Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
- Sargassum muticum (S) was collected from Venice Lagoon, Italy, at 45°25′42.6″ N 12°19′50.7″ E;
- Ulva ohnoi (U) was gathered from Ganzirri Lake in Sicily, Italy, at coordinates 38°15′46.9″ N 15°37′34.9″ E;
- Furcellaria lumbricalis (F) was sourced from the coast of Saaremaa Island, Estonia, at 58°13′33.0″ N 22°36′12.5″ E;
- Ascophyllum nodosum (A) was obtained from the Icelandic coast at 65°18′12.1″ N 22°14′12.7″ W and was subsequently commercialised, under the name Algafit27, by the company SouthAgro srl (Bari, Italy);
- Additionally, the study included commercial seaweed-based products, such as MC Extra (Valagro® (Chietti, Italy)) derived from Ascophyllum nodosum (X), alongside a control group without fertilisation (Z).
2.1. Preparation of Macroalgal Fertiliser
2.2. Tomato Plants and Treatments
2.3. Measurements of Physical Parameters of the Leaf
2.4. Measurements of Chlorophyll Content
2.5. Measurements of Physical Parameters of the Fruit
2.6. Measurements of Chemical Composition Analysis of the Fruit
2.7. Statistical Analysis
3. Results
3.1. Physical Parameters of the Leaf
3.2. Chlorophyll Content
3.3. Physical Parameters of the Fruit
3.4. Chemical Composition Analysis of the Fruit
3.4.1. Acidity—pH
3.4.2. Proline
3.4.3. Soluble Solids Content—°Brix
4. Discussion
- Sargassum muticum (S) yielded fruits with a high °Brix and low-to-moderate pH, placing it close to the ideal profile associated with sweetness and balanced acidity. However, the relatively moderate proline levels suggest that while the fruits were sweet and mildly acidic, they lacked the aromatic complexity typical of high-proline samples, resulting in a pleasant but not fully expressive flavour;
- Ulva ohnoi (U) presented high pH values and a low °Brix, resulting in a notably flat flavour. The proline content was moderate, but insufficient to overcome the low sugar and acidity contrast. The resulting taste was perceived as underwhelming, neither sweet nor particularly aromatic, suggesting that this extract may not enhance fruit flavour in its current form;
- Furcellaria lumbricalis (F) offered a markedly different profile. With a very low pH and moderate sugar content, its fruits were sharply acidic. Nonetheless, a fairly high proline level helped introduce a mild aromatic component, giving the fruit a more complex character;
- The Ascophyllum nodosum (A) treatment produced one of the most promising flavour profiles. Despite a very low pH, the extremely high proline content contributed a strong aromatic and umami note, while the sugar levels remained within a moderate range. This combination created a fruit that was intensely flavoured and complex, with a pronounced acidic backbone and a robust aromatic finish;
- The commercial product (X) produced tomatoes that were chemically similar in pH to S and Z; its lower Brix and moderate proline content resulted in a generally bland taste, lacking in both sweetness and aromatic depth.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ericksen, P.J.; Ingram, J.S.; Liverman, D.M. Food Security and Global Environmental Change: Emerging Challenges. Environ. Sci. Policy 2009, 12, 373–377. [Google Scholar] [CrossRef]
- Zuma, M.; Arthur, G.; Coopoosamy, R.; Naidoo, K. Incorporating Cropping Systems with Eco-Friendly Strategies and Solutions to Mitigate the Effects of Climate Change on Crop Production. J. Agric. Food Res. 2023, 14, 100722. [Google Scholar] [CrossRef]
- Knapp, S.; Peralta, I.E. The Tomato (Solanum lycopersicum L., Solanaceae) and Its Botanical Relatives. In The Tomato Genome; Causse, M., Giovannoni, J., Bouzayen, M., Zouine, M., Eds.; Compendium of Plant Genomes; Springer: Berlin/Heidelberg, Germay, 2016; pp. 7–21. ISBN 978-3-662-53387-1. [Google Scholar]
- Keatinge, J.D.H.; Yang, R.-Y.; Hughes, J.d.A.; Easdown, W.J.; Holmer, R. The Importance of Vegetables in Ensuring Both Food and Nutritional Security in Attainment of the Millennium Development Goals. Food Secur. 2011, 3, 491–501. [Google Scholar] [CrossRef]
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of Aqueous Extract of Sargassum johnstonii Setchell & Gardner on Growth, Yield and Quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar] [CrossRef]
- Perveen, R.; Suleria, H.A.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Ahmad, S. Tomato (Solanum lycopersicum) Carotenoids and Lycopenes Chemistry; Metabolism, Absorption, Nutrition, and Allied Health Claims—A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 919–929. [Google Scholar] [CrossRef]
- Igile, G.O.; Ekpe, O.O.; Essien, N.M.; Bassey, S.C.; Agiang, M.A. Quality Characteristics of Tomato Juice Produced and Preserved with and without Its Seeds. Dannish J. Food Sci. Technol. 2016, 2, 1–9. [Google Scholar]
- Liu, W.; Liu, K.; Chen, D.; Zhang, Z.; Li, B.; El-Mogy, M.M.; Tian, S.; Chen, T. Solanum lycopersicum, a Model Plant for the Studies in Developmental Biology, Stress Biology and Food Science. Foods 2022, 11, 2402. [Google Scholar] [CrossRef]
- Felföldi, Z.; Ranga, F.; Roman, I.A.; Sestras, A.F.; Vodnar, D.C.; Prohens, J.; Sestras, R.E. Analysis of Physico-Chemical and Organoleptic Fruit Parameters Relevant for Tomato Quality. Agronomy 2022, 12, 1232. [Google Scholar] [CrossRef]
- Sardaro, M.L.S.; Marmiroli, M.; Maestri, E.; Marmiroli, N. Genetic Characterization of Italian Tomato Varieties and Their Traceability in Tomato Food Products. Food Sci. Nutr. 2013, 1, 54–62. [Google Scholar] [CrossRef]
- Petro-Turza, M. Flavor of Tomato and Tomato Products. Food Rev. Int. 1986, 2, 309–351. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.L.; Caris-Veyrat, C.; Génard, M. How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Jiang, P.; Liu, Y.; Miao, X.; Liu, A. Distinct Changes of Taste Quality and Metabolite Profile in Different Tomato Varieties Revealed by LC-MS Metabolomics. Food Chem. 2024, 442, 138456. [Google Scholar] [CrossRef] [PubMed]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 2, pp. 1–20. ISBN 978-3-030-61009-8. [Google Scholar]
- Priya, A.K.; Alagumalai, A.; Balaji, D.; Song, H. Bio-Based Agricultural Products: A Sustainable Alternative to Agrochemicals for Promoting a Circular Economy. RSC Sustain. 2023, 1, 746–762. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; El-Shershaby, N.A. Algae as Bio-Fertilizers: Between Current Situation and Future Prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef]
- Arias, A.; Feijoo, G.; Moreira, M.T. Macroalgae as a Sustainable Biostimulant for Crop Production According to Techno-Economic and Environmental Criteria. Sustain. Prod. Consum. 2024, 48, 169–180. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Grina, F.; Lorentz, J.F.; Silva, I.; Castaño-Sánchez, O.; Marks, E.A.N. Green Agriculture: A Review of the Application of Micro- and Macroalgae and Their Impact on Crop Production on Soil Quality. J. Soil Sci. Plant Nutr. 2022, 22, 4627–4641. [Google Scholar] [CrossRef]
- Wan, A.H.L.; Davies, S.J.; Soler-Vila, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a Sustainable Aquafeed Ingredient. Rev. Aquac. 2019, 11, 458–492. [Google Scholar] [CrossRef]
- Bayat, F.; Afshar, A.; Baghban, N. Algal Cells-Derived Extracellular Vesicles: A Review with Special Emphasis on Their Antimicrobial Effects. Front. Microbiol. 2021, 12, 785716. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, D.; Russo, V.; Manghisi, A.; Di Martino, A.; Morabito, M.; Genovese, G.; Trifilò, P. Screening on the Presence of Plant Growth Regulators in High Biomass Forming Seaweeds from the Ionian Sea (Mediterranean Sea). Sustainability 2022, 14, 3914. [Google Scholar] [CrossRef]
- Rathod, S.G.; Bhushan, S.; Mantri, V.A. Phytohormones and Pheromones in the Phycology Literature: Benchmarking of Data-Set and Developing Critical Tools of Biotechnological Implications for Commercial Aquaculture Industry. Phycology 2023, 4, 1–36. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Cozzolino, E.; Di Mola, I.; Ottaiano, L.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Foliar Application of Plant-Based Biostimulants Improve Yield and Upgrade Qualitative Characteristics of Processing Tomato. Ital. J. Agron. 2021, 16, 1825. [Google Scholar] [CrossRef]
- Song, C.; Lorz, L.R.; Lee, J.; Cho, J.Y. In Vitro Photoprotective, Anti-Inflammatory, Moisturizing, and Antimelanogenic Effects of a Methanolic Extract of Chrysophyllum lucentifolium Cronquist. Plants 2021, 11, 94. [Google Scholar] [CrossRef] [PubMed]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed Extracts as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Prisa, D.; Spagnuolo, D. Evaluation of the Bio-Stimulating Activity of Lake Algae Extracts on Edible Cacti Mammillaria prolifera and Mammillaria glassii. Plants 2022, 11, 3586. [Google Scholar] [CrossRef]
- Spagnuolo, D.; Bressi, V.; Chiofalo, M.T.; Morabito, M.; Espro, C.; Genovese, G.; Iannazzo, D.; Trifilo, P. Using the Aqueous Phase Produced from Hydrothermal Carbonization Process of Brown Seaweed to Improve the Growth of Phaseolus vulgaris. Plants 2023, 12, 2745. [Google Scholar] [CrossRef]
- Fatimah, S.; Daud, N. The Effect of Seaweed Extract (Sargassum sp.) Used as Fertilizer on Plant Growth of Capsicum annum (Chilli) and Lycopersicon esculentum (Tomato). Indones. J. Sci. Technol. 2018, 3, 115–123. [Google Scholar] [CrossRef]
- Espinosa-Antón, A.A.; Zamora-Natera, J.F.; Zarazúa-Villaseñor, P.; Santacruz-Ruvalcaba, F.; Sánchez-Hernández, C.V.; Águila Alcántara, E.; Torres-Morán, M.I.; Velasco-Ramírez, A.P.; Hernández-Herrera, R.M. Application of Seaweed Generates Changes in the Substrate and Stimulates the Growth of Tomato Plants. Plants 2023, 12, 1520. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, X.; Chen, B.; Zhang, M.; Ma, J. Seaweed Extract Improved Yields, Leaf Photosynthesis, Ripening Time, and Net Returns of Tomato (Solanum lycopersicum Mill.). ACS Omega 2020, 5, 4242–4249. [Google Scholar] [CrossRef]
- González-González, M.F.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Sánchez-Hernández, C.V.; Casarrubias-Castillo, K.; Becerril-Espinosa, A.; Castañeda-Nava, J.J.; Hernández-Herrera, R.M. Physiological, Ecological, and Biochemical Implications in Tomato Plants of Two Plant Biostimulants: Arbuscular Mycorrhizal Fungi and Seaweed Extract. Front. Plant Sci. 2020, 11, 999. [Google Scholar] [CrossRef]
- Yao, G.-F.; Li, C.; Sun, K.-K.; Tang, J.; Huang, Z.-Q.; Yang, F.; Huang, G.-G.; Hu, L.-Y.; Jin, P.; Hu, K.-D. Hydrogen Sulfide Maintained the Good Appearance and Nutrition in Post-Harvest Tomato Fruits by Antagonizing the Effect of Ethylene. Front. Plant Sci. 2020, 11, 584. [Google Scholar] [CrossRef]
- Jalali, P.; Roosta, H.R.; Khodadadi, M.; Torkashvand, A.M.; Jahromi, M.G. Effects of Brown Seaweed Extract, Silicon, and Selenium on Fruit Quality and Yield of Tomato under Different Substrates. PLoS ONE 2022, 17, e0277923. [Google Scholar] [CrossRef] [PubMed]
- Rama Rao, K. Preparation of Liquid Seaweed Fertilizer from Sargassum. In Proceedings of the Seaweed Research and Utilization Association Workshop on Algal Products and Seminar on Phaeophyceae in India, Madras, India, 4–7 June 1990; pp. 4–7. [Google Scholar]
- Parry, C.; Blonquist, J.M.; Bugbee, B. In Situ Measurement of Leaf Chlorophyll Concentration: Analysis of the Optical/Absolute Relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- Mughunth, R.J.; Velmurugan, S.; Mohanalakshmi, M.; Vanitha, K. A Review of Seaweed Extract’s Potential as a Biostimulant to Enhance Growth and Mitigate Stress in Horticulture Crops. Sci. Hortic. 2024, 334, 113312. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum Nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef]
- Kumari, S.; Sehrawat, K.D.; Phogat, D.; Sehrawat, A.R.; Chaudhary, R.; Sushkova, S.N.; Voloshina, M.S.; Rajput, V.D.; Shmaraeva, A.N.; Marc, R.A.; et al. Ascophyllum nodosum (L.) Le Jolis, a Pivotal Biostimulant toward Sustainable Agriculture: A Comprehensive Review. Agriculture 2023, 13, 1179. [Google Scholar] [CrossRef]
- Ali, J.; Jan, I.; Ullah, H.; Ahmed, N.; Alam, M.; Ullah, R.; El-Sharnouby, M.; Kesba, H.; Shukry, M.; Sayed, S.; et al. Influence of Ascophyllum nodosum Extract Foliar Spray on the Physiological and Biochemical Attributes of Okra under Drought Stress. Plants 2022, 11, 790. [Google Scholar] [CrossRef]
- Reimer, J.J.; Thiele, B.; Biermann, R.T.; Junker-Frohn, L.V.; Wiese-Klinkenberg, A.; Usadel, B.; Wormit, A. Tomato Leaves under Stress: A Comparison of Stress Response to Mild Abiotic Stress between a Cultivated and a Wild Tomato Species. Plant Mol. Biol. 2021, 107, 177–206. [Google Scholar] [CrossRef]
- Mehta, D.; Vyas, S. Comparative Bio-Accumulation of Osmoprotectants in Saline Stress Tolerating Plants: A Review. Plant Stress 2023, 9, 100177. [Google Scholar] [CrossRef]
- Martínez-Martínez, E.; Slocum, A.H.; Ceballos, M.L.; Aponte, P.; Bisonó-León, A.G. Beyond the Bloom: Invasive Seaweed Sargassum Spp. as a Catalyst for Sustainable Agriculture and Blue Economy—A Multifaceted Approach to Biodegradable Films, Biostimulants, and Carbon Mitigation. Sustainability 2025, 17, 3498. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spagnuolo, D.; Prisa, D.; Kundu, A.; De Michele, M.G.; Russo, V.; Genovese, G. Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality. Phycology 2025, 5, 22. https://doi.org/10.3390/phycology5020022
Spagnuolo D, Prisa D, Kundu A, De Michele MG, Russo V, Genovese G. Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality. Phycology. 2025; 5(2):22. https://doi.org/10.3390/phycology5020022
Chicago/Turabian StyleSpagnuolo, Damiano, Domenico Prisa, Anupam Kundu, Maria Grazia De Michele, Valentino Russo, and Giuseppa Genovese. 2025. "Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality" Phycology 5, no. 2: 22. https://doi.org/10.3390/phycology5020022
APA StyleSpagnuolo, D., Prisa, D., Kundu, A., De Michele, M. G., Russo, V., & Genovese, G. (2025). Comparative Effects of Macroalgal Extracts on Tomato Plant Growth and Fruit Quality. Phycology, 5(2), 22. https://doi.org/10.3390/phycology5020022