Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (438)

Search Parameters:
Keywords = salt-tolerant strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1800 KiB  
Article
Extracellular Cr(VI) Reduction by the Salt-Tolerant Strain Bacillus safensis BSF-4
by Yilan Liu, Weiping Yu, Tianying Nie, Lu Wang and Yusheng Niu
Microorganisms 2025, 13(8), 1961; https://doi.org/10.3390/microorganisms13081961 - 21 Aug 2025
Abstract
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali [...] Read more.
Microbial reduction in hexavalent chromium (Cr(VI)) is a well characterized bioremediation strategy, yet the mechanistic diversity among bacterial taxa necessitates detailed investigations into strain-specific pathways. Here, we report the isolation and characterization of Bacillus safensis BSF-4, a halophilic bacterium derived from saline-alkali soil, which demonstrates efficient Cr(VI) reduction capacity. Physiological assays showed that BSF-4 achieved 89.15% reduction of 20 mg/L Cr(VI) within 72 h, with Cr(III) identified as the primary extracellular end product. Resting cell assays and subcellular fractionation analyses confirmed that Cr(VI) reduction predominantly occurs in the extracellular milieu. X-ray photoelectron spectroscopy (XPS) further revealed soluble Cr(III) complexed with extracellular polymeric substances (EPS). Transcriptomic profiling indicated upregulation of membrane-associated transport systems (facilitating Cr(VI) exclusion) and quorum sensing (QS) pathways (mediating adaptive stress responses). These findings highlight a dual mechanism: (1) extracellular enzymatic reduction mediated by EPS-bound redox proteins, and (2) intracellular detoxification via QS-regulated defense pathways. Collectively, Bacillus safensis BSF-4 exhibits robust Cr(VI) reduction capacity under saline conditions, positioning it as a promising candidate for bioremediation of Cr(VI)-contaminated saline soils and aquatic ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3997 KiB  
Article
A Novel Weizmannia coagulans Strain WC412 with Superior Environmental Resilience Improves Growth Performance of Mice by Regulating the Intestinal Microbiota
by Xue Xiao, Hao Huang, Wendi Yu, Jun Liu, Yuanliang Hu, Xiang Yu and Xicai Zhang
Animals 2025, 15(16), 2446; https://doi.org/10.3390/ani15162446 - 20 Aug 2025
Viewed by 76
Abstract
The growing demand for sustainable and antibiotic-free animal production has intensified interest in probiotics as functional feed additives. In this study, novel strains of Weizmannia coagulans (WC412 and WC413) were isolated from pickle water—a previously unexplored source for probiotic screening. These isolates, along [...] Read more.
The growing demand for sustainable and antibiotic-free animal production has intensified interest in probiotics as functional feed additives. In this study, novel strains of Weizmannia coagulans (WC412 and WC413) were isolated from pickle water—a previously unexplored source for probiotic screening. These isolates, along with three reference strains (W. coagulans S8, S15, and S17), were evaluated for their tolerance to heat, acid, and bile salts. Strain WC412 exhibited superior environmental resilience, as validated by principal component analysis (PCA) for comprehensive stress-tolerance assessment, and was selected for further investigations. A murine model was employed to assess the physiological and microbiological impacts of WC412 supplementation at varying doses. Medium-dose (1 × 107 CFU·mL−1) administration significantly improved body weight gain by 13% (p < 0.05), modulated serum lipid profiles, and increased antioxidant enzyme activity and IgG/IL-2 levels (p < 0.05). Notably, WC412 uniquely enriched beneficial genera (e.g., Fructilactobacillus and Limosilactobacillus) and promoted metabolic pathways linked to short-chain fatty acid production, as revealed by 16S rDNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. These findings highlight WC412 as a robust probiotic candidate for enhancing animal growth performance and gut health through novel microbiota-mediated mechanisms. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

19 pages, 3354 KiB  
Article
Microbial Assembly and Stress-Tolerance Mechanisms in Salt-Adapted Plants Along the Shore of a Salt Lake: Implications for Saline–Alkaline Soil Remediation
by Xiaodong Wang, Liu Xu, Xinyu Qi, Jianrong Huang, Mingxian Han, Chuanxu Wang, Xin Li and Hongchen Jiang
Microorganisms 2025, 13(8), 1942; https://doi.org/10.3390/microorganisms13081942 - 20 Aug 2025
Viewed by 189
Abstract
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted [...] Read more.
Investigating the microbial community structure and stress-tolerance mechanisms in the rhizospheres of salt-adapted plants along saline lakes is critical for understanding plant–microbe interactions in extreme environments and developing effective strategies for saline–alkaline soil remediation. This study explored the rhizosphere microbiomes of four salt-adapted species (Suaeda glauca, Artemisia carvifolia, Chloris virgata, and Limonium bicolor) from the Yuncheng Salt Lake region in China using high-throughput sequencing. Cultivable salt-tolerant plant growth-promoting rhizobacteria (PGPR) were isolated and characterized to identify functional genes related to stress resistance. Results revealed that plant identity and soil physicochemical properties jointly shaped the microbial community composition, with total organic carbon being a dominant driver explaining 17.6% of the variation. Cyanobacteria dominated low-salinity environments, while Firmicutes thrived in high-salinity niches. Isolated PGPR strains exhibited tolerance up to 15% salinity and harbored genes associated with heat (htpX), osmotic stress (otsA), oxidative stress (katE), and UV radiation (uvrA). Notably, Peribacillus and Isoptericola strains demonstrated broad functional versatility and robust halotolerance. Our findings highlight that TOC (total organic carbon) plays a pivotal role in microbial assembly under extreme salinity, surpassing host genetic influences. The identified PGPR strains, with their stress-resistance traits and functional gene repertoires, hold significant promise for biotechnological applications in saline–alkaline soil remediation and sustainable agriculture. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 1655 KiB  
Article
Probiotic Potential of Some Lactic Acid Bacteria Isolated from Blue Maize Atole Agrio from Veracruz, México
by Margarita Torres-Gregorio, Rosa María Ribas-Aparicio, María Guadalupe Aguilera-Arreola, Gustavo F. Gutiérrez-López and Humberto Hernández-Sánchez
Fermentation 2025, 11(8), 474; https://doi.org/10.3390/fermentation11080474 - 19 Aug 2025
Viewed by 183
Abstract
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. [...] Read more.
Mexican culture offers a great variety of traditional maize-based fermented foods that are beneficial for human health. Atole agrio (sour atole), prepared from blue maize (Zea mays) in the state of Veracruz, has been scarcely studied as a potential functional food. The purpose of this study was to select endogenous potentially probiotic lactic acid bacteria (LAB) from freshly fermented blue maize atole agrio. Samples of spontaneously fermented atole agrio were used for the isolation of LAB on MRS agar. The abilities to tolerate acidic pH, bile salts, and sodium chloride, as well as surface hydrophobicity and aggregation capabilities, were used as criteria for probiotic potential. Selected LAB were identified using MALDI-TOF-MS. Finally, safety-related characterizations, such as hemolytic activity and antibiotic susceptibility, were performed. In the initial stages of fermentation, the presence of fungi, yeasts, coliform organisms, and LAB were detected, and in the final fermentation process, where the blue atole agrio reached a pH of 4, 49 isolates of LAB were obtained. Sixteen isolates showed high tolerance to pH 2, and seven of them showed tolerance to 3% bile salts and 4% sodium chloride. The seven isolates were identified as Pediococcus pentosaceus. Although the seven isolates showed low hydrophobicity to hexadecane and chloroform, they had medium autoaggregation and coaggregation with pathogens. The seven isolates showed notable antibacterial properties against Staphylococcus aureus, Salmonella enterica serovar Typhimurium, Escherichia coli, and Listeria monocytogenes, as well as good amylolytic capacity. All the P. pentosaceus strains were non-hemolytic, sensible to clindamycin and resistant to the other 11 antibiotics tested. Only subtle differences were found among the seven isolates, which can be considered potential candidates for probiotics. The freshly fermented blue maize atole agrio can be considered a functional food containing potentially probiotic LAB and the antioxidant phenolic compounds present in blue maize. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

21 pages, 4239 KiB  
Article
Melatonin-Producing Bacillus aerius EH2-5 Enhances Glycine max Plants Salinity Tolerance Through Physiological, Biochemical, and Molecular Modulation
by Eun-Hae Kwon, Suhaib Ahmad and In-Jung Lee
Int. J. Mol. Sci. 2025, 26(16), 7834; https://doi.org/10.3390/ijms26167834 - 13 Aug 2025
Viewed by 323
Abstract
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, [...] Read more.
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, the global population is projected to exceed 9 billion by 2050, demanding a 70% increase in food production (UN, 2019; FAO). Agriculture, responsible for 34% of global greenhouse gas emissions, urgently needs sustainable solutions. Microbial inoculants, known as “plant probiotics,” offer a promising eco-friendly alternative by enhancing crop resilience and reducing environmental impact. In this study, we evaluated the plant growth-promoting (PGP) traits and melatonin-producing capacity of Bacillus aerius EH2-5. To assess its efficacy under salt stress, soybean seedlings at the VC stage were inoculated with EH2-5 and subsequently subjected to salinity stress using 150 mM and 100 mM NaCl treatments. Plant growth parameters, the expression levels of salinity-related genes, and the activities of antioxidant enzymes were measured to determine the microbe’s role in promoting plant growth and mitigating salt-induced oxidative stress. Here, our study shows that the melatonin-synthesizing Bacillus aerius EH2-5 (7.48 ng/mL at 24 h after inoculation in Trp spiked LB media) significantly improved host plant (Glycine max L.) growth, biomass, and photosynthesis and reduced oxidative stress during salinity stress conditions than the non-inculcated control. Whole genome sequencing of Bacillus aerius EH2-5 identified key plant growth-promoting and salinity stress-related genes, including znuA, znuB, znuC, and zur (zinc uptake); ptsN, aspA, and nrgB (nitrogen metabolism); and phoH and pstS (phosphate transport). Genes involved in tryptophan biosynthesis and transport, such as trpA, trpB, trpP, and tspO, along with siderophore-related genes yusV, yfhA, and yfiY, were also detected. The presence of multiple stress-responsive genes, including dnaK, dps, treA, cspB, srkA, and copZ, suggests EH2-5′s genomic potential to enhance plant tolerance to salinity and other abiotic stresses. Inoculation with Bacillus aerius EH2-5 significantly enhanced soybean growth and reduced salt-induced damage, as evidenced by increased shoot biomass (29%, 41%), leaf numbers (12% and 13%), and chlorophyll content (40%, 21%) under 100 mM and 150 mM NaCl compared to non-inoculated plants. These results indicate EH2-5′s strong potential as a plant growth-promoting and salinity stress-alleviating rhizobacterium. The EH2-5 symbiosis significantly enhanced a key ABA biosynthesis enzyme-related gene NCED3, dehydration responsive transcription factors DREB2A and NAC29 salinity stresses (100 mM and 150 mM). Moreover, the reduced expression of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) by 16%, 29%, and 24%, respectively, and decreased levels of malondialdehyde (MDA) and hydroxy peroxidase (H2O2) by 12% and 23% were observed under 100 mM NaCl compared to non-inoculated plants. This study demonstrated that Bacillus aerius EH2-5, a melatonin-producing strain, not only functions effectively as a biofertilizer but also alleviates plant stress in a manner comparable to the application of exogenous melatonin. These findings highlight the potential of utilizing melatonin-producing microbes as a viable alternative to chemical treatments. Therefore, further research should focus on enhancing the melatonin biosynthetic capacity of EH2-5, improving its colonization efficiency in plants, and developing synergistic microbial consortia (SynComs) with melatonin-producing capabilities. Such efforts will contribute to the development and field application of EH2-5 as a promising plant biostimulant for sustainable agriculture. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

20 pages, 3600 KiB  
Article
Functional Analyses of a Rhodobium marinum RH-AZ Genome and Its Application for Promoting the Growth of Rice Under Saline Stress
by Yang Gao, Cheng Xu, Tao Tang, Xiao Xie, Renyan Huang, Youlun Xiao, Xiaobin Shi, Huiying Hu, Yong Liu, Jing Peng and Deyong Zhang
Plants 2025, 14(16), 2516; https://doi.org/10.3390/plants14162516 - 13 Aug 2025
Viewed by 288
Abstract
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and [...] Read more.
Soil salinity stands among the most critical abiotic stressors, imposing severe limitations on global rice cultivation. Emerging evidence highlights the potential of beneficial microorganisms to enhance crop salt tolerance. In this study, a halotolerant bacterial strain, Rhodobium marinum RH-AZ (Gram-negative) was identified and analyzed. It exhibited exceptional survival at 9% (w/v) NaCl salinity. Whole-genome sequencing revealed a circular chromosome spanning 3,875,470 bp with 63.11% GC content, encoding 5534 protein-coding genes. AntiSMASH analysis predicted eight secondary metabolite biosynthetic gene clusters. Genomic annotation identified functional genes associated with nitrogen cycle coordination, phytohormone biosynthesis, micronutrient management and osmoprotection. Integrating genomic evidence with the existing literature suggests RH-AZ’s potential for enhancing rice salt tolerance and promoting the growth of rice plants. Subsequent physiological investigations revealed that the RH-AZ strain had significant growth-promoting effects on rice under high salinity stress. Compared with a non-inoculated control, RH-AZ-inoculated rice plants exhibited stem elongation and fresh biomass enhancement under salt stress conditions. The RH-AZ strain concurrently affected key stress mitigation biomarkers: it enhanced the activity of antioxidant enzymes including superoxide dismutase, peroxidase, catalase and ascorbate peroxidase, and the contents of proline and chlorophyll in plants, and reduced the content of malondialdehyde. These findings demonstrate that R. marinum RH-AZ, as a multifunctional bioinoculant, enhances rice salt tolerance by enhancing the stress responses of the plants, presenting a promising solution for sustainable agriculture in saline-affected ecosystems. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

34 pages, 9516 KiB  
Article
Proteus sp. Strain JHY1 Synergizes with Exogenous Dopamine to Enhance Rice Growth Performance Under Salt Stress
by Jing Ji, Baoying Ma, Runzhong Wang and Tiange Li
Microorganisms 2025, 13(8), 1820; https://doi.org/10.3390/microorganisms13081820 - 4 Aug 2025
Viewed by 449
Abstract
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous [...] Read more.
Soil salinization severely restricts crop growth and presents a major challenge to global agriculture. In this study, a plant-growth-promoting rhizobacterium (PGPR) was isolated and identified as Proteus sp. through 16S rDNA analysis and was subsequently named Proteus sp. JHY1. Under salt stress, exogenous dopamine (DA) significantly enhanced the production of indole-3-acetic acid and ammonia by strain JHY1. Pot experiments revealed that both DA and JHY1 treatments effectively alleviated the adverse effects of 225 mM NaCl on rice, promoting biomass, plant height, and root length. More importantly, the combined application of DA-JHY1 showed a significant synergistic effect in mitigating salt stress. The treatment increased the chlorophyll content, net photosynthetic rate, osmotic regulators (proline, soluble sugars, and protein), and reduced lipid peroxidation. The treatment also increased soil nutrients (ammoniacal nitrogen and available phosphorus), enhanced soil enzyme activities (sucrase and alkaline phosphatase), stabilized the ion balance (K+/Na+), and modulated the soil rhizosphere microbial community by increasing beneficial bacteria, such as Actinobacteria and Firmicutes. This study provides the first evidence that the synergistic effect of DA and PGPR contributes to enhanced salt tolerance in rice, offering a novel strategy for alleviating the adverse effects of salt stress on plant growth. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 - 1 Aug 2025
Viewed by 346
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

20 pages, 2168 KiB  
Article
Microbial Profiling of Buffalo Mozzarella Whey and Ricotta Exhausted Whey: Insights into Potential Probiotic Subdominant Strains
by Andrea Bonfanti, Romano Silvestri, Ettore Novellino, Gian Carlo Tenore, Elisabetta Schiano, Fortuna Iannuzzo, Massimo Reverberi, Luigi Faino, Marzia Beccaccioli, Francesca Sivori, Carlo Giuseppe Rizzello and Cristina Mazzoni
Microorganisms 2025, 13(8), 1804; https://doi.org/10.3390/microorganisms13081804 - 1 Aug 2025
Viewed by 258
Abstract
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of [...] Read more.
Buffalo mozzarella cheese whey (CW) and ricotta cheese exhausted whey (RCEW) are valuable by-products of the Mozzarella di Bufala Campana PDO production chain. This study characterized their microbial communities using an integrated culture-dependent and -independent approach. Metabarcoding analysis revealed that the dominance of lactic acid bacteria (LAB), including Streptococcus thermophilus, Lactobacillus delbrueckii, and Lactobacillus helveticus, alongside diverse heat-resistant yeasts such as Cyberlindnera jadinii. Culture-based isolation identified subdominant lactic acid bacteria strains, not detected by sequencing, belonging to Leuconostoc mesenteroides, Enterococcus faecalis, and Enterococcus durans. These strains were further assessed for their probiotic potential. E. faecalis CW1 and E. durans RCEW2 showed tolerance to acidic pH, bile salts, and lysozyme, as well as a strong biofilm-forming capacity and antimicrobial activity against Bacillus cereus and Staphylococcus aureus. Moreover, bile salt resistance suggests potential functionality in cholesterol metabolism. These findings support the potential use of CW and RCEW as reservoirs of novel, autochthonous probiotic strains and underscore the value of regional dairy by-products in food biotechnology and gut health applications. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

16 pages, 2259 KiB  
Article
Probiotic Potential and Characterization of Enterococcus faecium Strains Isolated from Camel Milk: Implications for Animal Health and Dairy Products
by Imen Fguiri, Manel Ziadi, Samira Arroum, Touhami Khorchani and Hammadi Mohamed
Fermentation 2025, 11(8), 444; https://doi.org/10.3390/fermentation11080444 - 31 Jul 2025
Viewed by 524
Abstract
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH [...] Read more.
In this study, 62 lactic acid bacteria (LAB) strains were isolated from raw camel milk and evaluated for their probiotic potential. The strains exhibited significant variability in their ability to withstand simulated gastrointestinal conditions. Of the isolates, only 26 survived exposure to pH 2, and just 10 were tolerant to 0.3% bile salts. Partial sequencing of the 16S rRNA gene identified all the strains as belonging to the species Enterococcus faecium. Several probiotic traits were assessed, including adhesion to gastric mucin and STC-1 intestinal epithelial cells, as well as auto-aggregation and co-aggregation capacities. Although adhesion to hydrophobic solvents such as chloroform and ethyl acetate was generally low to moderate, all the strains demonstrated strong adhesion to gastric mucin, exceeding 60% at all the growth stages. Notably, two strains—SCC1-33 and SLch6—showed particularly high adhesion to STC-1 cells, with values of 7.8 × 103 and 4.2 × 103 CFU/mL, respectively. The strains also exhibited promising aggregation properties, with auto-aggregation and co-aggregation ranging between 33.10% and 63.10%. Furthermore, all the isolates displayed antagonistic activity against Listeria innocua, Micrococcus luteus, and Escherichia coli. Cytotoxicity assays confirmed that none of the tested strains had harmful effects on STC-1 cells, indicating their safety and supporting their potential application as probiotics. Full article
Show Figures

Figure 1

27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 396
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 3259 KiB  
Article
Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties
by Ming-Yang Han, Wen-Yong Lou and Meng-Fan Li
Foods 2025, 14(15), 2690; https://doi.org/10.3390/foods14152690 - 30 Jul 2025
Viewed by 534
Abstract
Probiotics have been widely explored for their potential in managing hyperuricemia. However, their isolation and identification are fundamental prerequisites for practical application. In this study, 254 lactic acid bacteria (LAB) strains were isolated from Chinese sauerkraut and screened for probiotic potential based on [...] Read more.
Probiotics have been widely explored for their potential in managing hyperuricemia. However, their isolation and identification are fundamental prerequisites for practical application. In this study, 254 lactic acid bacteria (LAB) strains were isolated from Chinese sauerkraut and screened for probiotic potential based on genomic and phenotypic characteristics, as well as nucleoside-degrading activity relevant to decrease serum urate. Among them, Lactiplantibacillus plantarum (L. plantarum) F42 exhibited the highest bile salt tolerance (survivor rate: 19.46 ± 4.33%), strong adhesion to Caco-2 cells (1.89 ± 0.12%), effective nucleoside degradation (inosine: 5.46 ± 0.67 mg∙L−1∙min−1; guanosine: 3.84 ± 0.11 mg∙L−1∙min−1), and notable anti-listeria activity (inhibition zone: 6.9 ± 0.3 mm). Based on its functional profile, L. plantarum F42 was selected as a promising probiotic candidate for further investigation of its urate-lowering effects. This work provides a new insight into anti-hyperuricemia probiotic selection based on in vitro nucleoside-degrading activity. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

21 pages, 3912 KiB  
Article
Screening and Phenotyping of Lactic Acid Bacteria in Boza
by Xudong Zhao, Longying Pei, Xinqi Wang, Mingming Luo, Sihan Hou, Xingqian Ye, Wei Liu and Yuting Zhou
Microorganisms 2025, 13(8), 1767; https://doi.org/10.3390/microorganisms13081767 - 29 Jul 2025
Viewed by 448
Abstract
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid [...] Read more.
The aim of this study was to isolate and identify lactic acid bacteria (LAB) from a traditional fermented beverage, Boza, and to conduct an in-depth study on their fermentation and probiotic properties. The fermentation (acid production rate, acid tolerance, salt tolerance, amino acid decarboxylase activity) and probiotic properties (gastrointestinal tolerance, bile salt tolerance, hydrophobicity, self-aggregation, drug resistance, bacteriostatic properties) of the 16 isolated LAB were systematically analyzed by morphological, physiological, and biochemical tests and 16S rDNA molecular biology. This analysis utilized principal component analysis (PCA) to comprehensively evaluate the biological properties of the strains. The identified LAB included Limosilactobacillus fermentum (9 strains), Levilactobacillus brevis (2 strains), Lacticaseibacillus paracasei (2 strains), and Lactobacillus helveticus (3 strains). These strains showed strong environmental adaptation at different pH (3.5) and temperature (45 °C), with different gastrointestinal colonization, tolerance, and antioxidant properties. All the strains did not show hemolytic activity and were inhibitory to Staphylococcus aureus, and showed resistance to kanamycin, gentamicin, vancomycin, and streptomycin. Based on the integrated scoring of biological properties by principal component analysis, Limosilactobacillus fermentum S4 and S6 and Levilactobacillus brevis S5 had excellent fermentation properties and tolerance and could be used as potential functional microbial resources. Full article
(This article belongs to the Special Issue Microbial Fermentation in Food Processing)
Show Figures

Figure 1

19 pages, 2164 KiB  
Article
Community Structure, Growth-Promoting Potential, and Genomic Analysis of Seed-Endophytic Bacteria in Stipagrostis pennata
by Yuanyuan Yuan, Shuyue Pang, Wenkang Niu, Tingting Zhang and Lei Ma
Microorganisms 2025, 13(8), 1754; https://doi.org/10.3390/microorganisms13081754 - 27 Jul 2025
Viewed by 333
Abstract
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. [...] Read more.
Stipagrostis pennata is an important plant in desert ecosystems. Its seed-endophytic bacteria may play a critical role in plant growth and environmental adaptation processes. This study systematically analyzed the community composition and potential plant growth-promoting (PGP) functions of seed-endophytic bacteria associated with S. pennata. The results showed that while the overall diversity of bacterial communities from different sampling sites was similar, significant differences were observed in specific functional genes and species abundances. Nine endophytic bacterial strains were isolated from the seeds, among which Bacillus altitudinis strain L7 exhibited phosphorus solubilizing capabilities, nitrogen fixing, IAA production, siderophore generation, and multi-hydrolytic enzyme activities. Additionally, the genomic sequencing of L7 revealed the key genes involved in plant growth promotion and environmental adaptation, including Na+ efflux systems, K+ transport systems, compatible solute synthesis genes, and the gene clusters associated with nitrogen metabolism, IAA synthesis, phosphate solubilization, and siderophore synthesis. Strain L7 exhibits salt and osmotic stress tolerance while promoting plant growth, providing a promising candidate for desert microbial resource utilization and plant biostimulant development. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 6650 KiB  
Article
Multi-Strain Probiotic Regulates the Intestinal Mucosal Immunity and Enhances the Protection of Piglets Against Porcine Epidemic Diarrhea Virus Challenge
by Xueying Wang, Qi Zhang, Weijian Wang, Xiaona Wang, Baifen Song, Jiaxuan Li, Wen Cui, Yanping Jiang, Weichun Xie and Lijie Tang
Microorganisms 2025, 13(8), 1738; https://doi.org/10.3390/microorganisms13081738 - 25 Jul 2025
Viewed by 490
Abstract
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, [...] Read more.
Porcine epidemic diarrhea virus (PEDV) infection induces severe, often fatal, watery diarrhea and vomiting in neonatal piglets, characterized by profound dehydration, villus atrophy, and catastrophic mortality rates approaching 100% in unprotected herds. This study developed a composite probiotic from Min-pig-derived Lactobacillus crispatus LCM233, Ligilactobacillus salivarius LSM231, and Lactiplantibacillus plantarum LPM239, which exhibited synergistic growth, potent acid/bile salt tolerance, and broad-spectrum antimicrobial activity against pathogens. In vitro, the probiotic combination disrupted pathogen ultrastructure and inhibited PEDV replication in IPI-2I cells. In vivo, PEDV-infected piglets administered with the multi-strain probiotic exhibited decreased viral loads in anal and nasal swabs, as well as in intestinal tissues. This intervention was associated with the alleviation of diarrhea symptoms and improved weight gain. Furthermore, the multi-strain probiotic facilitated the repair of intestinal villi and tight junctions, increased the number of goblet cells, downregulated pro-inflammatory cytokines, enhanced the expression of barrier proteins, and upregulated antiviral interferon-stimulated genes. These findings demonstrate that the multi-strain probiotic mitigates PEDV-induced damage by restoring intestinal barrier homeostasis and modulating immune responses, providing a novel strategy for controlling PEDV infections. Full article
(This article belongs to the Special Issue Viral Infection on Swine: Pathogenesis, Diagnosis and Control)
Show Figures

Figure 1

Back to TopTop