Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. General Procedure for the Extraction of Dyes from Water
2.3. Regeneration and Recycling of the PAO Phase
3. Results and Discussion
3.1. Sequestration of Anionic Dyes
3.2. Sequestration of Cationic Dyes
3.3. Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MeI | Methyl iodide |
MeCN | Acetonitrile |
NMR | Nuclear magnetic resonance |
PAO | Poly(α-olefin) |
PDI | Polydispersity index |
PIB | Polyisobutylene |
rpmrt | Revolutions per minuteRoom temperature |
SN2 | Bimolecular nucleophilic substitution |
UV–visible | Ultraviolet–visible |
References
- Liu, Q. Pollution and Treatment of Dye Waste-Water. IOP Conf. Ser. Earth Environ. Sci. 2020, 514, 052001. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxiol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef] [PubMed]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.S.; Jeon, B.H.; Park, Y.K. A Review on Recent Advances in the Treatment of Dye-Polluted Wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Trivedi, A.; Desireddy, S.; Chacko, S.P. Effect of pH, Salinity, Dye, and Biomass Concentration on Decolourization of Azo Dye Methyl Orange in Denitrifying Conditions. Water 2022, 14, 3747. [Google Scholar] [CrossRef]
- Majeed, F.; Razzaq, A.; Rehmat, S.; Azhar, I.; Mohyuddin, A.; Rizvi, N.B. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr. Polym. 2024, 330, 121820. [Google Scholar]
- Lin, J.; Ye, W.; Xie, M.; Seo, D.H.; Luo, J.; Wan, Y.; Bruggen, B.V.D. Environmental Impacts and Remediation of Dye-Containing Wastewater. Nat. Rev. Earth Environ. 2023, 4, 785–803. [Google Scholar] [CrossRef]
- Li, M.; Yao, Y.; Zhang, W.; Zheng, J.; Zhang, X.; Wang, L. Fractionation and Concentration of High-Salinity Textile Wastewater using an Ultra-Permeable Sulfonated Thin-film Composite. Environ. Sci. Technol. 2017, 51, 9252–9260. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; De Vito, S.C. Predicting Azo Dye Toxicity. Crit. Rev. Env. Sci. Tec. 1993, 23, 249–324. [Google Scholar] [CrossRef]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A Critical Review on Advances in the Practices and Perspectives for the Treatment of Dye Industry Wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef]
- Solayman, H.M.; Hossen, M.A.; Aziz, A.A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.D. Performance Evaluation of Dye Wastewater Treatment Technologies: A Review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Miller, R.E. Ozonation of Azo and Azomethine Double Bonds. J. Org. Chem. 1961, 26, 2327–2330. [Google Scholar] [CrossRef]
- Farooq, U.; Phul, R.; Alshehri, S.M.; Ahmed, J.; Ahmad, T. Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Sci. Rep. 2019, 9, 4488. [Google Scholar] [CrossRef] [PubMed]
- Routoula, E.; Patwardhan, S.V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environ. Sci. Technol. 2020, 54, 647–664. [Google Scholar] [CrossRef]
- Zhao, F.; Repo, E.; Yin, D.; Meng, Y.; Jafari, S.; Sillanpää, M. EDTA-Cross-Linked β-Cyclodextrin: An Environmentally Friendly Bifunctional Adsorbent for Simultaneous Adsorption of Metals and Cationic Dyes. Environ. Sci. Technol. 2015, 49, 10570–10580. [Google Scholar] [CrossRef]
- Farrukh, A.; Akram, A.; Ghaffar, A.; Tuncel, E.; Oluz, Z.; Duran, H.; Rehman, H.; Yameen, B. Surface-Functionalized Silica Gel Adsorbents for Efficient Remediation of Cationic Dyes. Pure Appl. Chem. 2014, 86, 1177–1188. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. Dyes Removal from Textile Wastewater by Agricultural Waste as an Absorbent—A Review. Clean. Waste Syst. 2022, 3, 100051. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M. Biomass-Based Adsorbents for Removal of Dyes from Wastewater: A Review. Front. Environ. Sci. 2021, 9, 764958. [Google Scholar] [CrossRef]
- Bouchal, R.; Prelot, B.; Hesemann, P. Alkylguanidinium Based Ionic Liquids in a Screening Study for the Removal of Anionic Pollutants from Aqueous Solution. RSC Adv. 2016, 6, 39125–39130. [Google Scholar] [CrossRef]
- Fan, J.; Fan, Y.; Zhang, S.; Wang, J. Extraction of Azo Dyes from Aqueous Solutions with Room Temperature Ionic Liquids. Sep. Sci. Technol. 2011, 46, 1172–1177. [Google Scholar] [CrossRef]
- Makrygianni, M.; Lada, Z.G.; Manousou, A.; Aggelopoulos, C.A.; Deimede, V. Removal of Anionic Dyes from Aqueous Solution by Novel Pyrrolidinium-Based Polymeric Ionic Liquid (PIL) as Adsorbent: Investigation of the Adsorption Kinetics, Equilibrium Isotherms and the Adsorption Mechanisms Involved. J. Environ. Chem. Eng. 2019, 7, 103163. [Google Scholar] [CrossRef]
- Shah, A.; Kuddushi, M.; Rajput, S.; El Seoud, O.A.; Malek, N.I. Ionic Liquid-Based Catanionic Coacervates: Novel Microreactors for Membrane-Free Sequestration of Dyes and Curcumin. ACS Omega 2018, 3, 17751–17761. [Google Scholar] [CrossRef]
- Shah, A.; Kuddushi, M.; Ray, D.; Aswal, V.K.; Malek, N.I. Sodium Salicylate Mediated Ionic Liquid Based Catanionic Coacervates as Membrane-Free Microreactors for the Selective Sequestration of Dyes and Curcumin. ChemSystemsChem 2019, 2, e1900029. [Google Scholar] [CrossRef]
- Kamenicka, B.; Svec, P.; Weidlich, T. Separation of Anionic Chlorinated Dyes from Polluted Aqueous Streams Using Ionic Liquids and their Subsequent Recycling. Int. J. Mol. Sci. 2023, 24, 12235. [Google Scholar] [CrossRef] [PubMed]
- Bergbreiter, D.E. Soluble Polymers as Tools in Catalysis. ACS Macro Lett. 2014, 3, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Bergbreiter, D.E.; Koshti, N.; Franchina, J.G.; Frels, J.D. Thermal Sequestration of metals from aqueous solutions using poly(N-isopropylacrylamide) Copolymers. Angew. Chem. Int. Ed. 2000, 39, 1039–1042. [Google Scholar] [CrossRef]
- Chouikhi, D.; Kulai, I.; Bergbreiter, D.E.; Al-Hashemi, M.; Bazzi, H.S. Functionalized Polyisobutylene and Liquid/Liquid Separations as a Method for Scavenging Transition Metals from Homogeneously Catalyzed Reactions. Appl. Sci. 2019, 9, 120. [Google Scholar] [CrossRef]
- Harrell, M.L.; Malinski, T.; Torres-Lopez, C.; Gonzalez, K.; Suriboot, J.; Bergbreiter, D.E. Alternatives for Conventional Alkane Solvents. J. Am. Chem. Soc. 2016, 138, 14650–14657. [Google Scholar] [CrossRef] [PubMed]
- Thavornpradit, S.; Killough, J.M.; Bergbreiter, D.E. Minimizing Solvent Waste in Catalytic Reactions in Highly Recyclable Hydrocarbon Solvents. Org. Biomol. Chem. 2020, 18, 4248–4256. [Google Scholar] [CrossRef]
- Fu, Y.-H.; Bergbreiter, D.E. Recyclable Polyisobutylene-Bound HMPA as an Organocatalyst in Recyclable Poly(a-Olefin) Solvents. ChemCatChem 2020, 12, 6050–6058. [Google Scholar] [CrossRef]
- Watson, C.; Kuechle, A.; Bergbreiter, D.E. Fully Recyclable Bronsted Acid Catalyst Systems. Green Chem. 2021, 23, 1266–1273. [Google Scholar] [CrossRef]
- Technical Data Sheets for SpectraSyn Low Viscosity Polyalphaolefins PAO. Available online: https://www.exxonmobilchemical.com/en/resources/product-data-sheets/synthetic-base-stocks/low-viscosity-polyalphaolefins (accessed on 25 July 2024).
- Chevron Phillips Polyalphaolefins Products. Available online: https://www.cpchem.com/what-we-do/solutions/polyalphaolefins/products (accessed on 25 July 2024).
- Malinski, T.J.; Bergbreiter, D.E. Safer Solvents for Reactive Organometallic Reagents. Tetrahedron Lett. 2018, 44, 3926–3929. [Google Scholar] [CrossRef]
- Thavornpradit, S.; Malinski, T.J.; Bergbreiter, D.E. Applications of poly(α-olefin)s as solvents in organometallic chemistry. J. Organomet. Chem. 2022, 962, 122261. [Google Scholar] [CrossRef]
- Malinski, T.J.; Bazzi, H.S.; Bergbreiter, D.E. Sustainable Hydrocarbon Oligomer Solvent Systems for Sequestration of Trace Organics from Water. ChemSusChem 2018, 12, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Edgehouse, K.; Rosenfeld, N.; Bergbreiter, D.E.; Pentzer, E.B. Capsules of the poly(α-olefin) PAO432 for removal of BTEX contaminants from water. Ind. Eng. Chem. Res. 2021, 60, 14455–14463. [Google Scholar] [CrossRef]
- Rosenfeld, N.; Quinn, E.; Malinski, T.J.; Bergbreiter, D.E. Sequestration of Phenols from Water into Poly(α-Olefin)s Facilitated by Hydrogen Bonding Polyisobutylene Additives. ACS ES&T Water 2022, 2, 1391–1401. [Google Scholar]
- TPC Technical Data Sheets. Available online: https://www.tpcgrp.com/products/technical-information (accessed on 25 July 2024).
- BASF Technical Information HR PIB. Available online: https://www.basf-petronas.com.my/sites/default/files/BPC%20-%20HR%20PIB_final_Nov%2017.pdf (accessed on 25 July 2024).
- Harrell, M.J.; Bergbreiter, D.E. Using 1H NMR Spectra of Polymers and Polymer Products to Illustrate Concepts in Organic Chemistry. J. Chem. Educ. 2017, 94, 1668–1673. [Google Scholar] [CrossRef]
- Hugar, K.M.; Kostalik, H.A.; Coates, G.W. Imidazolium Cations with Exceptional Alkaline Stability: A Systematic Study of Structure–Stability Relationships. J. Am. Chem. Soc. 2015, 137, 8730–8737. [Google Scholar] [CrossRef] [PubMed]
- Samunual, P.; Bergbreiter, D.E. SN2 Reactions in Hydrocarbon Solvents Using Ammonium-Terminated Polyisobutylene Oligomers as Phase-Solubilizing Agents and Catalysts. J. Org. Chem. 2018, 83, 11101–11107. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sung, S.; Tian, J.; Bergbreiter, D.E. Polyisobutylene Supports—A Nonpolar Hydrocarbon Analog of PEG Supports. Tetrahedron 2005, 61, 12081–12092. [Google Scholar] [CrossRef]
Dye Contaminant | Initial Absorbance (AU) | Final Absorbance (AU) | Extraction Efficiency |
---|---|---|---|
Methyl red | 0.82 | 0.80 | 2% |
Methyl orange | 0.74 | 0.65 | 12% |
Eriochrome Black T | 0.53 | 0.35 | 34% |
Congo red | 0.80 | 0.74 | 8% |
Phenolphthalein | 0.95 | 0.90 | 5% |
2,2-Dichlorofluorescein | 1.07 | 1.06 | 1% |
Bromocresol green | 0.40 | 0.39 | 3% |
Carmine | 0.51 | 0.50 | 2% |
Dye Contaminant | Initial Absorbance (AU) | Final Absorbance (AU) | Extraction Efficiency |
---|---|---|---|
Methyl red | 0.82 (2.5) a | 0.00 (0.00) a | >99% (>99%) a |
Methyl orange | 0.74 | 0.00 | >99% |
Eriochrome Black T | 0.53 | 0.01 | 98% |
Congo red | 0.80 | 0.00 | >99% |
Phenolphthalein | 0.95 (2.3) a | 0.11 (0.12) a | 88% (95%) a |
2,2-Dichlorofluorescein | 1.06 | 0.00 | >99% |
Bromocresol green | 0.40 (2.5) a | 0.00 (0.03) a | >99% (99%) a |
Carmine | 0.51 | 0.00 | >99% |
Extraction Efficiency of p-Methyl Red | Extraction Efficiency of 4′,5′-Dichlorofluorescein | |
---|---|---|
Cycle 1 | >99.9% | >99.9% |
Cycle 2 | >99.9% | >99.9% |
Cycle 3 | >99.9% | >99.9% |
Cycle 5 | >99.9% | >99.9% |
Cycle 10 | >99.9% | >99.9% |
Dye Contaminant | Initial Dye Concentration (mg/mL) | Final Dye Concentration (mg/mL) | Initial Absorbance (AU) | Final Absorbance (AU) | Extraction Efficiency |
---|---|---|---|---|---|
Malachite green | 400 | 391 | 3.5 | 3.4 | 2% a |
Safranine O | 423 | 387 | 5 | 5 | 9% a |
Methylene blue | 404 | 360 | 3.6 | 3.6 | 11% a |
Dye | Initial Dye Concentration (mg/mL) | Final Dye Concentration (mg/mL) | Initial Absorbance (AU) | Final Absorbance (AU) | Extraction Efficiency |
---|---|---|---|---|---|
Malachite green | 400 | 40 | 3.5 | 0.40 | 90% a |
Safranine O | 423 | n.d. b | 5 | 0.07 | >99.9% a |
Methylene blue | 404 | n.d. b | 3.6 | 0.03 | >99.9% a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosenfeld, N.; Alonso, M.P.; Humphries, C.; Bergbreiter, D.E. Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents. Technologies 2024, 12, 138. https://doi.org/10.3390/technologies12080138
Rosenfeld N, Alonso MP, Humphries C, Bergbreiter DE. Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents. Technologies. 2024; 12(8):138. https://doi.org/10.3390/technologies12080138
Chicago/Turabian StyleRosenfeld, Neil, Mara P. Alonso, Courtney Humphries, and David E. Bergbreiter. 2024. "Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents" Technologies 12, no. 8: 138. https://doi.org/10.3390/technologies12080138
APA StyleRosenfeld, N., Alonso, M. P., Humphries, C., & Bergbreiter, D. E. (2024). Sequestration of Dyes from Water into Poly(α-Olefins) Using Polyisobutylene Sequestering Agents. Technologies, 12(8), 138. https://doi.org/10.3390/technologies12080138