Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology
Abstract
1. Introduction
2. Materials and Methods
3. Data and Strategies
3.1. Data Collection
3.2. Processing Strategy
3.3. Experimental Design
4. Experiments and Analysis
4.1. Residual Analysis
4.2. Impact on the Orbital Accuracy
4.3. Impact on the Constellation Rotation and Translations
5. Conclusions
- (1)
- There is good consistency across different days. Compared with using broadcast ephemeris as prior constraints, using precise ephemeris as prior constraints shows better consistency;
- (2)
- The accuracy of prior orbits affects the performance of the orbit determination. Compared with using broadcast ephemeris as prior constraints, using precise ephemeris as prior constraints can improve the orbital accuracy by approximately 75%;
- (3)
- The type of observation data affects the performance of orbit determination. Introducing SLR observations for joint orbit determination with ISL can improve the orbital accuracy by 13% to 26%. In addition, the improvement range for MEO satellites is larger than that for IGSO satellites;
- (4)
- Regardless of whether broadcast ephemeris or precise ephemeris is used as prior constraints, constellation translation and rotation still exist, and the results of the former are more obvious. Among the seven estimated parameters, for translation parameters, TX is the largest, followed by TY, and TZ is the smallest; for rotation parameters (such as RX, RY, and RZ), all show relatively large values, which may be related to the limited number of available satellite laser ranging stations during this period;
- (5)
- After considering constellation translation and rotation, the orbital accuracy under different prior constraints remains at the same level. The RMS shows that the orbital accuracy of the IGSO satellites in three directions is better than 20 cm, while the accuracy of the MEO satellites in along-track, cross-track, and radial directions is better than 10 cm, 8 cm, and 5 cm, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Xie, J.; Zhuang, J.; Wang, Z. Performance analysis and progress of inter-satellite-link of Beidou system. In Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2017), Portland, OR, USA, 25–29 September 2017. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W.; Guo, S.; Mao, Y.; Yang, Y. Introduction to BeiDou-3 navigation satellite system. Navigation 2019, 66, 7–18. [Google Scholar] [CrossRef]
- Guo, S.; Cai, H.; Meng, Y.; Geng, C.; Jia, X.; Mao, Y.; Geng, T.; Rao, Y.; Zhang, H.; Xie, X. BDS-3 RNSS technical characteristics and service performance. Acta Geod. Cartogr. Sin. 2019, 48, 810–821. [Google Scholar]
- Yang, D.; Yang, J.; Li, G.; Zhou, Y.; Tang, C. Globalization highlight: Orbit determination using BeiDou inter-satellite ranging measurements. GPS Solut. 2017, 21, 1395–1404. [Google Scholar] [CrossRef]
- Xie, X.; Geng, T.; Zhao, Q.; Cai, H.; Zhang, F.; Wang, X.; Meng, Y. Precise orbit determination for BDS-3 satellites using satellite-ground and inter-satellite link observations. GPS Solut. 2019, 23, 40. [Google Scholar] [CrossRef]
- Lv, Y.; Geng, T.; Zhao, Q.; Xie, X.; Zhang, F.; Wang, X. Evaluation of BDS-3 Orbit Determination Strategies Using Ground-Tracking and Inter-Satellite Link Observation. Remote Sens. 2020, 12, 2647. [Google Scholar] [CrossRef]
- Chang, J.; Shang, L.; Lic, G. The research on system error of Inter-Satellite-Link (ISL) measurements for autonomous navigation of Beidou system. Adv. Space Res. 2017, 60, 65–81. [Google Scholar] [CrossRef]
- Ren, X.; Yang, Y.; Zhu, J.; Xu, T. Orbit Determination of the Next-Generation Beidou Satellites with Intersatellite Link Measurements and a Priori Orbit Constraints. Adv. Space Res. 2017, 60, 2155–2165. [Google Scholar] [CrossRef]
- Tang, C.; Hu, X.; Zhou, S.; Liu, L.; Pan, J.; Chen, L.; Guo, R.; Zhu, L.; Hu, G.; Li, X.; et al. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. J. Geod. 2018, 92, 1155–1169. [Google Scholar] [CrossRef]
- Xie, X.; Geng, T.; Zhao, Q.; Lv, Y.; Cai, H.; Liu, J. Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations. J. Geod. 2020, 94, 64. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Wang, C.; Lyu, Y.; Xu, X.; Yang, C.; Li, J. Precise orbit determination for BDS satellites. Satell. Navig. 2022, 3, 2. [Google Scholar] [CrossRef]
- An, X.; Meng, X.; Chen, H.; Jiang, W.; Xi, R.; Chen, Q.; Zhou, X. Improving integrated precise orbit determination of GPS, GLONASS, BDS and Galileo through integer ambiguity resolution. GPS Solut. 2019, 23, 48. [Google Scholar] [CrossRef]
- Schreiner, P.A.; Michalak, G.; Knig, R. Precise orbit determination of low Earth orbiters using carrier phase cycle slip fixing over long data gaps—An alternative to GNSS phase bias products based ambiguity resolution. In Proceedings of the 43rd COSPAR Scientific Assembly, Sydney, Australia, 28 January–4 February 2021. [Google Scholar]
- Deng, T.; Zhao, Q. Determining orbit of COMPASS-M1 Using International laser ranging data. Geomat. Inf. Sci. Han Univ. 2009, 34, 3. [Google Scholar]
- Kong, Y.; Sun, B.; Yang, X.; Cao, F.; He, Z.; Yang, H. Precision analysis of BeiDou broadcast ephemeris by using SLR data. Geomat. Inf. Sci. Han Univ. 2017, 42, 831–837. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, L.; He, B. Satellite laser ranging station classification for GNSS satellite orbit accuracy validation. Acta Geod. Cartogr. Sin. 2023, 52, 357–366. [Google Scholar] [CrossRef]
- Zong, Y.; Zhou, D.; Wang, Y.; Chen, S. Validation of BeiDou precision orbit products using satellite laser ranging measurements. Geomat. Technol. Equip. 2022, 24, 5. [Google Scholar] [CrossRef]
- Qin, X.; Yang, Y.; Wang, G.; Jiao, W. GLONASS orbit determination by using SLR data. Geomat. Inf. Sci. Wuhan Univ. 2003, 28, 4. [Google Scholar]
- Lu, X.; Jia, X.; Yang, Z. Determination of Navigation Satellite Clock Bias Using SLR and GPS dual frequency phase-smoothed pseudo-range data. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 237–240. [Google Scholar]
- Mao, Y.; Jia, X.; Qin, X. Validating clock bias of satellite using SLR and pseudorange data. Geomat. Inf. Sci. Wuhan Univ. 2007, 32, 1160–1163. [Google Scholar]
- Qin, X.; Jiao, W.; Chen, L.; Huo, L. Evaluation of CHAMP satellite orbit with SLR measurements. Geomat. Inf. Sci. Wuhan Univ. 2005, 30, 4. [Google Scholar]
- Zhou, X.; Wang, X.; Zhao, G.; Peng, H.; Wu, B. The precise orbit determination for HY2A satellite using GPS, DORIS and SLR data. Geomat. Inf. Sci. Wuhan Univ. 2015, 40, 1000–1005. [Google Scholar] [CrossRef]
- Wei, E.; Wang, L.; Jin, S.; Liu, J. Estimation of ERP with combined observations of GNSS and SLR. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 581–585. [Google Scholar]
- Zhang, Y. Research on Earth Rotation Parameters of GNSS/VLBI/SLR Mutli-Source Data Fusion Epoch Reference Frame. Ph.D. Thesis, Shandong Technology University, Qingdao, China, 2019. [Google Scholar]
- Yang, H. Precise Orbit Determination and Geodetic Parameter Calculation by Combining GNSS and SLR Data from Multiple Satellites. Ph.D. Thesis, Shandong University, Jinan, China, 2021. [Google Scholar]
- Qu, W.; Huang, Y.; Xu, J.; Sun, S.; Zhou, S.; Yang, Y.; He, B.; Hu, X. Precise orbit determination using satellite laser ranging and inter-satellite link observations for BDS-3 satellites. Acta Geod. Cartogr. Sin. 2023, 52, 1437–1448. [Google Scholar]
- Ruan, R.; Jia, X.; Feng, L.; Zhu, J.; Huyan, Z.; Li, J.; Wei, Z. Orbit determination and time synchronization for BDS-3 satellites with raw inter-satellite link ranging observations. Satell. Navig. 2020, 1, 8. [Google Scholar] [CrossRef]
- Shi, C.; Guo, S.W.; Fan, L.; Gu, S.; Fang, X.; Zhou, L.; Zhang, T.; Li, Z.; Li, M.; Li, W.; et al. GSTAR: An innovative software platform for processing space geodetic data at the observation level. Satell. Navig. 2023, 4, 18. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.; Lin, H.; Fan, L.; Ye, X.; Lu, Z.; Wang, F. Research on in-orbit characteristics of inter-satellite links phase center offsets based on whole-network estimation. J. Electron. Inf. Technol. 2022, 45, 4060–4071. [Google Scholar]
- Li, Z.; Xiao, W.; Fan, L.; Lu, Z.; Wang, F. Impact of ambiguity resolution on phase center offsets and hardware delay estimation for BDS-3 inter-satellite links. Front. Phys. 2023, 11, 1154159. [Google Scholar] [CrossRef]
- Rodriguez-Solano, C.J.; Hugentobler, U.; Steigenberger, P.; Lutz, S. Impact of earth radiation pressure on GPS position estimates. J. Geod. 2011, 86, 309–317. [Google Scholar] [CrossRef]
- Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schär, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A. Code’s new solar radiation pressure model for GNSS orbit determination. J. Geod. 2015, 89, 775–791. [Google Scholar] [CrossRef]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.Y. The IERS EOP 14C04 solution for earth orientation parameters consistent with Itrf 2014. J. Geod. 2018, 93, 621–633. [Google Scholar] [CrossRef]
- Guo, J. The Impact of Attitude, Solar Radiation and Function Model on Precise Orbit Determination for GNSS Satellites. Ph.D. Thesis, Wuhan University, Wuhan, China, 2014. [Google Scholar]
- Rebischung, P.; Schmid, R. Igs14/Igs14.Atx: A new framework for the LGS products. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions (2010); IERS Technical Note, No. 36; International Earth Rotation and Reference Systems Service Central Bureau: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Zhou, Y.; Wang, Y.; Huang, W.; Yang, J.; Sun, L. In-orbit performance assessment of BeiDou intersatellite link ranging. GPS Solut. 2018, 22, 119. [Google Scholar] [CrossRef]
- Chen, G.; Wei, N.; Li, M.; Zhao, Q.; Niu, Y.; Cai, H.; Meng, Y. Assessment of BDS-3 terrestrial reference frame realized by broadcast ephemeris: Comparison with GPS/Galileo. GPS Solut. 2022, 26, 18. [Google Scholar] [CrossRef]
- Tseng, T.P.; Tsai, Y.H.; Hsieh, P.J. Characterization of Galileo yaw attitude on tidal loading and range bias in SLR-based orbit validation. GPS Solut. 2024, 28, 28. [Google Scholar] [CrossRef]
- Steindorfer, M.A.; Koidl, F.; Kirchner, G.; Wang, P.; Dilssner, F.; Schoenemann, E.; Strangfeld, A.; Gonzalez, F. Satellite laser ranging to Galileo satellites: Symmetry conditions and improved normal point formation strategies. GPS Solut. 2024, 28, 73. [Google Scholar] [CrossRef]
- Li, X.; Lou, J.; Yuan, Y.; Wu, J.; Zhang, K. Determination of global geodetic parameters using satellite laser ranging to Galileo, GLONASS, and BeiDou satellites. Satell. Navig. 2024, 5, 10. [Google Scholar] [CrossRef]
- Fang, X.; Fan, L.; Shi, C. Impact of different range bias corrections on orbit and Earth rotation parameters determination using BDS-3 satellite laser ranging observations. Meas. Sci. Technol. 2025, 36, 016325. [Google Scholar] [CrossRef]
- Cai, W.; Han, C.; Chen, J.; Xu, T. Constellation rotation error analysis and control in long-term autonomous orbit determination for navigation satellite. J. Astronaut. 2008, 29, 522–528. [Google Scholar] [CrossRef]
- Shang, L.; Liu, G.; Liu, S.; Zhang, R.; Li, G.T. Eliminating constellation rotation error of autonomous orbit determination using differential anchor stations. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 920–924. [Google Scholar]
- Hou, F.; Liu, W.; Fang, R. Analysis and control method for constellation rotation in navigation satellite autonomous orbit determination. Geomat. Inf. Sci. Wuhan Univ. 2009, 34, 1280–1284. [Google Scholar] [CrossRef]
Item | Description |
---|---|
Data length | 30 days (DOY 036-064, 2021) |
Stations | 9 valid SLR stations |
Satellites | 3 IGSO satellites and 24 MEO satellites of BDS-3 |
Observations | ISL and SLR observations |
Satellite | DOY 051 | DOY 052 | DOY 053 |
---|---|---|---|
C20 | 0 | 6 | 10 |
C21 | 4 | 17 | 7 |
C29 | 2 | 7 | 10 |
C30 | 15 | 11 | 7 |
Total | 21 | 41 | 34 |
Categories | Item | Description |
---|---|---|
Data and Configuration | Data length | 30 days |
Observation accuracy | ISL: 30 cm; SLR: 3 mm | |
Elevation angle | 7° for SLR | |
Satellite antenna model | igs14.atx [31] | |
Arc length | 24 h | |
SLR Error Model | Eccentricity correct | ecc_xyz.snx |
Tidal displacement | IERS Conventions (2010) | |
Atmospheric refraction | Mendes–Pavlis model | |
General relativity | Corrected with model | |
Satellite eccentricity | ecc_une.snx | |
Dynamic Model | Solar radiation pressure | Box-wing + 7-parameter ECOM-2 [32] |
Earthshine presure | Model correction [31] | |
Earth’s rotation parameters | Fixed to IERS-C04-14 [33] | |
Satellite attitude | Perturbation + orientation model [34] | |
Solid earth tide, Polar tide, Ocean tide | IERS Conventions (2010) [35,36] | |
Estimated parameters | Position and velocity of satellites | 6 parameters |
Dynamic parameter | 9 parameters | |
ISL antenna phase center offset | 3 parameters | |
ISL hardware delay | 1 parameter |
Item | POD Mode | The a Priori Orbit |
---|---|---|
Experiment 1 | ISL | Broadcast ephemeris |
Experiment 2 | ISL | Precise ephemeris |
Experiment 3 | ISL/SLR | Broadcast ephemeris |
Experiment 4 | ISL/SLR | Precise ephemeris |
Item | MEO | IGSO | ||||
---|---|---|---|---|---|---|
A | C | R | A | C | R | |
Exp1 | 71.83 | 83.07 | 8.94 | 111.01 | 123.12 | 28.40 |
Exp2 | 16.09 | 20.93 | 9.07 | 24.32 | 28.13 | 28.50 |
Exp3 | 64.74 | 67.57 | 5.25 | 107.09 | 95.55 | 22.88 |
Exp4 | 11.96 | 15.80 | 5.20 | 20.73 | 22.43 | 24.06 |
Item | MEO | IGSO |
---|---|---|
Exp1-Exp2 | 75.12% | 72.33% |
Exp3-Exp4 | 78.57% | 73.36% |
Exp1-Exp3 | 14.91% | 13.15% |
Exp2-Exp4 | 26.70% | 16.39% |
Item | Translation (mm) | Rotation (mas) | Scale (ppb) | ||||
---|---|---|---|---|---|---|---|
TX | TY | TZ | RX | RY | RZ | SC | |
prec | −78.5 | 31.28 | 47.33 | 0.31 | −0.59 | −1.35 | −0.29 |
brdc | −94.35 | 43.05 | 47.81 | 2.74 | −2.48 | −5.33 | −0.29 |
Item | IGSO | MEO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Along | Cross | Radial | Along | Cross | Radial | |||||||
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | |
brdc | 73.6 | 15.7 | 84.6 | 10.6 | 25 | 19.5 | 39.2 | 9.9 | 50.6 | 7.2 | 5.8 | 4.7 |
prec | 30.5 | 16 | 27.3 | 11 | 23.9 | 19.4 | 10.4 | 9 | 16 | 7 | 5 | 4.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, W.; Wu, Z.; Li, Z.; Fan, L.; Guo, S.; Chen, Y. Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology. Remote Sens. 2025, 17, 2342. https://doi.org/10.3390/rs17142342
Xiao W, Wu Z, Li Z, Fan L, Guo S, Chen Y. Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology. Remote Sensing. 2025; 17(14):2342. https://doi.org/10.3390/rs17142342
Chicago/Turabian StyleXiao, Wei, Zhengcheng Wu, Zongnan Li, Lei Fan, Shiwei Guo, and Yilun Chen. 2025. "Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology" Remote Sensing 17, no. 14: 2342. https://doi.org/10.3390/rs17142342
APA StyleXiao, W., Wu, Z., Li, Z., Fan, L., Guo, S., & Chen, Y. (2025). Research on the Autonomous Orbit Determination of Beidou-3 Assisted by Satellite Laser Ranging Technology. Remote Sensing, 17(14), 2342. https://doi.org/10.3390/rs17142342