Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = salt ionic contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4119 KiB  
Article
The Development of an Alginate Drilling Fluid Treatment Agent for Shale and a Study on the Mechanism of Wellbore Stability Sealing
by Cheng Huang, Liping Mu and Xuefeng Gong
Processes 2025, 13(4), 1250; https://doi.org/10.3390/pr13041250 - 21 Apr 2025
Viewed by 558
Abstract
In order to prevent and control the problem of wellbore instability during the drilling process in shale formations, this study, based on the unique rheological properties, water solubility, and thermal stability of sodium alginate (SA), systematically investigated the rheological properties, filtration properties, and [...] Read more.
In order to prevent and control the problem of wellbore instability during the drilling process in shale formations, this study, based on the unique rheological properties, water solubility, and thermal stability of sodium alginate (SA), systematically investigated the rheological properties, filtration properties, and temperature resistance of sodium alginate-based drilling fluids before and after salt contamination. Additionally, it explored the wellbore stability and plugging mechanism of these drilling fluids in shale formations. The research shows that the BF + 0.4 wt% SA system significantly improves the rheological properties of the drilling fluid, effectively reduces the filtration loss, and exhibits good stability under the conditions of salt contamination and a high temperature of 100 °C. Sodium alginate binds to clay particles through hydrogen bonds and ionic bonds, enhancing the hydration and dispersion ability of the particles. The absolute value of its zeta potential reaches 39 mV and 37 mV before and after salt contamination, respectively, which is better than that of the control group, thus improving the colloidal stability of the drilling fluid. At the same time, through the moderate flocculation of clay particles, low-permeability filter cakes with filtration losses of 14 mL and 25 mL before and after salt contamination are formed, realizing a wellbore stability mechanism that combines physical plugging and chemical inhibition. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

22 pages, 5224 KiB  
Article
Impacts of Natural Organic Matter and Dissolved Solids on Fluoride Retention of Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes
by Hussein Abuelgasim, Nada Nasri, Martin Futterlieb, Radhia Souissi, Fouad Souissi, Stefan Panglisch and Ibrahim M. A. ElSherbiny
Membranes 2025, 15(4), 110; https://doi.org/10.3390/membranes15040110 - 2 Apr 2025
Cited by 1 | Viewed by 1013
Abstract
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow [...] Read more.
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow velocity, and recovery rate). dNF40 membranes exhibited F retention above 70% ± 1.2 in the absence of NOM and competing ions. However, when filtering synthetic model water (SMW) designed to simulate groundwater contaminated with high total dissolved solids (TDSs) and NOM, F retention decreased to approximately 60% ± 0.7, which was generally attributed to ion competition. Furthermore, despite limited declines in normalized permeability, the addition of NOM to SMW notably deceased F retention in the steady state to~20% due to fouling effects. The facilitated transport of the divalent cations Ca2+ and Mg2+ could be observed, as they accumulated in the organic fouling layer. While SO42− retention remained relatively stable, the retention of monovalent anions (NO3, Cl, and F) decreased substantially due to drag effects. Na+ retention improved slightly to maintain electroneutrality. Feed salinity was shown to significantly affect separation efficiency, with PEC layers undergoing swelling and certain structural changes as the ionic strength increased. During batch filtration experiments at varying recovery rates, the retention of monovalent anions further decreased, with F retention reducing to just ~10% at a 90% recovery rate. This study provides valuable insights into better understanding and optimizing the performance of PEC-based NF membranes across diverse water treatment scenarios. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 4616 KiB  
Review
A Review on Impact of the Marine Salt Spray Environment on the Performance of Proton Exchange Membrane Fuel Cells
by Shian Li, Jiakai Zhu, Guogang Yang and Qiuwan Shen
J. Mar. Sci. Eng. 2025, 13(1), 172; https://doi.org/10.3390/jmse13010172 - 19 Jan 2025
Cited by 3 | Viewed by 1295
Abstract
With the escalating global demand for clean energy, the proton exchange membrane fuel cell (PEMFC), as an efficient and environmentally friendly energy conversion device, has emerged as a pivotal component of new power systems, playing a crucial role in achieving global carbon emission [...] Read more.
With the escalating global demand for clean energy, the proton exchange membrane fuel cell (PEMFC), as an efficient and environmentally friendly energy conversion device, has emerged as a pivotal component of new power systems, playing a crucial role in achieving global carbon emission reduction targets. At present, the application of PEMFC technology is gradually expanding to the shipping industry and other fields, indicating its potential role in the future transformation of the energy structure. This article focuses on the marine salt spray environment; summarizes the impact of salt ionic contamination on PEMFC performance in recent years; and mainly explores the influence mechanism of the internal components of PEMFC, including the bipolar plate, the gas diffusion layer, catalyst layer, and proton exchange membrane. In addition, this study analyzes and summarizes the polarization curve variations in the marine salt spray environment, as well as the recovery methods after contamination, in order to provide certain references of PEMFC research for marine application. Full article
(This article belongs to the Special Issue Advanced Technologies for New (Clean) Energy Ships)
Show Figures

Figure 1

15 pages, 4196 KiB  
Article
Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents
by Neil Rosenfeld, Mara P. Alonso, Courtney Humphries and David E. Bergbreiter
Technologies 2024, 12(8), 138; https://doi.org/10.3390/technologies12080138 - 20 Aug 2024
Viewed by 2642
Abstract
Trace concentrations of dyes are often present in textile wastewater streams and present a serious environmental problem. Thus, these dyes must be removed from wastewater either by degradation or sequestration prior to discharge of the wastewater into the environment. Existing processes to remove [...] Read more.
Trace concentrations of dyes are often present in textile wastewater streams and present a serious environmental problem. Thus, these dyes must be removed from wastewater either by degradation or sequestration prior to discharge of the wastewater into the environment. Existing processes to remove these wastewater contaminants include the use of solid sorbents to sequester dyes or the use of biochemical or chemical methods of dye degradation. However, these processes typically generate their own waste products, are not necessarily rapid because of the low dye concentration, and often use expensive or non-recyclable sequestrants or reagents. This paper describes a simple, recyclable, liquid–liquid extraction scheme where ionic dyes can be sequestered into poly(α-olefin) (PAO) solvent systems. The partitioning of anionic and cationic dyes from water into PAOs is facilitated by ionic PAO-phase anchored sequestering agents that are readily prepared from commercially available vinyl-terminated polyisobutylene (PIB). This is accomplished by a sequence of reactions involving hydroboration/oxidation, conversion of an alcohol into an iodide, and conversion of the resulting primary alkyl iodide into a cationic nitrogen derivative. The products of this synthetic sequence are cationic nitrogen iodide salts which serve as anionic sequestrants that are soluble in PAO. These studies showed that the resulting series of cationic PIB-bound cationic sequestering agents facilitated efficient extraction of anionic, azo, phthalein, and sulfonephthalein dyes from water into a hydrocarbon PAO phase. Since the hydrocarbon PAO phase is completely immiscible with water and the PIB derivatives are also insoluble in water, neither the sequestration solvent nor the sequestrants contaminate wastewater. The effectiveness and efficiency of these sequestrations were assayed by UV–visible spectroscopy. These spectroscopic studies showed that extraction efficiencies were in most cases >99%. These studies also involved procedures that allowed for the regeneration and recycling of these PAO sequestration systems. This allowed us to recycle the PAO solvent system for at least 10 sequential batch extractions where we sequestered sodium salts of methyl red and 4′,5′-dichlorofluorescein dyes from water with extraction efficiencies of >99%. These studies also showed that a PIB-bound derivative of the sodium salt of 1,1,1-trifluoromethylpentane-2,4-dione could be prepared from a PIB-bound carboxylic acid ester by a Claisen-like reaction and that the sodium salt of this β-diketone could be used to sequester cationic dyes from water. This PIB-bound anion rapidly and efficiently extracted >99% of methylene blue, malachite green, and safranine O from water based on UV–visible and 1H NMR spectroscopic assays. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

14 pages, 4095 KiB  
Article
An Investigation into Sustainable Solutions: Utilizing Hydrated Lime Derived from Oyster Shells as an Eco-Friendly Alternative for Semiconductor Wastewater Treatment
by Hye-Jin Lee, Sang-Eun Lee and Seokhwi Kim
Recycling 2024, 9(4), 61; https://doi.org/10.3390/recycling9040061 - 26 Jul 2024
Cited by 2 | Viewed by 1695
Abstract
Due to its acidic nature and high fluoride concentration, hydrated lime (Ca(OH)2) is commonly used for neutralization and fluoride control in semiconductor wastewater treatment. This study investigated the efficacy of treating high fluoride-containing wastewater using hydrated lime derived from oyster shells [...] Read more.
Due to its acidic nature and high fluoride concentration, hydrated lime (Ca(OH)2) is commonly used for neutralization and fluoride control in semiconductor wastewater treatment. This study investigated the efficacy of treating high fluoride-containing wastewater using hydrated lime derived from oyster shells as an alternative to limestone. Overall, the characteristics of removing pollutants in acidic wastewater using shell-based hydrated lime showed similar patterns to hydrated lime from limestone. The treatment efficiency was 50% or less under theoretical Ca/F molar ratio (=0.5) conditions for the formation of fluorite (CaF2), while the fluorine removal rate reached 99% under somewhat higher Ca/F conditions due to the influence of ionic components in the wastewater. Interestingly, chloride content did not increase even in the initial reaction stages, in contrast to our concerns about oyster shells generally containing salt to a certain extent due to their growth in seawater; instead, the chloride concentration decreased over time, similar to nitrate (NO3). In controlling fluoride in wastewater, surpassing the theoretical Ca/F molar ratio, particularly considering the presence of other anionic species such as SO4²− and PO4³, the optimal Ca/F ratio for fluoride removal was found to be 1.59. This value is approximately 16% lower than the calculated value (Ca/F = 1.85) when accounting for other anions. X-ray diffraction results confirmed the presence of CaSO4, Ca3(PO4)2, and CaF2 in the precipitate recovered after the reaction, indicating the effective removal of ionic contaminants. This observation suggests that oyster shell-derived hydrated lime could serve as a viable calcium resource for treating acidic wastewater and represents a potential alternative to traditional limestone-based methods. Full article
Show Figures

Figure 1

18 pages, 3872 KiB  
Article
Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes
by Jie Qi, Xue Wang, Huan Zhang, Xiangyu Liu, Wenbo Wang, Qingdong He and Fang Guo
Nanomaterials 2024, 14(9), 766; https://doi.org/10.3390/nano14090766 - 26 Apr 2024
Cited by 2 | Viewed by 1900
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named [...] Read more.
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of “structure optimization design”, environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater. Full article
Show Figures

Figure 1

12 pages, 1596 KiB  
Article
Unveiling Novel Chaotropic Chromatography Method for Determination of Pralidoxime in Nerve Agent Antidote Autoinjectors
by Bohyun Shin, Hyung-seung Kim, Ji-Youn Lee, Sumin Seo, Cho Hee Jeong, Eunbin Bae, Jiyu Kim, Hyojeong Lee, Donghee Lee, Dong-Kyu Lee and Sang Beom Han
Separations 2024, 11(3), 82; https://doi.org/10.3390/separations11030082 - 7 Mar 2024
Viewed by 2652
Abstract
Pralidoxime chloride, a highly hydrophilic antidote, cannot be effectively separated by reverse-phase high-performance liquid chromatography (RP-HPLC), unless the mobile-phase composition is varied. However, the use of ion-pairing reagents for pralidoxime separation is hindered by the persistent contamination of the stationary phase or chromatography [...] Read more.
Pralidoxime chloride, a highly hydrophilic antidote, cannot be effectively separated by reverse-phase high-performance liquid chromatography (RP-HPLC), unless the mobile-phase composition is varied. However, the use of ion-pairing reagents for pralidoxime separation is hindered by the persistent contamination of the stationary phase or chromatography system inside the HPLC system. Thus, this study aimed to develop a simple, rapid, and robust method based on RP-HPLC to determine pralidoxime chloride in antidote autoinjectors using a chaotropic salt as the mobile-phase additive. The use of UV detection at 270 nm allowed for the simultaneous detection of pralidoxime chloride and the internal standard, pyridine-2-aldoxime. The addition of chaotropic salts (NaPF6, NaBF4, and NaClO4) and an ionic liquid ([EMIM]PF6) increased the retention time of pralidoxime chloride. Among them, NaPF6 exhibited the highest capacity factor in the reverse-phase C18 column. Increasing the salt concentration increased the capacity factor and the number of theoretical plates. Analytical method validation was performed to assess the linearity, accuracy, precision, recovery, and repeatability, according to the Ministry of Food and Drug Safety guidelines. Additionally, this newly developed method exhibits an adequate separation capability, making it a potential substitute for the current method employed in the United States/Korean Pharmacopoeia, and it ensures the necessary durability to maintain the robustness and reliability of the analytical system. Full article
Show Figures

Graphical abstract

15 pages, 5055 KiB  
Article
Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations
by Daniel A. Palacio, Carla Muñoz, Manuel Meléndrez, Walter A. Rabanal-León, Juliana A. Murillo-López, Manuel Palencia and Bernabé L. Rivas
Polymers 2023, 15(15), 3185; https://doi.org/10.3390/polym15153185 - 27 Jul 2023
Cited by 2 | Viewed by 1383
Abstract
Emerging antibiotic contaminants in water is a global problem because bacterial strains resistant to these antibiotics arise, risking human health. This study describes the use of poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan, two cationic polymers with different natures and structures to remove nalidixic [...] Read more.
Emerging antibiotic contaminants in water is a global problem because bacterial strains resistant to these antibiotics arise, risking human health. This study describes the use of poly[(4-vinylbenzyl) trimethylammonium chloride] and N-alkylated chitosan, two cationic polymers with different natures and structures to remove nalidixic acid. Both contain ammonium salt as a functional group. One of them is a synthetic polymer, and the other is a modified artificial polymer. The removal of the antibiotic was investigated under various experimental conditions (pH, ionic strength, and antibiotic concentration) using the technique of liquid-phase polymer-based retention (LPR). In addition, a stochastic algorithm provided by Fukui’s functions is used. It was shown that alkylated N-chitosan presents 65.0% removal at pH 7, while poly[(4-vinylbenzyl)trimethylammonium chloride] removes 75.0% at pH 9. The interaction mechanisms that predominate the removal processes are electrostatic interactions, π–π interactions, and hydrogen bonding. The polymers reached maximum retention capacities of 1605 mg g−1 for poly[(4-vinylbenzyl) trimethylammonium chloride] and 561 mg g−1 of antibiotic per gram for alkylated poly(N-chitosan). In conclusion, the presence of aromatic groups improves the capacity and polymer–antibiotic interactions. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Chile (2022,2023))
Show Figures

Graphical abstract

11 pages, 1859 KiB  
Article
Cleaning Phenolic Compounds Present in Water Using Salting-Out Effect with DCA-Based Ionic Liquids
by Olalla G. Sas, Ángeles Domínguez and Begoña González
Appl. Sci. 2023, 13(3), 2009; https://doi.org/10.3390/app13032009 - 3 Feb 2023
Cited by 3 | Viewed by 2422
Abstract
Water is an essential natural resource, and its contamination is an important issue at present. This study aimed to increase the techniques that can be used to clean and reuse industrial wastewater by studying the feasibility of an aqueous two-phase system to eliminate [...] Read more.
Water is an essential natural resource, and its contamination is an important issue at present. This study aimed to increase the techniques that can be used to clean and reuse industrial wastewater by studying the feasibility of an aqueous two-phase system to eliminate phenolic compounds from aqueous systems. The system was prepared using two hydrophilic ionic liquids based on dicyanamide anion, 1-ethyl-3-methylimidazlium dicyanamide [EMim] [DCA], and 1-butyl-3-methylimidazolium dicyanamide [BMim][DCA], and one inorganic salt, K3PO4, at three different concentrations (20, 30, and 40%). The process was tested for the removal of phenol, o-cresol, 2-chlorophenol, and a mixture of them (PCM) at initial concentrations from 0.003 to 15 g·L−1 in water. The extraction efficiencies for all the studied systems were calculated. The influence of the structure of the cation, the concentration of salt, and the initial concentration of the extracted compounds in the extraction yields were recorded. In general, the obtained results were high for all the studied systems, with extraction efficiencies of more than 90% representing the highest removal of the 2-chlorophenol compound using [EMim] [DCA] at the highest concentration of salt. Full article
(This article belongs to the Special Issue Perspectives in Water Recycling)
Show Figures

Graphical abstract

16 pages, 2630 KiB  
Article
Adjustment of the Structure of the Simplest Amino Acid Present in Nature—Glycine, toward More Environmentally Friendly Ionic Forms of Phenoxypropionate-Based Herbicides
by Adriana Olejniczak, Witold Stachowiak, Tomasz Rzemieniecki and Michał Niemczak
Int. J. Mol. Sci. 2023, 24(2), 1360; https://doi.org/10.3390/ijms24021360 - 10 Jan 2023
Cited by 3 | Viewed by 2572
Abstract
The use of chemicals for various purposes in agriculture has numerous consequences, such as the contamination of ecosystems. Thus, nowadays it is perceived that their development should adhere to the principles of green chemistry elaborated by Paul Anastas. Consequently, to create more environment-friendly [...] Read more.
The use of chemicals for various purposes in agriculture has numerous consequences, such as the contamination of ecosystems. Thus, nowadays it is perceived that their development should adhere to the principles of green chemistry elaborated by Paul Anastas. Consequently, to create more environment-friendly herbicides, we elaborated a ‘green’ synthesis method of a series of ionic liquids (ILs) containing cations derived from glycine. The appropriately modified cations were combined with an anion from the group of phenoxy acids, commonly known as 2,4-DP. The products were obtained with high yields, and subsequently, their properties, such as density, viscosity and solubility, were thoroughly examined to elucidate existing structure–property relationships. All ILs were liquids at room temperature, which enabled the elimination of some serious issues associated with solid active forms, such as the polymorphism or precipitation of an active ingredient from spray solution. Additionally, the synthesized compounds were tested under greenhouse conditions, which allowed an assessment of their effectiveness in regulating the growth of oilseed rape, selected as a model dicotyledonous plant. The product comprising a dodecyl chain exhibited the greatest reduction in the fresh weight of plants, significantly surpassing not only a commercially used reference herbicide but also the potassium salt of 2,4-DP. Full article
(This article belongs to the Special Issue Advanced Research in Green Chemistry)
Show Figures

Figure 1

13 pages, 2098 KiB  
Article
Study on Metronidazole Acid-Base Behavior and Speciation with Ca2+ for Potential Applications in Natural Waters
by Federica Carnamucio, Claudia Foti, Massimiliano Cordaro and Ottavia Giuffrè
Molecules 2022, 27(17), 5394; https://doi.org/10.3390/molecules27175394 - 24 Aug 2022
Cited by 5 | Viewed by 1972
Abstract
Metronidazole (MNZ) is an antibiotic widely used for the treatment of various infectious diseases and as an effective pesticide agent for the cultivation of chickens and fish. Its high resistance to purification processes and biological activity has led to the classification [...] Read more.
Metronidazole (MNZ) is an antibiotic widely used for the treatment of various infectious diseases and as an effective pesticide agent for the cultivation of chickens and fish. Its high resistance to purification processes and biological activity has led to the classification of MNZ as an emerging contaminant. A speciation study, aimed to define the acid-base properties of MNZ and its interaction with Ca2+, commonly present in natural waters, is reported. The protonation constants of MNZ, as well as the formation constant value of Ca2+-MNZ species, were obtained by potentiometric titrations in an aqueous solution, using NaCl as background salt at different ionic strengths (0.15, 0.5, 1 mol L−1) and temperature (15, 25 and 37 °C) conditions. The acid-base behavior and the complexation with Ca2+ were also investigated by 1H NMR and UV-Vis titrations, with results in very good agreement with the potentiometric ones. The dependence of the formation constants on the ionic strength and temperature was also determined. The sequestering ability of MNZ towards Ca2+ was defined by the empirical parameter pL0.5 at different pH and temperature values. The speciation of MNZ simulating sea water conditions was calculated. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

16 pages, 1342 KiB  
Article
Use of Typical Wastes as Biochars in Removing Diethyl Phthalate (Det) from Water
by Zichun Chai, Xianshuang Bi and Hongbai Jia
Processes 2022, 10(7), 1369; https://doi.org/10.3390/pr10071369 - 13 Jul 2022
Cited by 7 | Viewed by 2157
Abstract
Diethyl phthalate (DEP), one of the six typical PAEs priority pollutants declared by the US EPA, has attracted tremendous attention due to its widespread pollution and was selected as the adsorbate in this study. Properties of biochar samples obtained from three different feedstocks, [...] Read more.
Diethyl phthalate (DEP), one of the six typical PAEs priority pollutants declared by the US EPA, has attracted tremendous attention due to its widespread pollution and was selected as the adsorbate in this study. Properties of biochar samples obtained from three different feedstocks, i.e., sawdust (SDBC), rice straw (RSBC), and giant reed (GRBC), pyrolyzed at 400 °C as well as their ability to adsorb DEP from an aqueous solution were investigated. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model (R2 > 0.99) and the intraparticle diffusion model (R2 > 0.98). The maximal adsorption capacity of the DEP by the prepared biochar was in an order of GRBC (46.04 mg g−1) > RSBC (31.54 mg g−1) > and SDBC (18.39 mg g−1). The higher adsorption capacity of DEP by GRBC is mainly attributed to the higher surface area. The reduction in adsorption capacity of the biochar against DEP with an increase in the solution pH (from 2.5 to 10.0) was possibly due to promoting the electrostatic repulsion between the DEP and the surface of the biochar. However, the increasing sodium ionic strength promoted the adsorption of the biochar, which could be interpreted by the reduced solubility of the DEP due to enhancing “salting out” effects as increasing sodium concentration. In addition, it was favorable for the adsorption of DEP onto the biochars at a lower temperature (15 °C) and the calculated ∆G0 was less than zero, indicating that the adsorption was a spontaneous and exothermic process. These experiments designate that these derived biochars can be used as an inexpensive adsorbent for the purification of PAEs contaminated water. Full article
Show Figures

Figure 1

14 pages, 1793 KiB  
Communication
Deproteinization of Chitin Extracted with the Help of Ionic Liquids
by Douglas R. Lyon, Bryan R. Smith, Noureddine Abidi and Julia L. Shamshina
Molecules 2022, 27(13), 3983; https://doi.org/10.3390/molecules27133983 - 21 Jun 2022
Cited by 8 | Viewed by 2513
Abstract
The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 [...] Read more.
The isolation of chitin utilizing ionic liquid 1-ethyl-3-methylimidazolium acetate has been determined to result in polymer contaminated with proteins. For the first time, the proteins in chitin extracted with ionic liquid have been quantified; the protein content was found to vary from 1.3 to 1.9% of the total weight. These proteins were identified and include allergenic proteins such as tropomyosin. In order to avoid ‘traditional’ hydroxide-based deproteinization of chitin, which could reduce the molecular weight of the final product, alternative deproteinization strategies were attempted. Testing of the previously reported deproteinization method using aqueous K3PO4 resulted in protein reduction by factors varying from 2 to 10, but resulted in significant phosphate salt contamination of the final product. Contrarily, the incorporation of GRAS (Generally Recognized as Safe) compound Polysorbate 80 into the polymer washing step provided the polymer of comparable purity with no contaminants. This study presents new options for the deproteinization of chitin that can replace traditional approaches with methods that are environmentally friendly and can produce high purity polymer. Full article
Show Figures

Graphical abstract

27 pages, 13187 KiB  
Article
Multivariate Statistical Analysis and Structural Sovereignty for Geochemical Assessment and Groundwater Prevalence in Bahariya Oasis, Western Desert, Egypt
by Mohamed Abd El-Wahed, Mohamed M. El-Horiny, Mahmoud Ashmawy and Samar Abd El Kereem
Sustainability 2022, 14(12), 6962; https://doi.org/10.3390/su14126962 - 7 Jun 2022
Cited by 2 | Viewed by 3621
Abstract
The Bahariya Oasis is an example of an extremely hyperarid environment and it is characterized by an extensive nonrenewable Nubian Sandstone Aquifer System (NSAS), which is deemed the crucial provenance for agrarian and national development ventures. The present work aimed to assess the [...] Read more.
The Bahariya Oasis is an example of an extremely hyperarid environment and it is characterized by an extensive nonrenewable Nubian Sandstone Aquifer System (NSAS), which is deemed the crucial provenance for agrarian and national development ventures. The present work aimed to assess the groundwater occurrences in the NSAS, and to document the main factors that control the geochemistry of the groundwater in the Bahariya Oasis. Groundwater samples were collected from 52 locations in April 2019 and were analyzed for a total of 13 water-quality physicochemical parameters. A diverse geological and structural setup has greatly impacted the groundwater flow pattern and has diverted it towards the NE by the great Bahariya anticline structure, the ENE-oriented Bahariya mid dextral strike-slip fault, and NE-striking normal faults, while NW-oriented normal faults cause the groundwater to diverge perpendicular to the groundwater flow lines. The groundwater is highly contaminated by trace metals (Fe2+ and Mn2+), which exceed the permissible limit for different purposes. Conventional graphical plots and geochemical modeling integrated with multivariate factor analysis (FA) revealed that the chemical composition of the groundwater is strongly affected by its interaction with the lithologies of the NSAS. The dissolution of aquifer host rocks (carbonates and iron oxides) and chloride salts through the infiltration of groundwater, and the incorporation of cations by the ionic exchange of Na+ by Ca2+ in clay minerals, emerged as worthy mechanisms for the groundwater development. Furthermore, the region’s rapidly increasing population, agricultural expansion, and the associated anthropogenic practices have generated a need for groundwater-quality assurance as a prime source of the water supply. Consequently, reducing the effects of the NSAS’s unsustainable extraction requires long-term monitoring and the ongoing evaluation of the groundwater. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

15 pages, 2821 KiB  
Article
Sorption Potential of Different Forms of TiO2 for the Removal of Two Anticancer Drugs from Water
by Kristina Tolić Čop, Dragana Mutavdžić Pavlović, Katarina Duić, Minea Pranjić, Iva Fereža, Igor Jajčinović, Ivan Brnardić and Vedrana Špada
Appl. Sci. 2022, 12(9), 4113; https://doi.org/10.3390/app12094113 - 19 Apr 2022
Cited by 5 | Viewed by 2352
Abstract
Anticancer drugs pose a potential risk to the environment due to their significant consumption and biological effect even at low concentrations. They can leach into soils and sediments, wastewater, and eventually into drinking water supplies. Many conventional technologies with more effective advanced oxidation [...] Read more.
Anticancer drugs pose a potential risk to the environment due to their significant consumption and biological effect even at low concentrations. They can leach into soils and sediments, wastewater, and eventually into drinking water supplies. Many conventional technologies with more effective advanced oxidation processes such as photocatalysis are being extensively studied to find an economical and environmentally friendly solution for the removal of impurities from wastewater as the main source of these pharmaceuticals. Since it is impossible to treat water by photocatalysis if there is no sorption of a contaminant on the photocatalyst, this work investigated the amount of imatinib and crizotinib sorbed from an aqueous medium to different forms of photocatalyst. In addition, based on the sorption affinity studied, the applicability of sorption as a simpler and less costly process was tested in general as a potential route to remove imatinib and crizotinib from water. Their sorption possibility was investigated determining the maximum of sorption, influence of pH, ionic strength, temperature, and sorbent dosage in form of the suspension and immobilized on the fiberglass mesh with only TiO2 and in combination with TiO2/carbon nanotubes. The sorption isotherm data fitted well the linear, Freundlich, and Langmuir model for both pharmaceuticals. An increasing trend of sorption coefficients Kd was observed in the pH range of 5–9 with CRZ, showing higher sorption affinity to all TiO2 forms, which was supported by KF values higher than 116 (μg/g)(mL/μg)1/n. The results also show a positive correlation between Kd and temperature as well as sorbent dosage for both pharmaceuticals, while CRZ sorbed less at higher salt concentration. The kinetic data were best described with a pseudo-second-order model (R2 > 0.995). Full article
Show Figures

Figure 1

Back to TopTop