been completely constructed from July 2020 and the observing stations are evenly distributed globally now. Two couple dual-frequency combinations, including the B1I/B3I and B1C/B2a combinations, are commonly used for BDS-3 ionosphere-free combination usage. With the goal of identifying the optimal dual-frequency combination for BDS-3 ERP estimates for the future ITRF definition with a consideration of BDS-3, this research evaluated the performance of ERP estimation using B1I/B3I and B1C/B2a combinations. Firstly, we conducted a comparison of the ambiguity resolutions. The mean percentage of successfully resolved ambiguities for the BDS-3 B1C/B2a combination is 86.5%, surpassing that of B1I/B3I. The GNSS satellite orbits and ERP were estimated simultaneously, thus the accuracy of orbits could also reflect the performance of the ERP estimates. Subsequently, we validated the orbits of 22 BDS-3 Medium Earth Orbit (MEO) satellites using Satellite Laser Ranging (SLR), and the root mean square error (RMS) of the SLR residuals for the 3-day arc orbit with B1C/B2a signals was 5.72 cm, indicating superior accuracy compared with the B1I/B3I combination. Finally, we compared the performance of ERP estimation, considering both internal and external accuracy. For the internal accuracy, B1C/B2a-based solutions demonstrated a reduction in mean formal errors of approximately 17% for PM, 22% for LOD, and 21% for PM rates compared with B1I/B3I-based solutions. In terms of external accuracy, we compared BDS-3-derived ERP estimates with the IERS 20C04 products. The B1C/B2a combination exhibited a slightly better standard deviation performance and a significant reduction in mean bias by 56%, 54%, 39%, 64%, and 23% for X, Y polar motion, X, Y polar motion rates, and LOD, respectively, compared with B1I/B3I solutions. In conclusion, the results highlight the excellent signal quality for BDS-3 B1C/B2a and its superiority in ERP estimation when compared with the B1I/B3I combination. Full article
Show Figures

Figure 1

16 pages, 3790 KiB  
Technical Note
Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods
by Jin Zhang, Chengli Huang, Lizhen Lian and Simeng Zhang
Remote Sens. 2024, 16(7), 1240; https://doi.org/10.3390/rs16071240 - 31 Mar 2024
Cited by 2 | Viewed by 2174
Abstract
International terrestrial reference frame (ITRF) input data, generated by Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) combination centers (CCs), are considered to be relatively high-quality and accurate [...] Read more.
International terrestrial reference frame (ITRF) input data, generated by Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) combination centers (CCs), are considered to be relatively high-quality and accurate solutions. Every few years, these input data are submitted to the three ITRS combination centers, namely Institut Géographique National (IGN), Deutsches Geodätisches Forschungsinstitut at the Technische Universität München (DGFI-TUM), and Jet Propulsion Laboratory (JPL), to establish a multi-technique combined terrestrial reference frame (TRF). Generally, these solutions have undergone three rounds of outlier removal: the first at the technique analysis centers during solution generations and the second during the technique-specific combination by the CCs; ITRS CCs then perform a third round of outlier removal and preprocessing during the multi-technique combination of TRFs. However, since the primary objective of CCs is to release the final TRF product, they do not emphasize the publication of analytical preprocessing results, such as the outlier rejection rate. In this paper, our specific focus is on assessing the precision improvement of ITRF input data from 2014 to 2020, which includes evaluating the accuracy of coordinates, the datum accuracy, and the precision of the polar motions, for all four techniques. To achieve the above-mentioned objectives, we independently propose a TRF stacking approach to establish single technical reference frameworks, using software developed by us that is different from the ITRF generation. As a result, roughly 0.5% or less of the SLR observations are identified as outliers, while the ratio of DORIS, GNSS, and VLBI observations are below 1%, around 2%, and ranging from 1% to 1.2%, respectively. It is shown that the consistency between the SLR scale and ITRF has improved, increasing from around −5 mm in ITRF2014 datasets to approximately −1 mm in ITRF2020 datasets. The scale velocity derived from fitting the VLBI scale parameter series with all epochs in ITRF2020 datasets differs by approximately 0.21 mm/year from the velocity obtained by fitting the data up to 2013.75 because of the scale drift of VLBI around 2013. The decreasing standard deviations of the polar motion parameter (XPO, YPO) offsets between Stacking TRFs and 14C04 (20C04) indicate an improvement in the precision of polar motion observations for all four techniques. From the perspective of the weighted root mean square (WRMS) in station coordinates, since the inception of the technique, the station coordinate WRMS of DORIS decreased from 30 mm to 5 mm for X and Y components, and 25 mm to 5 mm for the Z component; SLR WRMS decreased from 20 mm to better than 10 mm (X, Y and Z); GNSS WRMS decreased from 4 mm to 1.5 mm (X and Y) and 5 mm to 2 mm (Z); while VLBI showed no significant change. Full article
Show Figures

Figure 1

19 pages, 1811 KiB  
Article
An Updated Estimate of Geocenter Variation from Analysis of SLR Data
by Minkang Cheng
Remote Sens. 2024, 16(7), 1189; https://doi.org/10.3390/rs16071189 - 28 Mar 2024
Cited by 3 | Viewed by 1889
Abstract
The Earth’s center of mass (CM) is defined in satellite orbit dynamics as the center of mass of the entire Earth system, including the solid Earth, oceans, cryosphere, and atmosphere. The CM can be realized using the vector from the origin of the [...] Read more.
The Earth’s center of mass (CM) is defined in satellite orbit dynamics as the center of mass of the entire Earth system, including the solid Earth, oceans, cryosphere, and atmosphere. The CM can be realized using the vector from the origin of the International Terrestrial Reference Frame (ITRF) to the CM, and directly estimated from satellite laser ranging (SLR) data. In previous studies and ITRF translations, SLR observations were assumed to contain only a constant, systematic, station-dependent bias. This treatment leads to a difference of a few mm between the SLR results and other estimates, such as GPS-based global inversions. We show that the difference cannot be attributed to the deficiency of the distribution of SLR tracking stations but is due to the impact of a significant surface-loading-induced seasonal signal captured in the laser range measurement (appearing in station range bias) during the traveling of the laser light pulse. The errors in the modeling of the troposphere zenith delay considerably impact the determination of geocenter motion from SLR data. The SLR-data-derived geocenter motion becomes comparable to the global inversion results when the range biases and thermosphere delay for SLR tracking stations in the SLR network are adjusted as part of the monthly solution. Full article
(This article belongs to the Special Issue Space-Geodetic Techniques II)
Show Figures

Figure 1

19 pages, 10300 KiB  
Article
Improved Simulated Annealing Algorithm on the Design of Satellite Orbits for Common-View Laser Time Transfer
by Han Xue, Ziang Zhang, Shiyu Deng, Liwei Mu, Jingqi Fu and Lingtian Diao
Remote Sens. 2024, 16(3), 472; https://doi.org/10.3390/rs16030472 - 25 Jan 2024
Cited by 1 | Viewed by 1968
Abstract
Laser Time Transfer (LTT) has proven to be able to improve remote time transfer accuracy compared to microwave technology. The impact of satellite clock errors and atmospheric delays during LTT will be further reduced in the common-view mode. The challenge is presented as [...] Read more.
Laser Time Transfer (LTT) has proven to be able to improve remote time transfer accuracy compared to microwave technology. The impact of satellite clock errors and atmospheric delays during LTT will be further reduced in the common-view mode. The challenge is presented as an optimization problem that is limited by satellite trajectories. This paper introduces an improved simulated annealing algorithm designed to maximize the common-view possibility among various station pairs within regional Satellite Laser Ranging (SLR) networks by optimizing satellite orbit trajectories. The study proposes a system model that integrates LTT principles with satellite visibility considerations. The simulated annealing algorithm is improved with new annealing strategies that incorporate control strategies, and modify the cooling function. Comparative simulation analyses demonstrate the effectiveness of the algorithm, resulting in a significant reduction in computation time by over 10 times. The optimized orbits exhibit common-view windows between 3.337 and 8.955 times longer than existing orbits. Further simulations are conducted to optimize the orbits, and common-view models are established for 45 pairs among 10 stations. The optimizations result in common-view times ranging from 6.183 to 60.633 min in the Asia-Pacific region and from 5.583 to 61.75 min in the Europe-to-Asia region. This can provide valuable references for designing satellite constellations. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Graphical abstract

19 pages, 6515 KiB  
Article
Characteristics of Inter-System Bias between BDS-2 and BDS-3 and Its Impact on BDS Orbit and Clock Solutions
by Xiaolong Xu and Zhan Cai
Remote Sens. 2023, 15(24), 5659; https://doi.org/10.3390/rs15245659 - 7 Dec 2023
Cited by 1 | Viewed by 1429
Abstract
The inter-system-like bias between the regional (BDS-2) and global (BDS-3) constellation of the BeiDou Navigation Satellite System (BDS) has been identified on common B1I pseudo-range observations. In this study, its characteristics are investigated with tracking data from the International GNSS Service (IGS) and [...] Read more.
The inter-system-like bias between the regional (BDS-2) and global (BDS-3) constellation of the BeiDou Navigation Satellite System (BDS) has been identified on common B1I pseudo-range observations. In this study, its characteristics are investigated with tracking data from the International GNSS Service (IGS) and International GNSS Monitoring and Assessment System (iGMAS) network. Firstly, the satellite-specific inter-system-like bias is calculated and the dependency on satellite is observed. Clearly noticeable discrepancies on BDS-2 and BDS-3 can be identified. Hence, the constellation-specific inter-system-like bias is estimated. Biases for all receivers are quite stable, with standard derivation (STDev) less than 0.2 m in average. The bias shows clear dependence on the receiver, while the firmware and antenna have limited but not negligible impacts, particularly for Trimble NetR9 and Alloy receivers. The Trimble NetR9 with TRM59800.00 antenna shows noticeable discrepancy up to about 1.5 m with different antenna, and the bias of the Trimble Alloy 5.37 jumps about 2.4 m with respect to later firmware. In addition, clear annual variations are observed for stations ABPO and MIZU with Septentrio POLARX5 5.3.2 and ASTERX4 4.4.2 receivers, respectively. Furthermore, the impacts of the biases on the BDS orbit and clock solutions are analyzed. Once BDS-2 and BDS-3 are treated as two independent systems, the root mean square (RMS) of code and carrier phase residuals can be reduced by around 9.3 cm and 0.23 mm, respectively, while the three-dimensional orbit consistency is improved by 6.8%, mainly in the tracking direction. Satellite laser ranging (SLR) shows marginal impacts on IGSO and MEO satellites. However, the SLR residual of C01 shifts −13.2 cm, resulting in a smaller RMS value. In addition, the RMS of linear clock fitting is reduced from 0.050 ns to 0.038 ns for BDS-3 MEO satellites in average. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Graphical abstract

17 pages, 6333 KiB  
Article
Advancing Precise Orbit Determination and Precise Point Positioning of BDS-3 Satellites from B1IB3I to B1CB2a: Comparison and Analysis
by Chen Wang, Tengjie Luo, Shitong Chen and Pan Li
Remote Sens. 2023, 15(20), 4926; https://doi.org/10.3390/rs15204926 - 12 Oct 2023
Cited by 1 | Viewed by 1809
Abstract
The third generation of the Chinese BeiDou Navigation Satellite System (BDS-3) broadcasts new signals, i.e., B1C, B2a, and B2b, along with the legacy signals of BDS-2 B1I and B3I. The novel signals are demonstrated to show adequate upgraded performance, due to the restrictions [...] Read more.
The third generation of the Chinese BeiDou Navigation Satellite System (BDS-3) broadcasts new signals, i.e., B1C, B2a, and B2b, along with the legacy signals of BDS-2 B1I and B3I. The novel signals are demonstrated to show adequate upgraded performance, due to the restrictions on the ground tracking network for the BDS-3 satellites in new frequency bands, and in order to maintain the consistency of the hybrid BDS-2 and BDS-3 orbit/clock products using the common B1IB3I data, the use of B1CB2a observations is not sufficient for both precise orbit determination (POD) and precise point positioning (PPP) applications. In this study, one-year data of 2022 from the International GNSS Service (IGS) and the International GNSS Monitoring and Assessment System (iGMAS) are used in the precise orbit and clock determination for BDS-3 satellites based on the two sets of observations (i.e., B1IB3I and B1CB2a), and the orbit and clock accuracy along with the PPP ambiguity resolution (AR) performance are investigated. In general, the validations demonstrate that clear improvement can be achieved for the B1CB2a-based solution for both POD and PPP. In comparison to the B1IB3I, using BDS-3 B1CB2a observations can help to improve orbit consistency by around 25% as indicated by orbit boundary discontinuities (OBDs), and this use can further reduce the bias and enhance the orbit accuracy as revealed by satellite laser ranging (SLR) residuals. Similar improvement was also identified in the satellite clock performance. The B1CB2a-based solution obtains decreased Allan deviation (ADEV) values in comparison with the B1IB3I-based solution by 6~12%. Regarding the PPP-AR performance, the advantage of B1CB2a observations is evidently reflected through the estimates of wide-lane/narrow-lane fractional cycle bias (FCB), convergence time, and positioning accuracy, in which a significant reduction over 10 min is found in the PPP convergence time. Full article
(This article belongs to the Special Issue Beidou/GNSS Precise Positioning and Atmospheric Modeling II)
Show Figures

Figure 1

Back to TopTop