Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Obtaining Polymers and Characterization
2.2.1. N-Alkylated Chitosan
2.2.2. Poly[(4-vinylbenzyl) Trimethylammonium Chloride]
2.3. Antibiotic-Removal Studies
2.4. Computational Details
3. Results and Discussion
3.1. Characterization of the Polymers
3.2. Antibiotic-Removal Studies
3.3. Structural and Energetic Description of Polymer–Antibiotic Interactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, A.; Kroll, K.J.; Silva-Sanchez, C.; Carriquiriborde, P.; Fernandino, J.I.; Denslow, N.D.; Somoza, G.M. Steroid Hormones and Estrogenic Activity in the Wastewater Outfall and Receiving Waters of the Chascomús Chained Shallow Lakes System (Argentina). Sci. Total Environ. 2020, 743, 140401. [Google Scholar] [CrossRef] [PubMed]
- Muriuki, C.; Kairigo, P.; Home, P.; Ngumba, E.; Raude, J.; Gachanja, A.; Tuhkanen, T. Mass Loading, Distribution, and Removal of Antibiotics and Antiretroviral Drugs in Selected Wastewater Treatment Plants in Kenya. Sci. Total Environ. 2020, 743, 140655. [Google Scholar] [CrossRef]
- Nzilu, D.M.; Madivoli, E.S.; Makhanu, D.s.; Otenda, B.V.; Kareru, P.G.; Kairigo, P.k.; Tuhkanen, T. Environmental Remediation Using Nanomaterial as Adsorbents for Emerging Micropollutants. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100789. [Google Scholar] [CrossRef]
- Rogowska, J.; Cieszynska-Semenowicz, M.; Ratajczyk, W.; Wolska, L. Micropollutants in Treated Wastewater. Ambio 2020, 49, 487–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Chen, M.; Lee, X.; Feng, Q.; Cheng, N.; Zhang, X.; Wang, S.; Wang, B. Enhanced Removal of Sulfonamide Antibiotics from Water by Phosphogypsum Modified Biochar Composite. J. Environ. Sci. 2023, 130, 174–186. [Google Scholar] [CrossRef]
- Li, L.; Zheng, X.; Chi, Y.; Wang, Y.; Sun, X.; Yue, Q.; Gao, B.; Xu, S. Molecularly Imprinted Carbon Nanosheets Supported TiO2: Strong Selectivity and Synergic Adsorption-Photocatalysis for Antibiotics Removal. J. Hazard. Mater. 2020, 383, 121211. [Google Scholar] [CrossRef]
- Xu, H.; Wang, B.; Zhao, R.; Wang, X.; Pan, C.; Jiang, Y.; Zhang, X.; Ge, B. Adsorption Behavior and Performance of Ammonium onto Sorghum Straw Biochar from Water. Sci. Rep. 2022, 12, 5358. [Google Scholar] [CrossRef]
- Xie, Y.; Kong, F.; Mi, Z.; Huang, H.; Xia, C.; Ma, Z.; Li, S.; Zhang, Q.; Meng, Z. High-Efficiency Removal of Antibiotics through Self-Assembly Formation of Layered Double Hydroxides in Wastewater. J. Water Process Eng. 2023, 52, 103502. [Google Scholar] [CrossRef]
- Palacio, D.A.; Becerra, Y.; Urbano, B.F.; Rivas, B.L. Antibiotics Removal Using a Chitosan-Based Polyelectrolyte in Conjunction with Ultrafiltration Membranes. Chemosphere 2020, 258, 127416. [Google Scholar] [CrossRef]
- Fradj, A.B.; Hamouda, S.B.; Ouni, H.; Lafi, R.; Gzara, L.; Hafiane, A. Removal of Methylene Blue from Aqueous Solutions by Poly(Acrylic Acid) and Poly(Ammonium Acrylate) Assisted Ultrafiltration. Sep. Purif. Technol. 2014, 133, 76–81. [Google Scholar] [CrossRef]
- Dasgupta, J.; Sikder, J.; Mandal, T.; Adhikari, U. Reactive Red 120 Retention through Ultrafiltration Enhanced by Synthetic and Natural Polyelectrolytes. J. Hazard. Mater. 2015, 299, 192–205. [Google Scholar] [CrossRef]
- Palencia, M.; Martínez, J.M.; Arrieta, Á. Removal of Acid Blue 129 Dye by Polymer-Enhanced Ultrafiltration (PEUF). J. Sci. Technol. Appl. 2017, 2, 65–74. [Google Scholar] [CrossRef]
- Arce, J.M.; Palencia Luna, V.J.; Alemán, Y.E.; Lerma, T.A.; García-Quintero, A. Removal of Synthetic Organic Species through Biomaterials Obtained from Fish Scales: A Case Study in a LRA System in the Municipality of San Pelayo—Córdoba. J. Sci. Technol. Appl. 2022, 13, 1–7. [Google Scholar] [CrossRef]
- Oyarce, E.; Butter, B.; Santander, P.; Sánchez, J. Polyelectrolytes Applied to Remove Methylene Blue and Methyl Orange Dyes from Water via Polymer-Enhanced Ultrafiltration. J. Environ. Chem. Eng. 2021, 9, 106297. [Google Scholar] [CrossRef]
- Palacio, D.A.; Urbano, B.F.; Rivas, B.L. Water-Soluble Polymers with the Ability to Remove Amoxicillin as Emerging Pollutant from Water. Environ. Technol. Innov. 2021, 23, 101589. [Google Scholar] [CrossRef]
- Muñoz, C.; Palacio, D.A.; Rivas, B.L.; Muñoz, C.; Palacio, D.A.; Rivas, B.L. Effect of Solvent Behavior of Nalidixic Acid by Ultraviolet Spectroscopy. J. Chil. Chem. Soc. 2020, 65, 4885–4887. [Google Scholar] [CrossRef]
- Patiño, Y.; Pilehvar, S.; Díaz, E.; Ordóñez, S.; De Wael, K. Electrochemical Reduction of Nalidixic Acid at Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2017, 323, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Zarei, M.; Beheshti Nahand, F.; Khataee, A.; Hasanzadeh, A. Removal of Nalidixic Acid from Aqueous Solutions Using a Cathode Containing Three-Dimensional Graphene. J. Water Process Eng. 2019, 32, 100978. [Google Scholar] [CrossRef]
- Khataee, A.; Lotfi, R.; Hasanzadeh, A.; Iranifam, M.; Joo, S.W. A Flow Injection Chemiluminescence Method for Determination of Nalidixic Acid Based on KMnO4–Morin Sensitized with CdS Quantum Dots. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 154, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, Z.; Hong, H. Adsorption of the Quinolone Antibiotic Nalidixic Acid onto Montmorillonite and Kaolinite. Appl. Clay Sci. 2013, 74, 66–73. [Google Scholar] [CrossRef]
- Rivas, B.L.; Pereira, E.D.; Palencia, M.; Sánchez, J. Water-Soluble Functional Polymers in Conjunction with Membranes to Remove Pollutant Ions from Aqueous Solutions. Prog. Polym. Sci. 2011, 36, 294–322. [Google Scholar] [CrossRef]
- Palencia, M. Liquid-Phase Polymer-Based Retention: Theory, Modeling, and Application for the Removal of Pollutant Inorganic Ions. J. Chem. 2015, 2015, 965624. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.J. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirado-Rives, J.; Jorgensen, W.L. Performance of B3LYP Density Functional Methods for a Large Set of Organic Molecules. J. Chem. Theory Comput. 2008, 4, 297–306. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-row Atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16; Revision C. 01; Gaussian Inc.: Wallingford, CT, USA, 2016; p. 421. [Google Scholar]
- Yañez, O.; Báez-Grez, R.; Inostroza, D.; Pino-Rios, R.; Rabanal-León, W.A.; Contreras-García, J.; Cardenas, C.; Tiznado, W. Kick–Fukui: A Fukui Function-Guided Method for Molecular Structure Prediction. J. Chem. Inf. Model. 2021, 61, 3955–3963. [Google Scholar] [CrossRef]
- Yañez, O.; Garcia, V.; Garza, J.; Orellana, W.; Vásquez-Espinal, A.; Tiznado, W. (Li6Si5) 2–5: The Smallest Cluster-Assembled Materials Based on Aromatic Si56− Rings. Chem. Eur. J. 2019, 25, 2467–2471. [Google Scholar] [CrossRef]
- Osorio, E.; Ferraro, M.B.; Oña, O.B.; Cardenas, C.; Fuentealba, P.; Tiznado, W. Assembling Small Silicon Clusters Using Criteria of Maximum Matching of the Fukui Functions. J. Chem. Theory Comput. 2011, 7, 3995–4001. [Google Scholar] [CrossRef]
- Yañez, O.; Vásquez-Espinal, A.; Inostroza, D.; Ruiz, L.; Pino-Rios, R.; Tiznado, W. A Fukui Function-guided Genetic Algorithm. Assessment on Structural Prediction of Sin (N = 12–20) Clusters. J. Comput. Chem. 2017, 38, 1668–1677. [Google Scholar] [CrossRef]
- Grigoryan, V.G.; Springborg, M. Structure and Energetics of Ni Clusters with up to 150 Atoms. Chem. Phys. Lett. 2003, 375, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, V.G.; Springborg, M. Structural and Energetic Properties of Nickel Clusters: 2 ≤ N ≤ 150. Phys. Rev. B 2004, 70, 205415. [Google Scholar] [CrossRef] [Green Version]
- Grigoryan, V.; Alamanova, D.; Springborg, M. Structure and Energetics of Nickel, Copper, and Gold Clusters. Eur. Phys. J. At. Mol. Opt. Plasma Phys. Vol. 2005, 34, 187–190. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.-P.; Beratan, D.N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Pino-Rios, R.; Yañez, O.; Inostroza, D.; Ruiz, L.; Cardenas, C.; Fuentealba, P.; Tiznado, W. Proposal of a Simple and Effective Local Reactivity Descriptor through a Topological Analysis of an Orbital-weighted Fukui Function. J. Comput. Chem. 2017, 38, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Sajomsang, W.; Gonil, P.; Saesoo, S. Synthesis and Antibacterial Activity of Methylated N-(4-N,N-Dimethylaminocinnamyl) Chitosan Chloride. Eur. Polym. J. 2009, 45, 2319–2328. [Google Scholar] [CrossRef]
- Jiang, F.; Deng, Y.; Yeh, C.-K.; Sun, Y. Quaternized Chitosans Bind onto Preexisting Biofilms and Eradicate Pre-Attached Microorganisms. J. Mater. Chem. B 2014, 2, 8518–8527. [Google Scholar] [CrossRef] [Green Version]
- Palacio, D.A.; Vásquez, V.; Rivas, B.L. Chromate Ion Removal by Water-Soluble Functionalized Chitosan. Polym. Adv. Technol. 2020, 32, 2690–2699. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption Behavior and Mechanism of Chloramphenicols, Sulfonamides, and Non-Antibiotic Pharmaceuticals on Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2016, 310, 235–245. [Google Scholar] [CrossRef]
- Pavez, P.; Toro-Labbé, A.; Encinas, M.V. Photophysics and Photochemistry of Nalidixic Acid†. Photochem. Photobiol. 2006, 82, 254–261. [Google Scholar] [CrossRef]
- Homayoonfal, M.; Mehrnia, M.R. Amoxicillin Separation from Pharmaceutical Solution by PH Sensitive Nanofiltration Membranes. Sep. Purif. Technol. 2014, 130, 74–83. [Google Scholar] [CrossRef]
- Villamizar-Sarmiento, M.G.; Molina-Soto, E.F.; Guerrero, J.; Shibue, T.; Nishide, H.; Moreno-Villoslada, I.; Oyarzun-Ampuero, F.A. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading. Mol. Pharm. 2019, 16, 2892–2901. [Google Scholar] [CrossRef]
- Malviya, R.; Kr Sharma, P. Poly-Electrolyte Complex: A Novel System for Biomedical Applications and Recent Patents. Recent Pat. Nanotechnol. 2014, 8, 129–141. [Google Scholar] [CrossRef]
- Solis, F.J.; de la Cruz, M.O. Collapse of Flexible Polyelectrolytes in Multivalent Salt Solutions. J. Chem. Phys. 2000, 112, 2030–2035. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zou, S.; Lu, C.; Bai, H.; Mu, H.; Duan, J. Removal and Adsorption Mechanism of Tetracycline and Cefotaxime Contaminants in Water by NiFe2O4-COF-Chitosan-Terephthalaldehyde Nanocomposites Film. Chem. Eng. J. 2020, 382, 123008. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, H.; Hu, C.; Wang, Y.; Wang, Y.; Zhao, C.; Ding, W.; Sun, Q. Structural Design of Magnetic Biosorbents for the Removal of Ciprofloxacin from Water. Bioresour. Technol. 2020, 296, 122288. [Google Scholar] [CrossRef]
- Jawad, A.H.; Abdulhameed, A.S.; Mastuli, M.S. Acid-Factionalized Biomass Material for Methylene Blue Dye Removal: A Comprehensive Adsorption and Mechanism Study. J. Taibah Univ. Sci. 2020, 14, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.; Espinosa, C.; Pooch, F.; Tenhu, H.; del Pizarro, G.C.; Oyarzún, D.P. Poly(N,N-Dimethylaminoethyl Methacrylate) for Removing Chromium (VI) through Polymer-Enhanced Ultrafiltration Technique. React. Funct. Polym. 2018, 127, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.J. Adsorption of Quinolone, Tetracycline, and Penicillin Antibiotics from Aqueous Solution Using Activated Carbons: Review. Environ. Toxicol. Pharmacol. 2017, 50, 1–10. [Google Scholar] [CrossRef]
- Yu, B.; Bai, Y.; Ming, Z.; Yang, H.; Chen, L.; Hu, X.; Feng, S.; Yang, S.-T. Adsorption Behaviors of Tetracycline on Magnetic Graphene Oxide Sponge. Mater. Chem. Phys. 2017, 198, 283–290. [Google Scholar] [CrossRef]
Polymer 1-Antibiotic | |||||
Model | E(polymer–antibiotic) | E(polymer) | E(antibiotic) | ∆Eint | ∆Erelative |
I1-E1 | −424.6326533 | −4624.8794288 | −799.7460253 | −4.52 (−0.0071992) | 16.01 |
I1-E2 | −5424.6581731 | −4624.8870078 | −799.7414170 | −18.67 (−0.0297483) | 0.00 |
I1-E3 | −5424.6310019 | −4624.8758948 | −799.7457499 | −5.87 (−0.0093572) | 17.05 |
I1-E4 | −5424.6401586 | −4624.8861272 | −799.7458002 | −5.17 (−0.0082312) | 11.30 |
Polymer 2–antibiotic | |||||
Model | E(polymer–antibiotic) | E(polymer) | E(antibiotic) | ∆Eint | ∆Erelative |
I2-E1 | −4251.8495288 | −3452.1032797 | −799.7460605 | −0.12 (−0.0001886) | 1.28 |
I2-E2 | −4251.8515671 | −3452.1035662 | −799.7463146 | −1.06 (−0.0016863) | 0.00 |
I2-E3 | −4251.8190859 | −3452.0719998 | −799.7457896 | −0.81 (−0.0012965) | 20.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacio, D.A.; Muñoz, C.; Meléndrez, M.; Rabanal-León, W.A.; Murillo-López, J.A.; Palencia, M.; Rivas, B.L. Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations. Polymers 2023, 15, 3185. https://doi.org/10.3390/polym15153185
Palacio DA, Muñoz C, Meléndrez M, Rabanal-León WA, Murillo-López JA, Palencia M, Rivas BL. Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations. Polymers. 2023; 15(15):3185. https://doi.org/10.3390/polym15153185
Chicago/Turabian StylePalacio, Daniel A., Carla Muñoz, Manuel Meléndrez, Walter A. Rabanal-León, Juliana A. Murillo-López, Manuel Palencia, and Bernabé L. Rivas. 2023. "Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations" Polymers 15, no. 15: 3185. https://doi.org/10.3390/polym15153185
APA StylePalacio, D. A., Muñoz, C., Meléndrez, M., Rabanal-León, W. A., Murillo-López, J. A., Palencia, M., & Rivas, B. L. (2023). Comparative Study of the Removal Efficiency of Nalidixic Acid by Poly[(4-vinylbenzyl)trimethylammonium Chloride] and N-Alkylated Chitosan through the Ultrafiltration Technique and Its Approximation through Theoretical Calculations. Polymers, 15(15), 3185. https://doi.org/10.3390/polym15153185