Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of LAB from Chinese Sauerkraut
2.3. Degradation of Nucleosides
2.4. Strain Identification
2.5. Genome Sequencing Analysis
2.6. Growth Curves
2.7. Resistance to Bile Salts and Low pH
2.8. Colonization in Intestine
2.9. Bacteriostatic Ability
2.10. Antibiotic Susceptibility
2.11. Hemolysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. LAB Diversity in Chinese Sauerkraut
3.2. Nucleoside-Degrading Activity of LAB
3.3. Genomic Characterization of LAB
3.3.1. General Genomic Features
3.3.2. Carbohydrate Metabolism
3.3.3. Amino Acid Metabolism
3.3.4. Nucleotide Metabolism
3.4. Phenotypic Characterization of LAB
3.4.1. Growth Curves
3.4.2. Resistance to Bile Salts and Low pH
3.4.3. Potential Colonization in the Intestine
3.4.4. Bacteriostatic Ability
3.4.5. Antibiotic Susceptibility
3.4.6. Safety Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, Y.; Wu, Q.; Wang, H.; Zhang, S.; Jiang, Y.; Gong, T.; Xu, X.; Chang, Q.; Niu, K.; Zhao, Y. Global, regional and national burden of gout, 1990–2017: A systematic analysis of the Global Burden of Disease Study. Rheumatology 2020, 59, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Helget, L.N.; England, R.B.; Roul, P.; Sayles, H.; Petro, A.D.; Michaud, K.; Mikuls, T.R. Incidence, prevalence, and burden of gout in the Veterans health administration. Arthritis Care Res. 2021, 73, 1363–1371. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Yang, Y.-S.; Chang, D.-J.; Chuang, Y.W.; Kim, H.; Ko, S.J.; Yoo, S.; Oh, J.S.; Kang, D.Y.; Yang, H.-J.; et al. Association between the use of allopurinol and risk of increased thyroid-stimulating hormone level. Sci. Rep. 2021, 11, 20305. [Google Scholar] [CrossRef]
- Stamp, L.K.; Day, R.O.; Yun, J. Allopurinol hypersensitivity: Investigating the cause and minimizing the risk. Nat. Rev. Rheumatol. 2016, 12, 235–242. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, S.; Liu, J.; Wu, F.; Zhou, L.; Liu, Y.; Su, N. Cardiovascular safety of febuxostat and allopurinol in patients with gout: A meta-analysis. Front. Pharmacol. 2022, 13, 998441. [Google Scholar] [CrossRef]
- Yamada, N.; Lwamoto, C.; Kano, H.; Yamaoka, N.; Fukuuchi, T.; Kaneko, K.; Asami, Y. Evaluation of purine utilization by Lactobacillus gasseri strains with potential to decrease the absorption of food-derived purines in the human intestine. Nucleosides Nucleotides Nucleic Acids 2016, 35, 670–676. [Google Scholar] [CrossRef]
- Yamada, N.; Saito, C.; Murayama-Chiba, Y.; Kano, H.; Asami, Y.; Ito, H. Lactobacillus gasseri PA-3 utilizes the purines GMP and guanosine and decreases their absorption in rats. Nucleosides Nucleotides Nucleic Acids 2018, 37, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, X.; Meng, F.; Zhou, L.; Pang, X.; Lu, Z.; Lu, Y. Ameliorative effect of Lacticaseibacillus rhamnosus Fmb14 from Chinese yogurt on hyperuricemia. Food Sci. Hum. Wellness 2023, 12, 1379–1390. [Google Scholar] [CrossRef]
- Lin, J.; Xiong, T.; Peng, Z.; Xie, M.; Peng, F. Novel lactic acid bacteria with anti-hyperuricemia ability: Screening and in vitro probiotic characteristics. Food Biosci. 2022, 49, 101840. [Google Scholar] [CrossRef]
- Lu, L.; Liu, T.; Liu, X.; Wang, C. Screening and identification of purine degrading Lactobacillus fermentum 9-4 from Chinese fermented rice-flour noodles. Food Sci. Hum. Wellness 2022, 11, 1402–1408. [Google Scholar] [CrossRef]
- Joice, F.M.S.; Bruna, V.A.; Paula, A.A.A.; Isabela, V.B.; Otávio, A.B.; Letícia, R.B.; Laura, M.B.; Liliane, D.M.M.; Márcio, R.S.; da Geraldo, M.C.; et al. Searching for antibiotic-susceptible bioprotective lactic acid bacteria to control dangerous biological agents in artisanal cheese. Food Microbiol. 2025, 130, 104762. [Google Scholar] [CrossRef]
- Kuo, Y.; Hsieh, S.; Chen, J.; Liu, C.; Chen, C.; Huang, Y.; Ho, H. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats. PeerJ 2021, 9, e11209. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Zhang, Y.; Zhang, Y.; Liu, Y.; Wang, S.; Dong, X.; Wang, Y.; Zhang, H. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 2010, 21, 695–701. [Google Scholar] [CrossRef]
- Tuo, Y.; Yu, H.; Ai, L.; Wu, Z.; Guo, B.; Chen, W. Aggregation and adhesion properties of 22 Lactobacillus strains. J. Dairy Sci. 2013, 96, 4252–4257. [Google Scholar] [CrossRef]
- Roy, S.; Mandal, S. Lactiplantibacillus plantarum isolates from natural honey (Malda, India): Probiotic potentiality and antibacterial activity analysis by in vitro methods. Food Humanit. 2024, 3, 100348. [Google Scholar] [CrossRef]
- Margalho, L.P.; Feliciano, M.D.; Silva, C.E.; Abreu, J.S.; Piran, M.; Sant’Ana, A.S. Brazilian artisanal cheeses are rich and diverse sources of nonstarter lactic acid bacteria regarding technological, biopreservative, and safety properties—Insights through multivariate analysis. J. Dairy Sci. 2020, 103, 7908–7926. [Google Scholar] [CrossRef]
- Nguyen, D.T.L.; Van Hoorde, K.; Cnockaert, M.; De Brandt, E.; Aerts, M.; Binh Thanh, L.; Vandamme, P. A description of the lactic acid bacteria microbiota associated with the production of traditional fermented vegetables in Vietnam. Int. J. Food Microbiol. 2013, 163, 19–27. [Google Scholar] [CrossRef]
- Khemariya, P.; Singh, S.; Jaiswal, N.; Chaurasia, S.N.S. Isolation and identification of Lactobacillus plantarum from vegetable samples. Food Biotechnol. 2016, 30, 49–62. [Google Scholar] [CrossRef]
- Oyedeji, O.; Ogunbanwo, S.T.; Onilude, A.A. Predominant lactic acid bacteria involved in the traditional fermentation of Fufu and Ogi, two Nigerian fermented food products. Food Nutr. Sci. 2013, 4, 40–46. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Liu, Y.; Tao, D.; Yue, X.; Cao, X.; Wu, R.; Wu, J. Diversity and screening of lactic acid bacteria in la-baicai made by Korean-Chinese in northeastern China. Food Biotechnol. 2017, 3, 193–209. [Google Scholar] [CrossRef]
- Peng, Q.; Jiang, S.; Chen, J.; Ma, C.; Huo, D.; Shao, Y.; Zhang, J. Unique microbial diversity and metabolic pathway features of fermented vegetables from Hainan, China. Front. Microbiol. 2018, 9, 399. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Peng, Z.; Huang, T.; Xiao, Y.; Li, J.; Xie, M.; Xiong, T. Comparison of bacterial diversity in traditionally homemade Paocai and Chinese spicy cabbage. Food Microbiol. 2019, 83, 141–149. [Google Scholar] [CrossRef]
- Jhamb, V.; Swaminathan, P. Role and importance of lactic acid bacteria in different Indian fermented foods. Biologia 2023, 78, 3609–3623. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Medina, E.; Sánchez, B.; Benítez-Cabello, A.; Arroyo-López, F.N. Role of lactic acid bacteria in fermented vegetables. Grasas Aceites 2020, 71, e358. [Google Scholar] [CrossRef]
- Patrick, O.A.; Great, I.E.; Ali, B.M.; Ali, E.Y.; Khalid, Z.; Joseph, O.O.; Endurance, F.I.; Ufuoma, A.I.; Arthur, E.A.E.; Raghda, S.M.; et al. Lactic acid bacteria: Nature, characterization, mode of action, products and applications. Process Biochem. 2025, 152, 1–28. [Google Scholar] [CrossRef]
- Lim, S.-M.; Lee, N.-K.; Kim, K.-T.; Paik, H.-D. Probiotic lactobacillus fermentum KU200060 isolated from watery kimchi and its application in probiotic yogurt for oral health. Microb. Pathog. 2020, 147, 104430. [Google Scholar] [CrossRef]
- López-García, E.; Benítez-Cabello, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Pérez-Martínez, P.; Yubero-Serrano, E.M.; Garrido-Fernández, A.; Arroyo-López, F.N. Oral intake of Lactiplantibacillus pentosus LPG1 produces a beneficial regulation of gut microbiota in healthy persons: A randomised, Placebo-controlled, single-blind trial. Nutrients 2023, 15, 1931. [Google Scholar] [CrossRef]
- Gan, Y.; Peng, J.; Zhang, Y.; Feng, X.; Qian, Y.; Long, X.; Zhao, X.; Li, Q. Protective effect of Lactiplantibacillus pentosus CQZC01 in Kunming mice of subacute alcoholic liver injury. J. Food Sci. 2023, 88, 2642–2654. [Google Scholar] [CrossRef]
- De Angelis, M.; Bottacini, F.; Fosso, B.; Kelleher, P.; Calasso, M.; Di Cagno, R.; Ventura, M.; Picardi, E.; Van Sinderen, D.; Gobbetti, M. Lactobacillus rossiae, a vitamin B12 producer, represents a metabolically versatile species within the genus Lactobacillus. PLoS ONE 2014, 9, e107232. [Google Scholar] [CrossRef] [PubMed]
- Dea, K.; Giovanni, R.; Alberto, F.; Davide, E.; Alberto, B.; Maria Grazia, F. Exploration of Lactiplantibacillus fabifermentans and Furfurilactobacillus rossiae as potential cocoa fermentation starters. J. Appl. Microbiol. 2022, 133, 1769–1780. [Google Scholar] [CrossRef]
- Kano, H.; Saito, C.; Yamada, N.; Fukuuchi, T.; Yamaoka, N.; Kaneko, K.; Asami, Y. Species-dependent patterns of incorporation of purine mononucleotides and nucleosides by lactic acid bacteria. Nucleosides Nucleotides Nucleic Acids 2020, 39, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mei, L.; Deng, Y.; Liu, Y.; Wei, X.; Liu, M.; Zhou, J.; Ma, H.; Zheng, P.; Yuan, J. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition 2019, 62, 63–73. [Google Scholar] [CrossRef]
- Yamada, N.; Saito-Iwamoto, C.; Nakamura, M.; Soeda, M. Lactobacillus gasseri PA-3 uses the purines IMP, inosine and hypoxanthine and reduces their absorption in rats. Microorganisms 2017, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhao, C.; Li, X.; Wang, H.; Huang, Q.; Sun, Y.; Zhou, Y. Discovery of lactic acid bacteria with high nucleoside degradation and low purine production in tomato sour soup. Int. J. Food Microbiol. 2025, 434, 111139. [Google Scholar] [CrossRef]
- Brandt, K.; Nethery, M.A.; O’Flaherty, S.; Barrangou, R. Genomic characterization of Lactobacillus fermentum DSM 20052. BMC Genom. 2020, 21, 328. [Google Scholar] [CrossRef]
- Okoye, C.O.; Dong, K.; Wang, Y.; Gao, L.; Li, X.; Wu, Y.; Jiang, J. Comparative genomics reveals the organic acid biosynthesis metabolic pathways among five lactic acid bacterial species isolated from fermented vegetables. New Biotechnol. 2022, 25, 73–83. [Google Scholar] [CrossRef]
- Azcarate-Peril, M.A.; Altermann, E.; Goh, Y.J.; Tallon, R.; Sanozky-Dawes, R.B.; Pfeiler, E.A.; O’ Flaherty, S.; Buck, B.L.; Dobson, A.; Duong, T.; et al. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl. Environ. Microbiol. 2008, 74, 4610–4625. [Google Scholar] [CrossRef] [PubMed]
- Fuochi, V.; Petronio, G.P.; Lissandrello, E.; Furneri, P.M. Evaluation of resistance to low pH and bile salts of human Lactobacillus spp. isolates. Int. J. Immunopathol. Pharmacol. 2015, 28, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.L.; Li, M.F.; Liu, S.Y.; Yu, M.; Lou, W.Y. Regulation of hepatocellular cholesterol metabolism by Lactobacillus paracasei by2 and its embedding delivery. Probiotics Antimicrob. Proteins 2022, 16, 181–195. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. Int. J. Food Prop. 2017, 20, 2736–2747. [Google Scholar] [CrossRef]
- Ramos, C.L.; Thorsen, L.; Schwan, R.F.; Jespersen, L. Strain-specific probiotics properties of Lact. fermentum. Food Microbiol. 2013, 36, 22–29. [Google Scholar] [CrossRef]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C. Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nat. Rev. Microbiol. 2010, 8, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef] [PubMed]
- Darilmaz, D.O.; Beyatli, Y. Investigating hydrophobicity and the effect of exopolysaccharide on aggregation properties of dairy propionibacteria isolated from Turkish homemade cheeses. J. Food Prot. 2012, 75, 359–365. [Google Scholar] [CrossRef]
- Tavakoli, M.; Esfahani, Z.H.; Hejazi, M.A.; Azizi, M.H.; Abbasi, S. Characterization of probiotic abilities of Lactobacilli isolated from Iranian Koozeh traditional cheese. Pol. J. Food Nutr. Sci. 2017, 67, 41–48. [Google Scholar] [CrossRef]
- Cho, G.-S.; Huch, M.; Hanak, A.; Holzapfel, W.H.; Franz, C.M.A.P. Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int. J. Food Microbiol. 2010, 141 (Suppl. 1), S117–S124. [Google Scholar] [CrossRef]
- Abushelaibi, A.; Ai-Mahadin, S.; Ei-Tarabily, K.; Shah, N.P.; Ayyash, M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT—Food Sci. Technol. 2017, 79, 316–325. [Google Scholar] [CrossRef]
- Sharma, P.; Tomar, S.K.; Goswami, P.; Sangwan, V.; Singh, R. Antibiotic resistance among commercially available probiotics. Food Res. Int. 2014, 57, 176–195. [Google Scholar] [CrossRef]
- Zavišić, G.; Popović, M.; Stojkov, S.; Medić, D.; Gusman, V.; Lješković, N.J.; Galović, A.J. Antibiotic resistance and probiotics: Knowledge gaps, market overview and preliminary screening. Antibiotics 2023, 12, 1281. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 4: Suitability of taxonomic units notified to EFSA until March 2016. EFSA J. 2016, 14, e04522. [Google Scholar]
Strains | DAIno (%) | VIno (mg∙L−1∙min−1) | DAGuo (%) | VGuo (mg∙L−1∙min−1) |
---|---|---|---|---|
L. plantarum F42 | 100 ± 1.41 | 5.46 ± 0.67 a | 100 ± 1.27 | 3.84 ± 0.11 a |
L. pentosus P38 | 100 ± 2.82 | 5.40 ± 0.40 a | 100 ± 6.90 | 3.81 ± 0.24 a |
L. plantarum 44 | 100 ± 5.66 | 5.32 ± 0.58 a | 100 ± 5.36 | 3.80 ± 0.17 a |
L. argentoratensis 15 | 100 ± 4.66 | 5.31 ± 0.43 a | 100 ± 11.41 | 3.80 ± 0.75 a |
L. fermentum S8641 | 100 ± 2.55 | 3.78 ± 0.47 b | 100 ± 3.11 | 2.52 ± 0.55 b |
L. pentosus b21 | 100 ± 0.85 | 3.78 ± 0.17 b | 100 ± 2.07 | 2.52 ± 0.13 b |
L. pentosus S856s | 100 ± 7.92 | 3.78 ± 0.50 b | 100 ± 3.11 | 2.52 ± 0.18 b |
L. fermentum Sl823 | 100 ± 9.48 | 3.78 ± 0.58 b | 100 ± 1.84 | 2.51 ± 0.18 b |
L. plantarum b8643 | 100 ± 7.64 | 3.78 ± 0.49 b | 100 ± 0.71 | 2.51 ± 0.08 c |
Feature | L. plantarum F42 | L. pentosus P38 | L. argentoratensis 15 | L. fermentum S8641 |
---|---|---|---|---|
Total reads count | 7,538,286 | 10,170,832 | 8,320,090 | 8,982,324 |
Genome size | 3,422,275 | 3,723,671 | 3,326,539 | 1,904,611 |
Average read length | 149.28 | 145.26 | 149.00 | 149.19 |
GC content | 44.06% | 47.08% | 43.45% | 51.33% |
Clean reads | 99.90% | 99.90% | 99.91% | 99.91% |
Total genes | 3235 | 3525 | 3099 | 1859 |
Strains | Initial Viability | pH3.0 | 0.03% BS at pH7.0 | ||
---|---|---|---|---|---|
Viability | Survival Rate | Viability | Survival Rate | ||
L. plantarum F42 | 7.19 ± 0.30 a | 7.08 ± 0.29 a | 77.51 ± 1.29% a | 6.47 ± 0.20 a | 19.46 ± 4.33% a |
L. pentosus P38 | 6.81 ± 0.10 a | 6.63 ± 0.08 a | 66.78 ± 3.26% b | 5.85 ± 0.22 ab | 11.14 ± 3.03% b |
L. argentoratensis 15 | 6.79 ± 0.16 a | 6.65 ± 0.15 a | 72.47 ± 1.72% a | 6.00 ± 0.14 ab | 16.18 ± 0.79% b |
L. fermentum S8641 | 6.97 ± 0.16 a | 6.76 ± 0.16 a | 61.79 ± 1.25% b | 5.71 ± 0.05 b | 5.68 ± 1.52% b |
Traits | PC1 Loading | PC2 Loading |
---|---|---|
Hydrophobicity | 0.449 | 0.151 |
Auto-aggregation | 0.449 | 0.125 |
Adhesion ability | 0.452 | 0.100 |
Coagg-S. enterica | 0.404 | −0.296 |
Coagg-S. aureus | 0.031 | 0.666 |
Coagg-E. coli | 0.091 | −0.648 |
Coagg-L. monocytogenes | −0.469 | 0.024 |
Strains | L. monocytogenes | S. aureus | S. enterica | E. coli |
---|---|---|---|---|
L. plantarum F42 | 6.9 ± 0.3 a (+++) | 4.4 ± 0.5 a (++) | 4.2 ± 0.3 a (++) | 1.9 ± 0.1 a (+) |
L. pentosus P38 | 1.7 ± 0.3 b (+) | 0.0 ± 0.1 b (−) | 4.7 ± 1.3 a (++) | 4.4 ± 0.8 b (++) |
L. argentoratensis 15 | 3.1 ± 0.1 c (++) | 2.9 ± 0.4 c (++) | 1.6 ± 0.2 b (+) | 1.3 ± 0.3 a (+) |
L. fermentum S8641 | 3.6 ± 0.5 c (++) | 2.6 ± 0.4 c (++) | 3.0 ± 0.5 a (++) | 0.9 ± 0.4 a (+) |
Groups | Antibiotics | L. plantarum F42 | L. pentosus P38 | L. argentoratensis 15 | L. fermentum S8641 |
---|---|---|---|---|---|
I | Ciprofloxacin | R | R | R | R |
Rifampicin | R | I | R | I | |
II | Chloramphenicol | S | I | S | I |
Kanamycin | R | R | R | R | |
Erythromycin | I | I | I | R | |
Tetracycline | S | I | S | S | |
III | Vancomycin | R | R | R | R |
Amoxicillin | R | R | R | R | |
Ampicillin | S | S | S | S |
Strains | Hemolytic Activity |
---|---|
S. aureus | β-hemolysis |
L. plantarum F42 | γ-hemolysis |
L. pentosus P38 | γ-hemolysis |
L. argentoratensis 15 | γ-hemolysis |
L. fermentum S8641 | γ-hemolysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.-Y.; Lou, W.-Y.; Li, M.-F. Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties. Foods 2025, 14, 2690. https://doi.org/10.3390/foods14152690
Han M-Y, Lou W-Y, Li M-F. Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties. Foods. 2025; 14(15):2690. https://doi.org/10.3390/foods14152690
Chicago/Turabian StyleHan, Ming-Yang, Wen-Yong Lou, and Meng-Fan Li. 2025. "Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties" Foods 14, no. 15: 2690. https://doi.org/10.3390/foods14152690
APA StyleHan, M.-Y., Lou, W.-Y., & Li, M.-F. (2025). Lactic Acid Bacteria in Chinese Sauerkraut: Its Isolation and In Vitro Probiotic Properties. Foods, 14(15), 2690. https://doi.org/10.3390/foods14152690