Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (116)

Search Parameters:
Keywords = sarcosine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2667 KiB  
Article
VdSOX1 Negatively Regulates Verticillium dahliae Virulence via Enhancing Effector Expression and Suppressing Host Immune Responses
by Di Xu, Xiaoqiang Zhao, Can Xu, Chongbo Zhang and Jiafeng Huang
J. Fungi 2025, 11(8), 576; https://doi.org/10.3390/jof11080576 - 1 Aug 2025
Viewed by 213
Abstract
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal [...] Read more.
The soil-borne fungal pathogen Verticillium dahliae causes devastating vascular wilt disease in numerous crops, including cotton. In this study, we reveal that VdSOX1, a highly conserved sarcosine oxidase gene, is significantly upregulated during host infection and plays a multifaceted role in fungal physiology and pathogenicity. Functional deletion of VdSOX1 leads to increased fungal virulence, accompanied by enhanced microsclerotia formation, elevated carbon source utilization, and pronounced upregulation of effector genes, including over 50 predicted secreted proteins genes. Moreover, the VdSOX1 knockout strains suppress the expression of key defense-related transcription factors in cotton, such as WRKY, MYB, AP2/ERF, and GRAS families, thereby impairing host immune responses. Transcriptomic analyses confirm that VdSOX1 orchestrates a broad metabolic reprogramming that links nutrient acquisition to immune evasion. Our findings identify VdSOX1 as a central regulator that promotes V. dahliae virulence by upregulating effector gene expression and suppressing host immune responses, offering novel insights into the molecular basis of host–pathogen interactions and highlighting potential targets for disease management. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

18 pages, 2629 KiB  
Article
Dietary Interventions with Bletilla striata Polysaccharides and/or Composite Polysaccharides Remodel Liver Lipid Profiles and Ameliorate Gut Metabolic Disturbances in High-Fat Diet-Induced Obese Mice
by Peiting Zhang, Jinjin Dong, Jiamin Lu, Zijian Cai, Bingde Zhou, Qian Zhang, Chenglin Zhu and Luca Laghi
Foods 2025, 14(15), 2653; https://doi.org/10.3390/foods14152653 - 29 Jul 2025
Viewed by 186
Abstract
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in [...] Read more.
The global obesity epidemic and associated metabolic disorders present urgent public health challenges. This study employed a multi-omics approach (lipidomics, metabolomics, and gut microbiome analysis) to investigate how Bletilla striata polysaccharides (BSPs) and composite polysaccharides modulate liver lipid metabolism and gut microbiota in high-fat diet (HFD)-induced obese mice. HFD elevated hepatic phosphatidylcholines, cholesteryl esters (CEs), and acylcarnitines (CARs), alongside increased cecal choline and trimethylamine. BSP interventions reduced hepatic CEs, free fatty acids (FAs), CARs, and cecal sarcosine while restoring gut microbial diversity. Notably, BSP enriched beneficial genera, including Jeotgalicoccus and Atopostipes, and the network analysis revealed negative correlations between these genera and hepatic triglycerides (TGs), implicating the gut–liver axis in lipid metabolism regulation. These findings elucidate the anti-obesity mechanisms of polysaccharides through gut microbiota remodeling and cross-tissue metabolic interactions, providing a foundation for leveraging plant polysaccharides in developing safer, effective obesity therapies. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

12 pages, 1206 KiB  
Article
Resistance Mechanisms to Glyphosate in Lamarckia aurea (L.) Moench Found in Southern Spain
by José Alfredo Domínguez-Valenzuela, Javid Gherekhloo, Candelario Palma-Bautista, Saeid Hassanpour-bourkheili, Guido Plaza, Antonia M. Rojano-Delgado and Rafael De Prado
Agronomy 2025, 15(8), 1804; https://doi.org/10.3390/agronomy15081804 - 26 Jul 2025
Viewed by 305
Abstract
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this [...] Read more.
Glyphosate has been used for roadside weed control in southern Spain for over 40 years, and most populations of goldentop (Lamarckia aurea L.) Moench have putatively developed resistance to this active ingredient. The physiological and biochemical basis for glyphosate resistance in this weed has been investigated. Dose–response studies indicated that the resistant biotype (R) was almost 13 times more resistant to glyphosate compared to a known susceptible biotype (S). Studies of foliar glyphosate retention and 14C-glyphosate uptake/translocation showed no significant differences between both L. aurea biotypes. Basal 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) activity (µmol µg−1TSP min−1) showed similar values between R (0.82 ± 0.04) and S (0.75 ± 0.05) biotypes. On the other hand, the resistance factor (I50R/I50S) did not show a difference between the two biotypes. Therefore, it was concluded that target-site (TSR) resistance mechanisms are not involved in glyphosate resistance in this weed species. The metabolism of glyphosate to form the non-toxic metabolites aminomethylphosphonic acid (AMPA), glyoxylate, and sarcosine was greater and faster in the R compared to the S biotype; thus, glyphosate resistance is due to non-target-site resistance (NTSR) mechanisms. This paper is the first report of glyphosate resistance in L. aurea in the world. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

14 pages, 4505 KiB  
Article
Electrochemical Determination of Creatinine Based on Multienzyme Cascade-Modified Nafion/Gold Nanoparticles/Screen-Printed Carbon Composite Biosensors
by Jialin Yang, Ruizhi Yu, Wanxin Zhang, Yijia Wang and Zejun Deng
Sensors 2025, 25(13), 4132; https://doi.org/10.3390/s25134132 - 2 Jul 2025
Viewed by 418
Abstract
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of [...] Read more.
Creatinine serves as a crucial diagnostic biomarker for assessing kidney disease. This work developed portable non-enzymatic and multienzyme-modified electrochemical biosensors for the detection of creatinine based on commercial screen-printed carbon electrodes (SPCEs). The non-enzymatic creatinine sensor was constructed by the electrochemical deposition of AuNPs onto the surface of a pre-activated SPCE by electrochemical activation, followed by the surface modification of a Nafion membrane. The developed AuNPs/SCPE exhibited excellent reproducibility, and the proposed Nafion/AuNPs/SPCE sensor showed excellent detection sensitivity and selectivity toward creatinine. In comparison, the enzymatic creatinine biosensor was gradually established by the electrodeposition of a Prussian blue (PB) membrane on the optimal AuNPs/SCPE surface, followed by multi-enzyme cascade modification (which consisted of creatinine amidohydrolase (CA), creatine oxidase (CI) and sarcosine oxidase (SOx)) and drop-casting the Nafion membrane to stabilize the interface. The introduction of a PB interlayer acted as the redox layer to monitor the generation of hydrogen peroxide (H2O2) produced by the enzymatic reaction, while the Nafion membrane enhanced the detection selectivity toward creatine, and the multi-enzyme cascade modification further increased the detection specificity. Both non-enzymatic and enzymatic creatinine sensors could detect the lowest concentrations of less than or equal to 10 μM. In addition, the efficiency and reproducibility of the proposed composite biosensor were also confirmed by repetitive electrochemical measurements in human serum, which showed a positive linear calibration relation of peak currents versus the logarithm of the concentration between 10 μM and 1000 μM, namely, ip (μA) = −7.06 lgC (μM) −5.30, R2 = 0.996. This work offers a simple and feasible approach to the development of enzymatic and non-enzymatic creatinine biosensors. Full article
Show Figures

Figure 1

21 pages, 5677 KiB  
Article
Multiscale Flotation Testing for the Recovery of REE-Bearing Fluorapatite from a Finnish Carbonatite Complex Deposit Using Conventional Collectors and Lignin Nanoparticles
by Panagiotis M. Angelopoulos, Xiao Sheng Yang, Georgios Anastassakis, Nikolaos Koukoulis, Paul Christakopoulos and Maria Taxiarchou
Minerals 2025, 15(6), 614; https://doi.org/10.3390/min15060614 - 7 Jun 2025
Viewed by 517
Abstract
Apatite and rare earth elements (REEs) are vital to the European Union’s economic growth and resource security, given their essential roles in fertilizers, green technologies, and high-tech applications. To meet rising demand and reduce reliance on imports, the exploitation of domestic deposits has [...] Read more.
Apatite and rare earth elements (REEs) are vital to the European Union’s economic growth and resource security, given their essential roles in fertilizers, green technologies, and high-tech applications. To meet rising demand and reduce reliance on imports, the exploitation of domestic deposits has become increasingly important. This study investigates the beneficiation potential of ore from a carbonatite complex (Finland), focusing on the recovery of fluorapatite concentrate through froth flotation. This research addresses two key objectives: evaluating the potential for REE enrichment alongside fluorapatite concentration using conventional anionic and amine-based reagents, and assessing separation efficiency when partially substituting the most effective conventional collectors with bio-based organosolv lignin nanoparticles. Adequate recovery rates for apatite and REEs were achieved using common anionic collectors, such as hydroxamate and sarcosine, yielding P grades of 23.4% and 21.5%, and recoveries of 96.4% and 89.2%, respectively. Importantly, concentrate quality remained stable with up to a 30% reduction in conventional collectors and the addition of organosolv lignin. Bench-scale trials further validated the approach, demonstrating that lanthanum and cerium recoveries exceeded 71%, alongside satisfactory apatite recovery. Lignin nanoparticles were observed to interact with both minerals; however, the interaction was more pronounced in the case of phlogopite, which exhibited a markedly greater increase in surface hydrophilicity following treatment, suggesting a stronger affinity or surface modification effect, which was beneficial to the performance of the separation process. Full article
(This article belongs to the Special Issue Advances in Reagents for Mineral Processing, 2nd Edition)
Show Figures

Figure 1

17 pages, 1724 KiB  
Systematic Review
Biodegradation Potential of Glyphosate by Bacteria: A Systematic Review on Metabolic Mechanisms and Application Strategies
by Karolayne Silva Souza, Milena Roberta Freire da Silva, Manoella Almeida Candido, Hévellin Talita Sousa Lins, Gabriela de Lima Torres, Kátia Cilene da Silva Felix, Kaline Catiely Campos Silva, Ricardo Marques Nogueira Filho, Rahul Bhadouria, Sachchidanand Tripathi, Rishikesh Singh, Milena Danda Vasconcelos Santos, Isac Palmeira Santos Silva, Amanda Vieira de Barros, Lívia Caroline Alexandre de Araújo, Fabricio Motteran and Maria Betânia Melo de Oliveira
Agronomy 2025, 15(5), 1247; https://doi.org/10.3390/agronomy15051247 - 21 May 2025
Viewed by 1091
Abstract
The biodegradation of glyphosate by bacteria is an emerging bioremediation strategy necessitated by the intensive use of this herbicide in global agriculture. This study systematically reviews the literature to identify bacteria with the potential to degrade glyphosate. The PRISMA protocol was utilized, considering [...] Read more.
The biodegradation of glyphosate by bacteria is an emerging bioremediation strategy necessitated by the intensive use of this herbicide in global agriculture. This study systematically reviews the literature to identify bacteria with the potential to degrade glyphosate. The PRISMA protocol was utilized, considering relevant articles identified in electronic databases such as PubMed, Scopus, and Science Direct. The research identified 34 eligible studies, highlighting the genera Bacillus, Pseudomonas, and Ochrobactrum as having the greatest potential for glyphosate degradation. These findings were based on analytical techniques such as High-Performance Liquid Chromatography (HPLC) and Nuclear Magnetic Resonance (NMR), which identified and quantified intermediate metabolites, primarily AMPA (aminomethylphosphonic acid), sarcosine, and glyoxylate. This investigation also addressed enzymatic efficiency in biodegradation, emphasizing enzymes like glyphosate oxidoreductase and C-P lyases. The results indicated that South and North America lead in publications on this topic, with Argentina and the United States being the main contributors, reflecting the intense use of glyphosate in these countries. Additionally, studies in Europe and Asia focused on microbial diversity, exploring various bacterial genera. This investigation revealed that despite the promising microbial potential, there are challenges related to environmental condition variations and the cost of large-scale implementation, indicating that continuous research and process optimization are essential for the effective and sustainable application of this biotechnology. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

24 pages, 3520 KiB  
Article
Nuclear Magnetic Resonance Analysis Seeking for Metabolic Markers of Hypertension in Human Serum
by Adriana Sousa, Nádia Oliveira, Ricardo Conde, Elisabete Morais, Ana Paula Amaral, Nieves Embade, Oscar Millet and Ignacio Verde
Molecules 2025, 30(10), 2145; https://doi.org/10.3390/molecules30102145 - 13 May 2025
Viewed by 555
Abstract
Hypertension is a highly prevalent medical condition that occurs when blood pressure is too high, which greatly increases the risk of developing other cardiovascular diseases and is generally associated with higher rates of morbidity and mortality. Due to the silent/asymptomatic nature of hypertension, [...] Read more.
Hypertension is a highly prevalent medical condition that occurs when blood pressure is too high, which greatly increases the risk of developing other cardiovascular diseases and is generally associated with higher rates of morbidity and mortality. Due to the silent/asymptomatic nature of hypertension, although the methods currently available to diagnose it are easy, they generally do not allow for an early diagnosis and an efficient prognosis to avoid irreversible damage in the medium or long term. In fact, an early diagnosis of hypertension would be crucial to decrease hypertension-associated mortality. Since metabolomics using NMR can provide a global measurement of various serum metabolites, it is very suitable for detecting novel biomarkers. We therefore analyzed serum metabolomic profiles among normotensive and hypertensive elderly individuals by NMR and identified new potential biomarkers for hypertension and associated diseases. We found higher levels of acetate, formate, and glycerol, and lower levels of glutamine, glycine, and sarcosine in individuals with hypertension. Therefore, these metabolites could be used for early diagnosis of hypertension to avoid comorbidities derived from hypertension and associated mortality. Full article
Show Figures

Figure 1

21 pages, 2801 KiB  
Article
Characterization of Glyphosate Resistance and Degradation Profile of Caballeronia zhejiangensis CEIB S4-3 and Genes Involved in Its Degradation
by Manuel Isaac Morales-Olivares, María Luisa Castrejón-Godínez, Patricia Mussali-Galante, Efraín Tovar-Sánchez, Hugo Albeiro Saldarriaga-Noreña and Alexis Rodríguez
Microorganisms 2025, 13(3), 651; https://doi.org/10.3390/microorganisms13030651 - 13 Mar 2025
Cited by 1 | Viewed by 1076
Abstract
Herbicides are the most employed pesticides in agriculture worldwide; among them, glyphosate is the most successful herbicide molecule in history. The extensive use of glyphosate has been related to environmental pollution and toxic effects on non-target organisms. Effective remediation and treatment alternatives must [...] Read more.
Herbicides are the most employed pesticides in agriculture worldwide; among them, glyphosate is the most successful herbicide molecule in history. The extensive use of glyphosate has been related to environmental pollution and toxic effects on non-target organisms. Effective remediation and treatment alternatives must be developed to reduce the environmental presence of glyphosate and its adverse effects. Bioremediation using microorganisms has been proposed as a feasible alternative for treating glyphosate pollution; due to this, identifying and characterizing microorganisms capable of biodegrading glyphosate is a key environmental task for the bioremediation of polluted sites by this herbicide. This study characterized the glyphosate resistance profile and degradation capacity of the bacterial strain Caballeronia zhejiangensis CEIB S4-3. According to the results of the bacterial growth inhibition assays on agar plates, C. zhejiangensis CEIB S4-3 can resist exposure to high concentrations of glyphosate, up to 1600 mg/L in glyphosate-based herbicide (GBH) formulation, and 12,000 mg/L of the analytical-grade molecule. In the inhibition assay in liquid media, C. zhejiangensis CEIB S4-3 resisted glyphosate exposure to all concentrations evaluated (25–400 mg/L). After 48 h exposure, GBH caused important bacterial growth inhibition (>80%) at concentrations between 100 and 400 mg/L, while exposure to analytical-grade glyphosate caused bacterial growth inhibitions below 15% in all tested concentrations. Finally, this bacterial strain was capable of degrading 60% of the glyphosate supplemented to culture media (50 mg/L), when used as the sole carbon source, in twelve hours; moreover, C. zhejiangensis CEIB S4-3 can also degrade the primary glyphosate degradation metabolite aminomethylphosphonic acid (AMPA). Genomic analysis revealed the presence of genes associated with the two reported metabolic pathways for glyphosate degradation, the sarcosine and AMPA pathways. This is the first report on the glyphosate degradation capacity and the genes related to its metabolism in a Caballeronia genus strain. The results from this investigation demonstrate that C. zhejiangensis CEIB S4-3 exhibits significant potential for glyphosate biodegradation, suggesting its applicability in bioremediation strategies targeting this contaminant. Full article
(This article belongs to the Special Issue Microbial Metabolism and Application in Biodegradation)
Show Figures

Figure 1

13 pages, 2703 KiB  
Article
Identification of Plasma Metabolites Responding to Oxycodone Exposure in Rats
by Thao Vu, Suneeta Godbole, Lieselot L. G. Carrette, Lisa Maturin, Olivier George, Laura M. Saba and Katerina Kechris
Metabolites 2025, 15(2), 95; https://doi.org/10.3390/metabo15020095 - 4 Feb 2025
Cited by 1 | Viewed by 848
Abstract
Background: Oxycodone has an elevated abuse liability profile compared to other prescription opioid medications. However, many human and rodent metabolomics studies have not been specifically focused on oxycodone. Objectives: Investigating metabolomics changes associated with oxycodone exposure can provide insights into biochemical mechanisms of [...] Read more.
Background: Oxycodone has an elevated abuse liability profile compared to other prescription opioid medications. However, many human and rodent metabolomics studies have not been specifically focused on oxycodone. Objectives: Investigating metabolomics changes associated with oxycodone exposure can provide insights into biochemical mechanisms of the addiction cycle and prognosis prediction. Methods: Plasma samples from 16 rats at pre-exposure and intoxication time points were profiled on the Metabolon platform. A total of 941 metabolites were characterized. We employed a k-Nearest Neighbor imputation to impute metabolites with low levels of missingness and binarized metabolites with moderate levels of missingness, respectively. Results: Of the 136 binarized metabolites, 6 showed differential abundance (FDR < 0.05), including 5 that were present at pre-exposure but absent at intoxication (e.g., adenine), while linoleamide (18:2n6) exhibited the opposite behavior. Among the 798 metabolites with low levels of missingness, 364 showed significant changes between pre-exposure and intoxication (FDR < 0.01), including succinate, oleamide, and sarcosine. We identified four pathways, including tryptophan metabolism, that were nominally enriched among the metabolites that change with oxycodone exposure (p < 0.05). Furthermore, we identified several metabolites that showed nominal correlations with the Addiction Index (composite of oxycodone behaviors): 17 at pre-exposure and 8 at intoxication. In addition, the changes in abundance between pre-exposure and intoxication time points of 9 metabolites were nominally correlated with the Addiction Index, including sphingomyelins, methylhistidines, and glycerols. Conclusions: In summary, not only were we able to capture oxy-induced changes in metabolic pathways using easily accessible blood samples, but we also demonstrated the potential of blood metabolomics to better understand addiction liability. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

40 pages, 8055 KiB  
Article
Exertional Exhaustion (Post-Exertional Malaise, PEM) Evaluated by the Effects of Exercise on Cerebrospinal Fluid Metabolomics–Lipidomics and Serine Pathway in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
by James N. Baraniuk
Int. J. Mol. Sci. 2025, 26(3), 1282; https://doi.org/10.3390/ijms26031282 - 1 Feb 2025
Cited by 2 | Viewed by 23456
Abstract
Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort (“fatigue”) that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and [...] Read more.
Post-exertional malaise (PEM) is a defining condition of myalgic encephalomyelitis (ME/CFS). The concept requires that a provocation causes disabling limitation of cognitive and functional effort (“fatigue”) that does not respond to rest. Cerebrospinal fluid was examined as a proxy for brain metabolite and lipid flux and to provide objective evidence of pathophysiological dysfunction. Two cohorts of ME/CFS and sedentary control subjects had lumbar punctures at baseline (non-exercise) or after submaximal exercise (post-exercise). Cerebrospinal fluid metabolites and lipids were quantified by targeted Biocrates mass spectrometry methods. Significant differences between ME/CFS and control, non-exercise vs. post-exercise, and by gender were examined by multivariate general linear regression and Bayesian regression methods. Differences were found at baseline between ME/CFS and control groups indicating disease-related pathologies, and between non-exercise and post-exercise groups implicating PEM-related pathologies. A new, novel finding was elevated serine and its derivatives sarcosine and phospholipids with a decrease in 5-methyltetrahydrofolate (5MTHF), which suggests general dysfunction of folate and one-carbon metabolism in ME/CFS. Exercise led to consumption of lipids in ME/CFS and controls while metabolites were consumed in ME/CFS but generated in controls. In general, the frequentist and Bayesian analyses generated complementary but not identical sets of analytes that matched the metabolic modules and pathway analysis. Cerebrospinal fluid is unique because it samples the choroid plexus, brain interstitial fluid, and cells of the brain parenchyma. The quantitative outcomes were placed into the context of the cell danger response hypothesis to explain shifts in serine and phospholipid synthesis; folate and one-carbon metabolism that affect sarcosine, creatine, purines, and thymidylate; aromatic and anaplerotic amino acids; glucose, TCA cycle, trans-aconitate, and coenzyme A in energy metabolism; and vitamin activities that may be altered by exertion. The metabolic and phospholipid profiles suggest the additional hypothesis that white matter dysfunction may contribute to the cognitive dysfunction in ME/CFS. Full article
Show Figures

Figure 1

17 pages, 9476 KiB  
Article
Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection
by Thenmozhi Rajarathinam, Sivaguru Jayaraman, Chang-Seok Kim, Jaewon Lee and Seung-Cheol Chang
Biosensors 2024, 14(12), 623; https://doi.org/10.3390/bios14120623 - 18 Dec 2024
Cited by 6 | Viewed by 1450
Abstract
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, [...] Read more.
Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported. Therefore, highly sensitive and selective amperometric biosensors that enable real-time measurements within <1.0 min are needed. To achieve this, a chitosan–polyaniline polymer nanocomposite (CS–PANI NC), a carrier for dispersing mesoporous carbon (MC), was synthesized and modified on a screen-printed carbon electrode (SPCE) to detect hydrogen peroxide (H2O2). The sarcosine oxidase (SOx) enzyme-immobilized CS–PANI–MC-2 ternary NCs were referred to as supramolecular architectures (SMAs). The excellent electron transfer ability of the SMA-modified SPCE (SMA/SPCE) sensor enabled highly sensitive H2O2 detection for immediate trace Sar biomarker detection. Therefore, the system included an SMA/SPCE coupled to a portable potentiostat linked to a smartphone for data acquisition. The high catalytic activity, porous architecture, and sufficient biocompatibility of CS–PANI–MC ternary NCs enabled bioactivity retention and immobilized SOx stability. The fabricated biosensor exhibited a detection limit of 0.077 μM and sensitivity of 8.09 μA mM−1 cm−2 toward Sar, demonstrating great potential for use in rapid PCa screening. Full article
(This article belongs to the Special Issue Integrated Biosensing for Point-of-Care Detection)
Show Figures

Figure 1

18 pages, 11109 KiB  
Article
Effects of Sarcosine (N-methylglycine) on NMDA (N-methyl-D-aspartate) Receptor Hypofunction Induced by MK801: In Vivo Calcium Imaging in the CA1 Region of the Dorsal Hippocampus
by Yi-Tse Hsiao, Ching-Yuan Chang, Ting-Yen Lee, Wan-Ting Liao, Wen-Sung Lai and Fang-Chia Chang
Brain Sci. 2024, 14(11), 1150; https://doi.org/10.3390/brainsci14111150 - 16 Nov 2024
Cited by 1 | Viewed by 2306
Abstract
Background: Hypofunction of the glutamate system in the brain is one of the pathophysiological hypotheses for schizophrenia. Accumulating animal and clinical studies show that sarcosine (N-methylglycine), a glycine transporter-1 inhibitor, is effective in ameliorating the negative and cognitive symptoms of schizophrenia. The aims [...] Read more.
Background: Hypofunction of the glutamate system in the brain is one of the pathophysiological hypotheses for schizophrenia. Accumulating animal and clinical studies show that sarcosine (N-methylglycine), a glycine transporter-1 inhibitor, is effective in ameliorating the negative and cognitive symptoms of schizophrenia. The aims of the present study were to observe the effects of sarcosine on neuronal activity in the dorsal CA1 (dCA1) hippocampal neurons within an NMDA receptor hypofunction model induced by MK801. Methods: We applied in vivo calcium imaging to observe the dynamics of fluorescence from the dCA1 hippocampal neurons when the mice were exploring in an open field. Using this tool, we directly measured and compared neuronal properties between sarcosine-treated and untreated mice. At the same time, the physiological function of the neurons was also quantified by measuring their place fields. Results: Our data demonstrated that MK-801 (0.2 mg/kg) diminished the fluorescence intensity of dCA1 neurons that had been genetically modified with a calcium indicator. MK-801 also significantly increased the correlation coefficient between the fluorescence dynamics of pairs of cells, a feature that may be linked to the symptom of disorganization in human patients with schizophrenia. The spatial correlations of place fields in the mice were impaired by MK-801 as well. Injected sarcosine (500 mg or 1000 mg/kg) significantly alleviated the abovementioned abnormalities. Conclusions: Our data provide evidence to support the use of sarcosine to alleviate symptoms of schizophrenia, especially hippocampus-related functions. Full article
(This article belongs to the Special Issue Advanced Clinical Diagnosis, Evaluation, and Treatment of Psychosis)
Show Figures

Figure 1

14 pages, 7171 KiB  
Article
Dietary Pleurotus citrinopileatus Polysaccharide Improves Growth Performance and Meat Quality Associated with Alterations of Gut Microbiota in Arbor Acre Broilers
by Nannan Zhou, Xiaoxiao Song, Changxi Wu, Shuangmin Liang, Liangyu Yang, Changrong Ge and Zhichao Xiao
Foods 2024, 13(21), 3426; https://doi.org/10.3390/foods13213426 - 28 Oct 2024
Cited by 1 | Viewed by 1691
Abstract
Adding edible fungal polysaccharides to animal diets improves growth performance, meat quality, intestinal health, and immunity without adverse effects. This study aimed to evaluate the impact of Pleurotus citrinopileatus polysaccharide (PCP, including PCP250, PCP500, PCP750, and PCP1000 mg/kg) on the growth performance, meat [...] Read more.
Adding edible fungal polysaccharides to animal diets improves growth performance, meat quality, intestinal health, and immunity without adverse effects. This study aimed to evaluate the impact of Pleurotus citrinopileatus polysaccharide (PCP, including PCP250, PCP500, PCP750, and PCP1000 mg/kg) on the growth performance, meat quality, and microbial composition of Arbor Acre (AA) broilers (total 180) by metabolomics and high-throughput sequencing. The results showed that adding PCP enhanced chicken meat tenderness, redness (a*), and water retention and raised essential amino acids and flavor amino acids (such as umami and sweet amino acids) content. The metabolomics revealed that IMP, creatine, betaine, sarcosine, and taurine were related to improving meat quality in broilers by PCP addition. In addition, amino acid, purine, and lipid metabolism were the main metabolic pathways. Moreover, PCP could regulate muscle metabolism by increasing the relative abundance of Lachnospiraceae and Lactobacillus and the content of short-chain fatty acids (SCFAs). Therefore, PCP may become a promising new dietary supplement in the future, which may improve the yield and quality of broiler chickens. Full article
Show Figures

Graphical abstract

18 pages, 3605 KiB  
Article
Identification of Plasma Metabolomic Biomarkers of Juvenile Idiopathic Arthritis
by Amar Kumar, Joshua Tatarian, Valentina Shakhnovich, Rachel L. Chevalier, Marc Sudman, Daniel J. Lovell, Susan D. Thompson, Mara L. Becker and Ryan S. Funk
Metabolites 2024, 14(9), 499; https://doi.org/10.3390/metabo14090499 - 16 Sep 2024
Cited by 2 | Viewed by 1992
Abstract
Identification of disease and therapeutic biomarkers remains a significant challenge in the early diagnosis and effective treatment of juvenile idiopathic arthritis (JIA). In this study, plasma metabolomic profiling was conducted to identify disease-related metabolic biomarkers associated with JIA. Plasma samples from treatment-naïve JIA [...] Read more.
Identification of disease and therapeutic biomarkers remains a significant challenge in the early diagnosis and effective treatment of juvenile idiopathic arthritis (JIA). In this study, plasma metabolomic profiling was conducted to identify disease-related metabolic biomarkers associated with JIA. Plasma samples from treatment-naïve JIA patients and non-JIA reference patients underwent global metabolomic profiling across discovery (60 JIA, 60 non-JIA) and replication (49 JIA, 38 non-JIA) cohorts. Univariate analysis identified significant metabolites (q-value ≤ 0.05), followed by enrichment analysis using ChemRICH and metabolic network mapping with MetaMapp and Cytoscape. Receiver operating characteristic (ROC) analysis determined the top discriminating biomarkers based on area under the curve (AUC) values. A total of over 800 metabolites were measured, consisting of 714 known and 155 unknown compounds. In the discovery cohort, 587 metabolites were significantly altered in JIA patients compared with the reference population (q < 0.05). In the replication cohort, 288 metabolites were significantly altered, with 78 overlapping metabolites demonstrating the same directional change in both cohorts. JIA was associated with a notable increase in plasma levels of sphingosine metabolites and fatty acid ethanolamides and decreased plasma levels of sarcosine, iminodiacetate, and the unknown metabolite X-12462. Chemical enrichment analysis identified cycloparaffins in the form of naproxen and its metabolites, unsaturated lysophospholipids, saturated phosphatidylcholines, sphingomyelins, ethanolamines, and saturated ceramides as the top discriminating biochemical clusters. ROC curve analysis identified 11 metabolites classified as highly discriminatory based on an AUC > 0.90, with the top discriminating metabolite being sphinganine-1-phosphate (AUC = 0.98). This study identifies specific metabolic changes in JIA, particularly within sphingosine metabolism, through both discovery and replication cohorts. Plasma metabolomic profiling shows promise in pinpointing JIA-specific biomarkers, differentiating them from those in healthy controls and Crohn’s disease, which may improve diagnosis and treatment. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

16 pages, 909 KiB  
Article
Sarcosine, Trigonelline and Phenylalanine as Urinary Metabolites Related to Visceral Fat in Overweight and Obesity
by Aline Maria Cavalcante Gurgel, Aline Lidiane Batista, Diogo Manuel Lopes de Paiva Cavalcanti, Alviclér Magalhães and Denise Engelbrecht Zantut-Wittmann
Metabolites 2024, 14(9), 491; https://doi.org/10.3390/metabo14090491 - 10 Sep 2024
Cited by 3 | Viewed by 1849
Abstract
The objective of the present study is to analyze the urinary metabolome profile of patients with obesity and overweight and relate it to different obesity profiles. This is a prospective, cross-sectional study in which patients with a body mass index (BMI) ≥25 kg/m [...] Read more.
The objective of the present study is to analyze the urinary metabolome profile of patients with obesity and overweight and relate it to different obesity profiles. This is a prospective, cross-sectional study in which patients with a body mass index (BMI) ≥25 kg/m were selected. Anthropometric data were assessed by physical examination and body composition was obtained by bioimpedance (basal metabolic rate, body fat percentile, skeletal muscle mass, gross fat mass and visceral fat). Urine was collected for metabolomic analysis. Patients were classified according to abdominal circumference measurements between 81 and 93, 94 and 104, and >104 cm; visceral fat up to 16 kilos and less than; and fat percentiles of <36%, 36–46% and >46%. Spectral alignment of urinary metabolite signals and bioinformatic analysis were carried out to select the metabolites that stood out. NMR spectrometry was used to detect and quantify the main urinary metabolites and to compare the groups. Seventy-five patients were included, with a mean age of 38.3 years, and 72% females. The urinary metabolomic profile showed no differences in BMI, abdominal circumference and percentage of body fat. Higher concentrations of trigonelline (p = 0.0488), sarcosine (p = 0.0350) and phenylalanine (p = 0.0488) were associated with patients with visceral fat over 16 kg. The cutoff points obtained by the ROC curves were able to accurately differentiate between patients according to the amount of visceral fat: sarcosine 0.043 mg/mL; trigonelline 0.068 mg/mL and phenylalanine 0.204 mg/mL. In conclusion, higher visceral fat was associated with urinary levels of metabolites such as sarcosine, related to insulin resistance; trigonelline, related to muscle mass and strength; and phenylalanine, related to glucose metabolism and abdominal fat. Trigonelline, sarcosine and phenylalanine play significant roles in regulating energy balance and metabolic pathways essential for controlling obesity. Our findings could represent an interesting option for the non-invasive estimation of visceral fat through biomarkers related to alterations in metabolic pathways involved in the pathophysiology of obesity. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

Back to TopTop