Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = sargassum extracts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4907 KB  
Article
Brown Algae Extracts Increase the Tolerance of Tomato Plants to High Temperatures by Improving Morphological, Physiological, Metabolomic, and Transcriptional Parameters
by Oscar Sariñana-Aldaco, Rosa M. Rodríguez-Jasso, Adalberto Benavides-Mendoza, Armando Robledo-Olivo, Pablo Preciado-Rangel, Antonio Juárez-Maldonado and Susana González-Morales
Plants 2025, 14(19), 2996; https://doi.org/10.3390/plants14192996 - 28 Sep 2025
Viewed by 505
Abstract
Currently, biostimulants in the horticultural sector are a tool that is being used to improve the yield and quality of vegetables under optimal and stressful growth conditions. In the present study, we evaluate the effects of foliar application of a hydroethanolic extract of [...] Read more.
Currently, biostimulants in the horticultural sector are a tool that is being used to improve the yield and quality of vegetables under optimal and stressful growth conditions. In the present study, we evaluate the effects of foliar application of a hydroethanolic extract of Sargassum spp., a commercial extract based on Ascophyllum nodosum, and a control with distilled water on growth and biomass, stomatal conductance, photosynthetic pigments, enzymatic and non-enzymatic antioxidants, protein content, and the expression of defense genes in tomato plants (Solanum lycopersicum L.) without stress and with high-temperature stress (45 °C). The results showed that Sargassum spp. extract only increased the height of tomato plants under stress-free conditions (2.71%) in the last evaluation. The aboveground and total dry biomass of the plants were increased by Sargassum spp. extract under stress-free conditions by 9.56 and 8.58%, respectively. Under stress conditions, aboveground dry biomass was increased by 6.66% by Sargassum spp. extract. Stomatal conductance, photosynthetic pigments, protein content, enzymatic and non-enzymatic antioxidants, and defense gene expression of tomato plants were positively modified with the use of Sargassum spp. and A. nodosum extract under high-temperature stress conditions. Under stress-free conditions, the described variables were positively modified except for gene expression, where some genes were expressed and others were repressed. The results indicate that extracts of Sargassum spp. and A. nodosum are effective in mitigating high-temperature stress, making their use a promising alternative for inducing resistance in plants to the daily adversities of climate change. Full article
(This article belongs to the Special Issue Biostimulation for Abiotic Stress Tolerance in Plants)
Show Figures

Figure 1

21 pages, 4018 KB  
Article
The Synergistic Role of Sargassum horneri Fucoidan and Lactobacillus plantarum: Microbiome and Gut Barrier Restoration in Zebrafish Colitis
by N. M. Liyanage, D. P. Nagahawatta, H. H. A. C. K. Jayawardhana, Jun-Geon Je, Li Yiqiao, Fengqi Yang, Young-Sang Kim, Kyung Yuk Ko and You-Jin Jeon
Mar. Drugs 2025, 23(10), 372; https://doi.org/10.3390/md23100372 - 25 Sep 2025
Viewed by 364
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease marked by disruption of the intestinal barrier and gut microbiota imbalance, leading to significant impairment in patient quality of life. This study investigated the therapeutic efficacy of a synbiotic formulation composed of purified fucoidan [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease marked by disruption of the intestinal barrier and gut microbiota imbalance, leading to significant impairment in patient quality of life. This study investigated the therapeutic efficacy of a synbiotic formulation composed of purified fucoidan from bloom-forming Sargassum horneri and the probiotic Lactobacillus plantarum in a dextran sulfate sodium (DSS)-induced zebrafish model of UC. Polysaccharides from S. horneri were extracted using Celluclast-assisted extraction and fractionated via DEAE anion-exchange chromatography, resulting in six fucoidan fractions. The sixth fraction (SH-F), with a molecular weight of 254 kDa, showed the highest fucose, sulfate contents, and demonstrated the highest effect on promoting L. plantarum growth. Structural analysis revealed that SH-F contained α-L-Fucp-(1→3), α-L-Fucp-(1→4), β-D-Galp-(1→2,3,4), α-L-Fucp-(1→3,4), and terminal α-L-Fucp residues where Fuc1(SO3)1, Gal1Fuc1(SO3)1, and Fuc2(SO3)2 were the most common glycans. Synbiotic administration significantly attenuated DSS-induced colonic shrinkage, inhibited pro-inflammatory cytokines (IL-6, TNF-ɑ, and IL-1β), restored tight junction proteins (ZO-1, occludin), and downregulated the iNOS, COX2, and NF-κB signaling pathway in adult zebrafish. 16S rRNA gene sequencing revealed restoration of gut microbial diversity and increased abundance of beneficial bacterial taxa to improve DSS-induced UC. These findings highlight the potential synergistic effects of SH-F and L. plantarum as a combinatorial strategy to regulate gut inflammation and enhance epithelial barrier function, potentially offering new insights and therapeutic opportunities for UC intervention. Full article
(This article belongs to the Special Issue Marine Natural Products with Immunomodulatory Activity)
Show Figures

Graphical abstract

18 pages, 8396 KB  
Article
Extraction, Enrichment, Characterization, and Antioxidant Activities of Sargassum fusiforme Polyphenols
by Hui Wang, Min Zhang, Weiqin Yang, Linwu Zhuang and Lei Guo
Foods 2025, 14(19), 3317; https://doi.org/10.3390/foods14193317 - 24 Sep 2025
Viewed by 340
Abstract
This study investigated the extraction, enrichment, characterization, and antioxidant activities of Sargassum fusiforme polyphenols (SFPs). The optimal extraction process conditions of SFPs are as follows: an ethanol volume fraction of 28%, a liquid–solid ratio of 29 mL/g, an extraction temperature of 80 °C, [...] Read more.
This study investigated the extraction, enrichment, characterization, and antioxidant activities of Sargassum fusiforme polyphenols (SFPs). The optimal extraction process conditions of SFPs are as follows: an ethanol volume fraction of 28%, a liquid–solid ratio of 29 mL/g, an extraction temperature of 80 °C, and an extraction time of 3.2 h. After enrichment by D101 macroporous resin, the purity of SFPs increased from 1.20 ± 0.08% to 10.78 ± 0.25%, increasing by approximately 8 times. SFPs were mainly composed of polyphenols, flavonoids, and polysaccharides. Furthermore, after identification by HPLC-QQK-ESI-MS/MS, they were found to contain 11 phlorotannins (mainly of the fuhalol type), 2 flavonoids, etc. In three antioxidant evaluation systems (DPPH free radical scavenging ability, reducing power, and total antioxidant capacity), the enriched SFPs all exhibited superior activities compared to tea polyphenols. The research results provide a theoretical basis and experimental evidence for the development of a new type of food preservative based on SFPs. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

15 pages, 2394 KB  
Article
Nitrogen-Doped Biocarbon Derived from Alginate-Extraction Residues of Sargassum spp.: Towards Low-Cost Electrocatalysts for Alkaline ORR
by Aurora Caldera, Beatriz Escobar, Juan Briceño, José M. Baas-López, Romeli Barbosa and Jorge Uribe
Chemistry 2025, 7(5), 144; https://doi.org/10.3390/chemistry7050144 - 3 Sep 2025
Viewed by 489
Abstract
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, [...] Read more.
Extraction processes of alginates from Sargassum spp. generate a substantial number of solid residues that are commonly discarded. This study explores the sustainable transformation of these residues into nitrogen-doped biocarbon through chemical activation with KOH and nitrogen doping using urea. XRD, FTIR, SEM-EDX, Raman spectroscopy, BET surface area analysis, XPS, and CHNS elemental analysis were used to characterize the materials. The doped and activated biocarbon (BDA) demonstrated excellent physicochemical properties, including a specific surface area of 1790 m2 g−1 and a mesoporous structure. Electrochemical evaluation in alkaline media revealed a current density of −4.37 mA cm−2, an onset potential of 0.922 E vs. RHE, and a half-wave potential of 0.775 E vs. RHE. Koutecky–Levich analysis indicated a two-electron reduction pathway. The superior performance was attributed to the synergistic effects of high surface area, nitrogen functionalities (pyridinic-N and pyrrolic-N), and enhanced accessibility of active sites. These results highlight the potential of waste-derived, nitrogen-doped biocarbon as a sustainable and low-cost alternative for ORR electrocatalysis in alkaline fuel cells. Full article
(This article belongs to the Section Catalysis)
Show Figures

Figure 1

27 pages, 3307 KB  
Article
Comparative Evaluation of Marine Algae-Based Biostimulants for Enhancing Growth, Physiological Performance, and Essential Oil Yield in Lavender (Lavandula angustifolia) Under Greenhouse Conditions
by Damiano Spagnuolo, Aftab Jamal and Domenico Prisa
Phycology 2025, 5(3), 41; https://doi.org/10.3390/phycology5030041 - 28 Aug 2025
Viewed by 653
Abstract
The application of marine algae-derived biostimulants offers a sustainable approach to improving plant performance in aromatic and medicinal crops. This study investigated the effects of four macroalgal extracts and two commercial biostimulant products on the growth, physiology, and essential oil production of Lavandula [...] Read more.
The application of marine algae-derived biostimulants offers a sustainable approach to improving plant performance in aromatic and medicinal crops. This study investigated the effects of four macroalgal extracts and two commercial biostimulant products on the growth, physiology, and essential oil production of Lavandula angustifolia cultivated under greenhouse conditions at CREA, Pescia (Italy). Treatments included extracts from Ascophyllum nodosum (France and Greenland), Laminaria digitata (Iceland), Sargassum muticum (Italy), two commercial formulations (a seaweed-based and an amino acid-based biostimulant), and a control receiving only standard fertilization. Over a 10-week period, plants were evaluated for multiple parameters: plant height, leaf number and area, SPAD index (chlorophyll content), above- and below-ground biomass, flower production, microbial activity in the growth substrate, and essential oil yield. Algae extracts, particularly those from A. nodosum (Greenland) and S. muticum (Venice), significantly enhanced most parameters compared to the control and commercial products. These treatments yielded higher biomass, greater chlorophyll retention, increased flower number, and improved essential oil content. Rhizosphere microbial counts were also elevated, indicating a positive interaction between algae treatments and substrate biology. The study highlights the multifunctional nature of marine algae, whose complex composition of bioactive compounds appears to promote plant growth and secondary metabolism through multiple pathways. The superior performance of cold- and temperate-climate algae suggests a relationship between environmental origin and biostimulant efficacy. Compared to commercial inputs, the tested algae extracts showed broader and more consistent effects. These findings support the integration of macroalgae-based biostimulants into sustainable lavender cultivation strategies. Further research is recommended to optimize formulations, validate field performance, and explore synergistic effects with beneficial microbes or organic inputs. Full article
Show Figures

Figure 1

23 pages, 2025 KB  
Article
Chemical Exploration of Polysaccharides, Fatty Acids, and Antioxidants as Functional Ingredients from Colombian Macroalgae Acanthophora spicifera, Sargassum ramifolium, and Sargassum fluitans
by Jhonny Colorado-Ríos, Diana C. Restrepo-Espinosa, Yuli Restrepo-Moná, Juan David Monsalve, Diana M. Márquez-Fernández, Leonardo Castellanos and Alejandro Martínez-Martínez
Molecules 2025, 30(16), 3333; https://doi.org/10.3390/molecules30163333 - 10 Aug 2025
Viewed by 807
Abstract
Macroalgae are valuable natural sources for bioprospection and the development of raw materials applicable to the nutrition, health, and agriculture industries. To build a basis for the sustainable use of marine organisms from the Colombian Caribbean, a preliminary study was conducted focusing on [...] Read more.
Macroalgae are valuable natural sources for bioprospection and the development of raw materials applicable to the nutrition, health, and agriculture industries. To build a basis for the sustainable use of marine organisms from the Colombian Caribbean, a preliminary study was conducted focusing on known functional compounds in two genera of macroalgae, including the species Acanthophora spicifera (Rhodophyta), Sargassum ramifolium, and Sargassum fluitans (Ochrophyta). This study included the extraction and identification of polysaccharides using ultrafiltration, nuclear magnetic resonance (1H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and size exclusion chromatography (SEC); fatty acids by gas chromatographic (GC) profiling; and phenolic composition and antioxidant activity by complementary semi-quantitative methods (ABTS, DPPH, FRAP, and ORAC assays). Carrageenan-type polysaccharides were detected in A. spicifera, while alginate and fucoidan types were found in S. ramifolium and S. fluitans; palmitic acid was the predominant fatty acid in A. spicifera and S. ramifolium, but it was not detected in S. fluitans. S. ramifolium showed the highest ABTS, DPPH, and ORAC activities and phenolic compounds, while S. fluitans exhibited the highest FRAP activity. This study contributes to the chemical knowledge on Colombian macroalgae to establish potential applications in various fields, including biomedicine, cosmetics, functional foods, and nutraceutical ingredients. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods, 2nd Edition)
Show Figures

Figure 1

27 pages, 4169 KB  
Article
Biostimulatory Effects of Foliar Application of Silicon and Sargassum muticum Extracts on Sesame Under Drought Stress Conditions
by Soukaina Lahmaoui, Rabaa Hidri, Hamid Msaad, Omar Farssi, Nadia Lamsaadi, Ahmed El Moukhtari, Walid Zorrig and Mohamed Farissi
Plants 2025, 14(15), 2358; https://doi.org/10.3390/plants14152358 - 31 Jul 2025
Viewed by 2732
Abstract
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications [...] Read more.
Sesame (Sesamum indicum L.) is widely cultivated for its valuable medicinal, aromatic, and oil-rich seeds. However, drought stress remains one of the most significant abiotic factors influencing its development, physiological function, and overall output. This study investigates the potential of foliar applications of silicon (Si), Sargassum muticum (Yendo) Fensholt extracts (SWE), and their combination to enhance drought tolerance and mitigate stress-induced damage in sesame. Plants were grown under well-watered conditions (80% field capacity, FC) versus 40% FC (drought conditions) and were treated with foliar applications of 1 mM Si, 10% SWE, or both. The results showed that the majority of the tested parameters were significantly (p < 0.05) lowered by drought stress. However, the combined application of Si and SWE significantly (p < 0.05) enhanced plant performance under drought stress, leading to improved growth, biomass accumulation, water status, and physiological traits. Gas exchange, photosynthetic pigment content, and photosystem activity (PSI and PSII) all increased significantly when SWE were given alone; PSII was more significantly affected. In contrast, Si alone had a more pronounced impact on PSI activity. These findings suggest that Si and SWE, applied individually or in combination, can effectively alleviate drought stress’s negative impact on sesame, supporting their use as promising biostimulants for enhancing drought tolerance. Full article
(This article belongs to the Special Issue The Role of Exogenous Silicon in Plant Response to Abiotic Stress)
Show Figures

Figure 1

16 pages, 701 KB  
Article
Use of Trichoderma, Aspergillus, and Rhizopus Fungi for the Biological Production of Hydrolytic Enzymes and Uronic Acids from Sargassum Biomass
by Cristina Agabo-García, Muhammad Nur Cahyanto, Widiastuti Setyaningsih, Luis I. Romero-García, Carlos J. Álvarez-Gallego and Ana Blandino
Fermentation 2025, 11(8), 430; https://doi.org/10.3390/fermentation11080430 - 27 Jul 2025
Viewed by 859
Abstract
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied [...] Read more.
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied (alone or combined) to Sargassum sp. biomass through SSF (107 spores gbiomass−1, 30 °C, and 7 days of treatment). In general, individual SSF with all three fungi degraded the biomass, achieving a marked synergy in the production of cellulase, laminarinase, and alginate lyase activities (especially for the last one). Trichoderma was the most efficient species in producing laminarinase, whereas Rhizophus was the best option for producing alginate lyase. However, when dual combinations were tested, the maximal values of alginate lyase activities were reached (13.4 ± 0.2 IU gbiomass−1 for Aspergillus oryzae and Rhizopus oryzae). Remarkably, uronic acids were the main monomeric units from algal biomass solubilization, achieving a maximum yield of 14.4 mguronic gbiomass−1, with the A + R condition being a feasible, eco-friendly alternative to chemical extraction of this monomer. Additionally, the application of all the fungal pretreatments drastically decreased the total phenolic content (TPC) in the biomass from 369 mg L−1 to values around 44–84 mg L−1, minimizing the inhibition for possible subsequent biological processes in which the residual solid can be used. Full article
Show Figures

Figure 1

14 pages, 2696 KB  
Article
Recycling Sargassum spp. Biomass for Sustainable Biocontrol in Agriculture: A Circular Approach
by Mislén Gómez-Matos, Dariellys Martínez-Balmori, Yamilet Coll-García, Yamilé Baró-Robaina and Yaneris Mirabal-Gallardo
Sustainability 2025, 17(13), 6107; https://doi.org/10.3390/su17136107 - 3 Jul 2025
Viewed by 736
Abstract
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic [...] Read more.
The increasing frequency of Sargassum spp. blooms represents a global environmental challenge, impacting coastal ecosystems and requiring sustainable management strategies. This study evaluates the potential of Sargassum spp. extract as an encapsulating material for biological pest control, contributing to marine waste valorization. Pelagic Sargassum spp. collected from the Havana coast was processed to obtain an alginate-rich extract, which was used to encapsulate Beauveria bassiana conidia via ionic gelation. FTIR confirmed characteristic carboxylate absorption bands, indicating structural similarities with commercial alginate, while TGA demonstrated comparable thermal behavior. Beads exhibited consistent dimensions (0.5–3 mm) with irregular post-drying shapes. Encapsulation efficiency yielded a conidial concentration of 1.43 × 108 conidia per mL, ensuring retention within the matrix. Long-term viability was confirmed as conidia remained viable and able to grow after six months, potentially benefiting from extract-derived compounds. These findings highlight the potential of repurposing Sargassum spp. for sustainable agricultural applications, advancing environmentally friendly pest management while addressing the ecological burden of excessive Sargassum accumulation. Full article
Show Figures

Figure 1

30 pages, 7536 KB  
Article
Fucoidan-Based Gold Nanoparticles: Antioxidant and Anticancer Potential from Turbinaria decurrens and Sargassum cinereum
by Ahmed S. El Newehy, Saly F. Gheda, Mona M. Ismail, Dara Aldisi, Mahmoud M. A. Abulmeaty and Mostafa E. Elshobary
Pharmaceutics 2025, 17(7), 826; https://doi.org/10.3390/pharmaceutics17070826 - 25 Jun 2025
Cited by 1 | Viewed by 1265
Abstract
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of [...] Read more.
Background/Objectives: Cancer remains one of the leading causes of mortality worldwide, while natural antioxidants have emerged as promising therapeutic agents in cancer treatment. Although fucoidan from brown algae shows anticancer potential, its efficacy is limited by bioavailability challenges, and the synergistic effects of combining it with gold nanoparticles remain unexplored. Methods: Fucoidan was extracted from Sargassum cinereum and Turbinaria decurrens. F-AuNPs were produced utilizing fucoidan as both a reducing and stabilizing agent. The nanoparticles were analyzed by UV-Vis spectroscopy, FTIR, TEM, XRD, DLS, TAG, and zeta potential evaluation. The antioxidant activity was evaluated by DPPH and FRAP tests. Cytotoxicity was determined against HepG2, THP-1, and BNL cells, utilizing MTT and SRB tests. Flow cytometry was utilized to assess the cell cycle, while molecular docking was carried out to examine binding to oncogenic proteins. Results: T. decurrens produced higher polysaccharides rich in fucoidan content (235.9 mg/g dry weight) and stated higher antioxidant activity (FRAP: 9.21 μg TE mg−1; DPPH: 4.48 μg TE mg−1) in comparison to S. cinereum. F-AuNPs showed potent cytotoxicity toward HepG2 cells, with IC50 values and cytotoxicity toward HepG2 cells, with IC50 values of 377.6 μg/mL for S. cinereum and 449.5 μg mL−1 for T. decurrens. Molecular docking revealed robust binding of fucoidan to COX-2 (−7.1 kcal mol−1) and TERT (−5.4 kcal mol−1). Conclusions: Fucoidan and F-AuNPs reveal remarkable antioxidant and anticancer properties. Nanoparticle formulation greatly improves bioactivity, underscoring its promise as a synergistic approach for cancer treatment by influencing oxidative stress and cancer-associated pathways. Full article
Show Figures

Figure 1

15 pages, 5956 KB  
Article
Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality
by Damiano Spagnuolo, Domenico Prisa, Anupam Kundu, Maria Grazia De Michele, Valentino Russo and Giuseppa Genovese
Phycology 2025, 5(2), 22; https://doi.org/10.3390/phycology5020022 - 3 Jun 2025
Viewed by 1490
Abstract
Macroalgal extracts are widely recognised as biostimulants that enhance crop productivity and plant growth under both optimal and stressful conditions. They offer a sustainable approach to mitigating the adverse effects of abiotic stress on crop development. This study investigates the efficacy of macroalgal-based [...] Read more.
Macroalgal extracts are widely recognised as biostimulants that enhance crop productivity and plant growth under both optimal and stressful conditions. They offer a sustainable approach to mitigating the adverse effects of abiotic stress on crop development. This study investigates the efficacy of macroalgal-based fertilisers in enhancing tomato (Solanum lycopersicum L.) growth, yield, and fruit quality, as sustainable alternatives to chemical fertilisers. Different seaweed species (Sargassum muticum, Ulva ohnoi, Furcellaria lumbricalis, Ascophyllum nodosum, and a commercial A. nodosum extract) were evaluated as foliar treatments. The results showed that while the leaf fresh weight and chlorophyll content were not significantly affected, the fruit morphology and biochemical composition exhibited notable variations. Sargassum muticum-treated fruits displayed the highest °Brix (6.57), indicating superior sugar accumulation, while Ulva ohnoi maintained near-neutral pH levels (avg. 3.94), suggesting balanced acidity. Ascophyllum nodosum extracts induced the highest proline concentrations (peak: 63.77 µmol/g), but also caused extreme acidity (pH 1.39–2.58). Furcellaria lumbricalis enhanced the fruit size (axial length up to 41.4 mm), but reduced the pH sharply (1.69–2.13). The commercial product underperformed in regard to sugar content and flavour complexity. The integrative analysis revealed species-specific flavour profiles: Sargassum yielded sweet, mildly acidic fruits; Ascophyllum produced intensely aromatic, acidic tomatoes; and Ulva resulted in bland flavours. These findings underscore the importance of algal species and extraction methods in tailoring biofertilisers for target fruit qualities. This study advocates for the use of macroalgal fertilisers in sustainable agriculture, but highlights the need for optimised formulations to balance crop yield, taste, and stress adaptation. Full article
Show Figures

Figure 1

20 pages, 1095 KB  
Article
Sustainable Extraction of Prospective Cosmetic Ingredients from Colombian Marine Macroalgae Using Natural Deep Eutectic Solvents
by Verónica María Tamayo-Rincón, Jhonny Colorado-Ríos, Didier Johan Alvarez-Bustamante, Vanessa Urrea-Victoria, Diana Margarita Márquez-Fernández, Constain H. Salamanca, Stefano Dall’Acqua, Leonardo Castellanos-Hernandez and Alejandro Martínez-Martínez
Mar. Drugs 2025, 23(6), 239; https://doi.org/10.3390/md23060239 - 30 May 2025
Cited by 2 | Viewed by 1090
Abstract
This study presents the results obtained from extracting and quantifying cosmetically valuable metabolites such as phenolic compounds and mycosporine-like amino acids (MAAs) from 12 samples of marine macroalgae collected in the Colombian Caribbean Sea. Natural deep eutectic solvents (NADESs) were prepared, physicochemically tested [...] Read more.
This study presents the results obtained from extracting and quantifying cosmetically valuable metabolites such as phenolic compounds and mycosporine-like amino acids (MAAs) from 12 samples of marine macroalgae collected in the Colombian Caribbean Sea. Natural deep eutectic solvents (NADESs) were prepared, physicochemically tested (viscosity, surface tension, pH, and conductivity), and then compared with water as the reference solvent to quantify phenolic compounds using the Folin–Ciocalteau test. With a simple extraction assay with water and ultrasound followed by ultraviolet spectral scanning the presence of MAAs was easily determined in several of the analysed samples, and then they were identified by HPLC-DAD. Hydrochloric acid solution at 5% extracted a higher content of phenolic compounds than NADES and water. The NADES that showed the highest phenolic compound extraction yield was a mixture of betaine, glucose, and water with 1:1:5 molar ratio. Sargassum cf. ramifolium and Sargassum fluitans showed the highest contents of phenolic compounds extracted with NADES, with 29.2 and 21.9 mg GAE/g DW, respectively. The results show that NADESs are an interesting alternative for the more efficient extraction of cosmetically valuable compounds such as phenolic compounds and mycosporine-type amino acids from marine macroalgae. Full article
Show Figures

Graphical abstract

14 pages, 1921 KB  
Article
Evaluation of the Bioactivity of Phenolic Compounds from the Sargassum pallidum and Development of Their Stable Emulsion and Cream
by Shuoqi Wang, Li Wang, Yiqing Sun, Jia Yang, Wei Liu, Tingting Wu and Rui Jia
Biology 2025, 14(6), 625; https://doi.org/10.3390/biology14060625 - 28 May 2025
Viewed by 663
Abstract
Chronic inflammation poses a significant threat to physical health. The increasing prevalence of skin disorders is attributed to external factors such as environmental pollution and UV-induced stress. To address damaged skin, the cosmetic market increasingly favors the development of effective products containing natural [...] Read more.
Chronic inflammation poses a significant threat to physical health. The increasing prevalence of skin disorders is attributed to external factors such as environmental pollution and UV-induced stress. To address damaged skin, the cosmetic market increasingly favors the development of effective products containing natural active compounds. This study constitutes the initial examination of the anti-inflammatory properties of polyphenols extracted from Sargassum pallidum. The experimental results demonstrated that SPP significantly reduced intracellular levels of nitric oxide (NO), reactive oxygen species (ROS), and multiple inflammatory mediators. Furthermore, SPP exhibited an inhibitory effect on the mRNA expression of inflammation-related genes: compared to the control group, the mRNA levels of IL-1β, IL-6, TNF-α, iNOS, and COX-2 decreased by 4.94 ± 0.72-fold, 113.64 ± 27.46-fold, 1.40 ± 0.21-fold, 11.68 ± 3.90-fold, and 0.47 ± 0.11-fold, respectively (data presented as mean ± SD, * p < 0.05). SPP was incorporated into cosmetic formulations as a natural active ingredient to create emulsions and creams. Upon assessment of various skin parameters, these formulations demonstrated significant skincare benefits. In conclusion, SPP exhibits promising anti-inflammatory properties, making it a potential natural active ingredient for applications in cosmetics. Full article
(This article belongs to the Special Issue Physiology and Pathophysiology of Skin)
Show Figures

Figure 1

22 pages, 3368 KB  
Article
Effect of Biostimulants on Drought Tolerance of Greenhouse-Grown Tomato
by Kalliopi I. Kadoglidou, Eleni Anthimidou, Konstantinos Krommydas, Eleni Papa, Eleftherios Karapatzak, Nektaria Tsivelika, Maria Irakli, Ifigeneia Mellidou, Aliki Xanthopoulou and Apostolos Kalivas
Horticulturae 2025, 11(6), 601; https://doi.org/10.3390/horticulturae11060601 - 28 May 2025
Viewed by 942
Abstract
The use of biostimulants is one of the recognized strategies for mitigating the adverse effects of drought on crops. In a greenhouse tomato experiment, the effect of two biostimulants in combination with three levels of drought was investigated. Specifically, the doses of 150 [...] Read more.
The use of biostimulants is one of the recognized strategies for mitigating the adverse effects of drought on crops. In a greenhouse tomato experiment, the effect of two biostimulants in combination with three levels of drought was investigated. Specifically, the doses of 150 mL and 1000 g ha−1 of a plant-derived polyhydroxy acids extract (B1) and a Sargassum seaweed extract (B2), respectively, were studied in combination with drought levels of 85, 63.75, and 42.5% of field capacity. Four applications were performed during key growth stages. The effects were comprehensively investigated by assessing agronomic and physiological traits of the plants at three defined time points during the experimental period. Furthermore, organoleptic characteristics, bioactive compounds, antioxidant activity in the fruits, and overall yield components were evaluated. Drought stress provoked a consistent negative impact on several physiological traits, such as stomatal conductance (up to −58.3%), net photosynthesis (up to −47.9%), and quantum yield. A comparable impact was observed on agronomic traits, such as plant height, stem thickness, and number of leaves, with reductions of up to 13.6%. Both biostimulants’ applications enhanced certain physiological features across all irrigation levels, including net photosynthesis by up to 44.3% and chlorophyll content index by up to 33.4%, while B2 further increased intrinsic water use efficiency by up to 42.9% compared to the respective controls. However, this trend was not reflected in the evaluated post-harvest parameters, such as fruit yield, fruit number, fruit weight, and quality indices. These findings suggest that biostimulants may have a supporting role in physiological responses under drought stress but have limited effects on fruit production. Future research should focus on optimizing the formulation, dosage, and timing of biostimulant applications, as these factors may be critical to enhancing plant tolerance to drought stress and improving fruit yield responses. Full article
Show Figures

Figure 1

16 pages, 2073 KB  
Article
Marine Algae Extract-Loaded Nanoemulsions: A Spectrophotometric Approach to Broad-Spectrum Photoprotection
by Julian Tello Quiroz, Ingrid Andrea Rodriguez Martinez, Vanessa Urrea-Victoria, Leonardo Castellanos and Diana Marcela Aragón Novoa
Cosmetics 2025, 12(3), 101; https://doi.org/10.3390/cosmetics12030101 - 15 May 2025
Cited by 1 | Viewed by 1337
Abstract
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids [...] Read more.
The depletion of the ozone layer and climate change have increased exposure to ultraviolet (UV) radiation, driving the search for natural photoprotective agents. Marine macroalgae, particularly Gracilaria sp. (Rhodophyta) and Sargassum polyceratium (Ochrophyta), are rich in UV-absorbing bioactives, such as mycosporine-like amino acids (MAAs) and fucoxanthin, offering natural alternatives to synthetic sunscreens. This study aimed to develop and optimize a nanoemulsion incorporating both algal extracts, with MAAs and fucoxanthin strategically distributed in the aqueous and oil phases, respectively, to enhance synergistic broad-spectrum UV protection. MAAs were quantified in Gracilaria sp. using UHPLC-DAD, revealing 8.03 mg/g dry weight, primarily composed of shinorine and porphyra-334. Fucoxanthin was identified in S. polyceratium at 0.98 mg/g dry weight. A Box–Behnken design (BBD) was employed to optimize the nanoemulsion, targeting minimal droplet size and optimal ζ potential. The resulting formulation achieved a droplet size less than 100 nm and a ζ potential less than −25.0 mV. In vitro spectrophotometric analysis demonstrated significant photoprotective potential. The nanoemulsion containing only 375 ppm of algal extracts exhibited a UVA ratio of 1.25 and a critical wavelength of 379 nm, meeting the criteria for broad-spectrum protection and outperforming the commercial natural filter Helioguard®365. These results confirm the efficacy of combining red and brown algae extracts in a nanoemulsion platform to deliver sustainable, low-dose photoprotection. This work presents, for the first time, the incorporation of red and brown algae extracts into a single nanoemulsion system, representing a novel strategy to maximize the combined photoprotective potential of MAAs and fucoxanthin. Ultimately, this investigation contributes to the growing field of marine-derived sunscreens and supports the advancement of “blue beauty” innovations aligned with eco-conscious formulation principles. Full article
Show Figures

Figure 1

Back to TopTop