Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods
Abstract
:1. Introduction
2. Methods
2.1. Stacking Model
2.2. Datum Definition
2.3. Outliers and Variance Component Estimation
3. Data Introduction and Preprocessing
4. Results and Analysis
4.1. Stacking Results
4.2. Analysis of Translation and Scale Time Series
4.3. Analysis of Coordinate Residuals
4.4. XPO and YPO Residuals Compared to 14C04 and 20C04
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Analysis Center |
CC | Combination Center |
CM | Center of Mass |
DORIS | Doppler Orbitography and Radiopositioning Integrated by Satellite |
EOP | Earth Orientation Parameter |
GNSS | Global Navigation Satellite System |
ITRF | International Terrestrial Reference Frame |
NNR | No-net-rotation |
NNT | No-net-translation |
NNS | No-net-scale |
PCO | Antenna Phase Center Offset |
SLR | Satellite Laser Ranging |
TRF | Terrestrial Reference Frame |
VLBI | Very Long Baseline Interferometry |
References
- Altamimi, Z.; Rebischung, P.; Metivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Collilieux, X.; Métivier, L.; Chanard, K. ITRF2020: An augmented reference frame refining the modeling of nonlinear station motions. J. Geod. 2023, 97, 47. [Google Scholar] [CrossRef]
- Lian, L.-Z.; Wang, J.-X.; Huang, C.-L.; Xu, M.-H. Weekly inter-technique combination of SLR, VLBI, GPS and DORIS at the solution level. Res. Astron. Astrophys. 2018, 18, 119. [Google Scholar] [CrossRef]
- Altamimi, Z.; Métivier, L.; Rebischung, P.; Collilieux, X.; Chanard, K.; Barnéoud, J. ITRF2020 Plate Motion Model. Geophys. Res. Lett. 2023, 50, e2023GL106373. [Google Scholar] [CrossRef]
- Argus, D.F.; Heflin, M.B. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys. Res. Lett. 2012, 22, 1973–1976. [Google Scholar] [CrossRef]
- Gomez, D.D.; Pinon, D.A.; Smalley, R.; Bevis, M.; Cimbaro, S.R.; Lenzano, L.E.; Baron, J. Reference frame access under the effects of great earthquakes: A least squares collocation approach for non-secular post-seismic evolution. J. Geod. 2016, 90, 263–273. [Google Scholar] [CrossRef]
- Xu, C.Y.; Chao, B.F. Seismological versus geodetic reference frames for seismic dislocation: Consistency under momentum conservations. Geophys. J. Int. 2015, 200, 998–1002. [Google Scholar] [CrossRef]
- Fu, Y.; Argus, D.F.; Landerer, F.W. GPS as an independent measurement to estimate terrestrial water storage variations in Washington and Oregon. J. Geophys. Res. Solid Earth 2015, 120, 552–566. [Google Scholar] [CrossRef]
- Borsa, A.A.; Agnew, D.C.; Cayan, D.R. Remote Hydrology. Ongoing drought-induced uplift in the western United States. Science 2014, 345, 1587–1590. [Google Scholar] [CrossRef]
- Argus, D.F.; Peltier, W.R.; Watkins, M.M. Glacial isostatic adjustment observed using very long baseline interferometry and satellite laser ranging geodesy. J. Geophys. Res. Solid Earth 1999, 104, 29077–29093. [Google Scholar] [CrossRef]
- Collilieux, X.; Wöppelmann, G. Global sea-level rise and its relation to the terrestrial reference frame. J. Geod. 2010, 85, 9–22. [Google Scholar] [CrossRef]
- Wöppelmann, G.; Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 2016, 54, 64–92. [Google Scholar] [CrossRef]
- Liu, J.; Chen, J.; Liu, P.; Tan, W.; Dong, D.; Qu, W. Comparison and Assessment of Three ITRS Realizations. Remote Sens. 2021, 13, 2304. [Google Scholar] [CrossRef]
- Wu, X.; Abbondanza, C.; Altamimi, Z.; Chin, T.M.; Collilieux, X.; Gross, R.S.; Heflin, M.B.; Jiang, Y.; Parker, J.W. KALREFA Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J. Geophys. Res. Solid Earth 2015, 120, 3775–3802. [Google Scholar] [CrossRef]
- Angermann, D.; Drewes, H.; Seitz, M.; Meisel, B.; Gerstl, M.; Kelm, R.; Müller, H.; Seemüller, W.; Tesmer, V. ITRS Combination Center at DGFI: A Terrestrial Reference Frame Realization 2003; Reihe B: Angewandte Geodäsie, Heft Nr. 313; Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften: München, Germany, 2004; pp. 1–141. ISBN 3-7696-8593-8. ISSN 0065-5317.
- Altamimi, Z.; Collilieux, X.; Legrand, J.; Garayt, B.; Boucher, C. ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and earth orientation parameters. J. Geophys. Res. Solid Earth 2007, 112, 19. [Google Scholar] [CrossRef]
- Villiger, A.; Dach, R. International GNSS Service Technical Report 2019 (IGS Annual Report); IGS Central Bureau and University of Bern: Bern, Switzerland; Bern Open Publishing: Bern, Switzerland, 2020. [Google Scholar]
- Luceri, V.; Pirri, M.; Rodríguez, J.; Appleby, G.; Pavlis, E.C.; Müller, H. Systematic errors in SLR data and their impact on the ILRS products. J. Geod. 2019, 93, 2357–2366. [Google Scholar] [CrossRef]
- Rodríguez, J.; Appleby, G.; Otsubo, T. Upgraded modelling for the determination of centre of mass corrections of geodetic SLR satellites: Impact on key parameters of the terrestrial reference frame. J. Geod. 2019, 93, 2553–2568. [Google Scholar] [CrossRef]
- Appleby, G.; Rodriguez, J.; Altamimi, Z. Assessment of the accuracy of global geodetic satellite laser ranging observations and estimated impact on ITRF scale: Estimation of systematic errors in LAGEOS observations 1993–2014. J. Geod. 2016, 90, 1371–1388. [Google Scholar] [CrossRef]
- Pavlis, E.; Luceri, V.; Basoni, A.; Sarrocco, D.; Kuzmicz-Cieslak, M.; Evans, K.; Bianco, G. ITRF2020: The ILRS Contribution and Operational Implementation. Authorea 2023. [Google Scholar] [CrossRef]
- Hellmers, H.; Modiri, S.; Bachmann, S.; Thaller, D.; Bloßfeld, M.; Seitz, M.; Gipson, J. Combined IVS Contribution to the ITRF2020. In Geodesy for a Sustainable Earth, Proceedings of the 2021 Scientific Assembly of the International Association of Geodesy, Beijing, China, 28 June–2 July 2021; Freymueller, J.T., Sánchez, L., Eds.; Springer: Cham, Switzerland, 2023; pp. 3–13. [Google Scholar]
- Bachmann, S.; Thaller, D.; Roggenbuck, O.; Lösler, M.; Messerschmitt, L. IVS contribution to ITRF2014. J. Geod. 2016, 90, 631–654. [Google Scholar] [CrossRef]
- Moreaux, G.; Lemoine, F.G.; Capdeville, H.; Otten, M.; Štěpánek, P.; Saunier, J.; Ferrage, P. The international DORIS service contribution to ITRF2020. Adv. Space Res. 2023, 72, 65–91. [Google Scholar] [CrossRef]
- Moreaux, G.; Lemoine, F.G.; Capdeville, H.; Kuzin, S.; Otten, M.; Stepanek, P.; Willis, P.; Ferrage, P. The International DORIS Service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv. Space Res. 2016, 58, 2479–2504. [Google Scholar] [CrossRef]
- Metivier, L.; Altamimi, Z.; Rouby, H. Past and present ITRF solutions from geophysical perspectives. Adv. Space Res. 2020, 65, 2711–2722. [Google Scholar] [CrossRef]
- Belda, S.; Heinkelmann, R.; Ferrandiz, J.M.; Nilsson, T.; Schuh, H. On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames. J. Geod. 2017, 91, 135–149. [Google Scholar] [CrossRef]
- Blewitt, G.; Heflin, M.B.; Webb, F.H.; Lindqwister, U.J.; Malla, R.P. Global coordinates with centimeter accuracy in the International Terrestrial Reference Frame using GPS. Geophys. Res. Lett. 1992, 19, 853–856. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS conventions (2010). Tech. Rep. DTIC Doc. 2010, 36, 180. [Google Scholar]
- Dong, D.; Yunck, T.; Heflin, M. Origin of the International Terrestrial Reference Frame. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Huang, C.; Jin, W.; Xu, H. The terrestrial and lunar reference frame in lunar laser ranging. J. Geod. 1999, 73, 125–129. [Google Scholar] [CrossRef]
- Kwak, Y.; Blossfeld, M.; Schmid, R.; Angermann, D.; Gerstl, M.; Seitz, M. Consistent realization of Celestial and Terrestrial Reference Frames. J. Geod. 2018, 92, 1047–1061. [Google Scholar] [CrossRef]
- Kotsakis, C. Reference frame stability and nonlinear distortion in minimum-constrained network adjustment. J. Geod. 2012, 86, 755–774. [Google Scholar] [CrossRef]
- Davies, P.; Blewitt, G. Methodology for global geodetic time series estimation: A new tool for geodynamics. J. Geophys. Res. Solid Earth 2000, 105, 11083–11100. [Google Scholar] [CrossRef]
- Altamimi, Z.; Sillard, P.; Boucher, C. ITRF2000: A new release of the International Terrestrial Reference frame for earth science applications. J. Geophys. Res. Solid Earth 2002, 107, 19. [Google Scholar] [CrossRef]
- Sillard, P.; Boucher, C. A review of algebraic constraints in terrestrial reference frame datum definition. J. Geod. 2001, 75, 63–73. [Google Scholar] [CrossRef]
- Song, S.Z.; Zhang, Z.K.; Wang, G.L. Toward an Optimal Selection of Constraints for Terrestrial Reference Frame (TRF). Remote Sens. 2022, 14, 1173. [Google Scholar] [CrossRef]
- Abbondanza, C.; Chin, T.M.; Gross, R.S.; Heflin, M.B.; Parker, J.W.; Soja, B.S.; van Dam, T.; Wu, X. JTRF2014, the JPL Kalman filter and smoother realization of the International Terrestrial Reference System. J. Geophys. Res. Solid Earth 2017, 122, 8474–8510. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X. IGS contribution to the ITRF. J. Geod. 2009, 83, 375–383. [Google Scholar] [CrossRef]
- Collilieux, X.; Metivier, L.; Altamimi, Z.; van Dam, T.; Ray, J. Quality assessment of GPS reprocessed terrestrial reference frame. Gps Solut. 2011, 15, 219–231. [Google Scholar] [CrossRef]
- Haines, B.J.; Bar-Sever, Y.E.; Bertiger, W.I.; Desai, S.D.; Harvey, N.; Sibois, A.E.; Weiss, J.P. Realizing a terrestrial reference frame using the Global Positioning System. J. Geophys. Res. Solid Earth 2015, 120, 5911–5939. [Google Scholar] [CrossRef]
TN | TS | SOL | TR | CONS | SN |
---|---|---|---|---|---|
GNSS | 1994.0–2015.1 1994.0–2021.0 | VC | Weekly | Minimum | 1094 1408 |
SLR | 1993.0–2015.1 1993.0–2021.0 | VC | Weekly | Loose | 1135 1451 |
VLBI | 1991.5–2105.1 1991.5–2021.0 | NE | Session wise | None | 2867 4422 |
DORIS | 1993.0–2015.1 1993.0–2021.0 | VC | Weekly | Minimum | 1140 1456 |
TN | 2014 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|
Num | OR | Num | OR | ||||||
GNSS | 6 | 25.07 | 5.29 | 32.49 | 2.37% | 6 | 8.95 | 6.76 | 1.83% |
SLR | 4 | 27.25 | 25.20 | 27.04 | 0.44% | 4 | 14.90 | 15.44 | 0.34% |
VLBI | 4 | 18.84 | 23.04 | 34.81 | 0.99% | 4 | 16.80 | 133.63 | 1.23% |
DORIS | 4 | 6.98 | 6.86 | 7.29 | 0.74% | 4 | 7.78 | 8.53 | 0.93% |
Solutions | Tx mm | Ty mm | Tz mm | D ppb | Rx 0.001” | Ry 0.001” | Rz 0.001” | Epoch | Datum Definition |
---|---|---|---|---|---|---|---|---|---|
Rates | mm/y | mm/y | mm/y | ppb/y | 0.001”/y | 0.001”/y | 0.001”/y | ||
14 Transformation parameters between GNSS Stacking TRF 2020 (2014) and ITRF2020 (2014) | |||||||||
GNSS2020 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: ITRF Scale: ITRF |
GNSS2020 Rates | −0.81 0.01 0.07 0.00 | −0.55 0.01 −0.05 0.00 | 2.71 0.01 0.22 0.00 | 0.70 0.00 0.02 0.00 | 0.00 0.00 0.00 0.00 | 0.03 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: Internal Scale: Internal |
GNSS2014 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: ITRF Scale: ITRF |
GNSS2014 Rates | 1.89 0.01 −0.02 0.00 | 2.17 0.01 0.01 0.00 | 2.68 0.01 −0.18 0.00 | −0.37 0.00 0.03 0.00 | 0.04 0.00 0.00 0.00 | −0.02 0.00 0.00 0.00 | −0.01 0.00 0.00 0.00 | 2010.0 | Origin: Internal Scale: Internal |
14 Transformation parameters between SLR Stacking TRF 2020 (2014) and ITRF2020 (2014) | |||||||||
SLR2020 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: ITRF Scale: ITRF |
SLR2020 Rates | −0.38 0.05 −0.06 0.01 | −0.13 0.04 0.00 0.01 | −0.23 0.10 0.05 0.02 | −0.04 0.01 0.03 0.00 | 0.00 0.02 0.00 0.00 | 0.00 0.02 0.00 0.00 | 0.00 0.02 0.00 0.00 | 2015.0 | Origin: Internal Scale: Internal |
SLR2014 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: ITRF Scale: ITRF |
SLR2014 Rates | −0.29 0.10 −0.01 0.02 | −0.76 0.08 −0.17 0.01 | 0.22 0.17 −0.04 0.03 | −0.64 0.01 0.01 0.00 | −0.01 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: Internal Scale: Internal |
14 Transformation parameters between VLBI Stacking TRF 2020 (2014) and ITRF2020 (2014) | |||||||||
VLBI2020 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: ITRF Scale: ITRF |
VLBI2020 Rates | −0.16 0.10 −0.01 0.10 | 1.21 0.11 0.05 0.10 | −1.97 0.13 −0.07 0.10 | 0.69 0.03 0.03 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: ITRF Scale: Internal |
VLBI2014 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: ITRF Scale: ITRF |
VLBI2014 Rates | −0.13 0.10 0.00 0.10 | 0.42 0.12 −0.01 0.10 | −1.36 0.22 0.02 0.10 | 0.38 0.05 −0.01 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: ITRF Scale: Internal |
14 Transformation parameters between DORIS Stacking TRF 2020 (2014) and ITRF2020 (2014) | |||||||||
DORIS2020 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.01 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2015.0 | Origin: ITRF Scale: ITRF |
DORIS2020 Rates | −3.16 0.17 0.02 0.02 | 1.26 0.15 0.01 0.02 | −5.76 0.13 0.03 0.02 | 1.30 0.02 0.03 0.00 | 0.04 0.02 0.00 0.00 | 0.00 0.02 0.00 0.00 | −0.04 0.02 0.00 0.00 | 2015.0 | Origin: Internal Scale: Internal |
DORIS2014 Rates | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.10 0.00 0.10 | 0.00 0.01 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 0.00 0.00 0.00 0.00 | 2010.0 | Origin: ITRF Scale: ITRF |
DORIS2014 Rates | −1.74 0.09 0.02 0.01 | −2.54 0.09 −0.10 0.01 | −10.59 0.07 −0.19 0.01 | 1.52 0.01 0.00 0.00 | −0.03 0.00 −0.02 0.00 | 0.01 0.00 0.02 0.00 | 0.02 0.00 0.00 0.00 | 2010.0 | Origin: Internal Scale: Internal |
TN | Mean WRMS X (mm) | Mean WRMS Y (mm) | Mean WRMS Z (mm) | Datasets |
---|---|---|---|---|
GNSS | 2.51 2.32 | 2.50 2.37 | 2.60 2.48 | 2014 2020 |
SLR | 12.09 11.46 | 11.57 11.11 | 12.31 12.68 | 2014 2020 |
VLBI | 5.28 5.22 | 5.50 5.60 | 6.19 6.25 | 2014 2020 |
DORIS | 14.02 12.00 | 13.86 11.96 | 10.64 8.60 | 2014 2020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, C.; Lian, L.; Zhang, S. Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods. Remote Sens. 2024, 16, 1240. https://doi.org/10.3390/rs16071240
Zhang J, Huang C, Lian L, Zhang S. Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods. Remote Sensing. 2024; 16(7):1240. https://doi.org/10.3390/rs16071240
Chicago/Turabian StyleZhang, Jin, Chengli Huang, Lizhen Lian, and Simeng Zhang. 2024. "Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods" Remote Sensing 16, no. 7: 1240. https://doi.org/10.3390/rs16071240
APA StyleZhang, J., Huang, C., Lian, L., & Zhang, S. (2024). Assessment of the Improvement in Observation Precision of GNSS, SLR, VLBI, and DORIS Inputs from ITRF2014 to ITRF2020 Using TRF Stacking Methods. Remote Sensing, 16(7), 1240. https://doi.org/10.3390/rs16071240