Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = rural residential design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 10235 KiB  
Article
GIS-Driven Spatial Planning for Resilient Communities: Walkability, Social Cohesion, and Green Infrastructure in Peri-Urban Jordan
by Sara Al-Zghoul and Majd Al-Homoud
Sustainability 2025, 17(14), 6637; https://doi.org/10.3390/su17146637 - 21 Jul 2025
Viewed by 459
Abstract
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle [...] Read more.
Amman’s rapid population growth and sprawling urbanization have resulted in car-centric, fragmented neighborhoods that lack social cohesion and are vulnerable to the impacts of climate change. This study reframes walkability as a climate adaptation strategy, demonstrating how pedestrian-oriented spatial planning can reduce vehicle emissions, mitigate urban heat island effects, and enhance the resilience of green infrastructure in peri-urban contexts. Using Deir Ghbar, a rapidly developing marginal area on Amman’s western edge, as a case study, we combine objective walkability metrics (street connectivity and residential and retail density) with GIS-based spatial regression analysis to examine relationships with residents’ sense of community. Employing a quantitative, correlational research design, we assess walkability using a composite objective walkability index, calculated from the land-use mix, street connectivity, retail density, and residential density. Our results reveal that higher residential density and improved street connectivity significantly strengthen social cohesion, whereas low-density zones reinforce spatial and socioeconomic disparities. Furthermore, the findings highlight the potential of targeted green infrastructure interventions, such as continuous street tree canopies and permeable pavements, to enhance pedestrian comfort and urban ecological functions. By visualizing spatial patterns and correlating built-environment attributes with community outcomes, this research provides actionable insights for policymakers and urban planners. These strategies contribute directly to several Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities and Communities) and SDG 13 (Climate Action), by fostering more inclusive, connected, and climate-resilient neighborhoods. Deir Ghbar emerges as a model for scalable, GIS-driven spatial planning in rural and marginal peri-urban areas throughout Jordan and similar regions facing accelerated urban transitions. By correlating walkability metrics with community outcomes, this study operationalizes SDGs 11 and 13, offering a replicable framework for climate-resilient urban planning in arid regions. Full article
Show Figures

Figure 1

31 pages, 3620 KiB  
Review
Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design
by Han Xie, Diane Pearson, Sarah J. McLaren and David Horne
Land 2025, 14(7), 1447; https://doi.org/10.3390/land14071447 - 11 Jul 2025
Viewed by 389
Abstract
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental [...] Read more.
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental performance remains understudied. This is the case even though their proliferation is leading to an irreversible loss of highly productive soils and accelerating land fragmentation in peri-urban areas. Through undertaking a systematic literature review of relevant studies on LBs in New Zealand and comparable international contexts, this paper aims to quantify existing knowledge and suggest future research needs and management strategies. It focuses on the environmental implications of LB activities in relation to water consumption, food production, energy use, and biodiversity protection. The results indicate that variation in land use practices and environmental awareness among LB owners leads to differing environmental outcomes. LBs offer opportunities for biodiversity conservation and small-scale food production through sustainable practices, while also presenting environmental challenges related to resource consumption, greenhouse gas (GHG) emissions, and loss of productive land for commercial agriculture. Targeted landscape design could help mitigate the environmental pressures associated with these properties while enhancing their potential to deliver ecological and sustainability benefits. The review highlights the need for further evaluation of the environmental sustainability of LBs and emphasises the importance of property design and adaptable planning policies and strategies that balance environmental sustainability, land productivity, and lifestyle owners’ aspirations. It underscores the potential for LBs to contribute positively to environmental management while addressing associated challenges, providing valuable insights for ecological conservation and sustainable land use planning. Full article
Show Figures

Figure 1

26 pages, 4950 KiB  
Article
Study on Comprehensive Benefit Evaluation of Rural Houses with an Additional Sunroom in Cold Areas—A Case Study of Hebei Province, China
by Xinyu Zhu, Tiantian Duan, Yang Yang and Chaohong Wang
Buildings 2025, 15(13), 2343; https://doi.org/10.3390/buildings15132343 - 3 Jul 2025
Viewed by 226
Abstract
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural [...] Read more.
To address the issues of poor thermal performance and high energy consumption in rural dwellings in cold regions of China, this study investigates multi-type energy-efficient retrofitting strategies for rural houses in the Hebei–Tianjin region. By utilizing a two-step cluster analysis method, 458 rural dwellings from 32 villages were classified based on household demographics, architectural features, and energy consumption patterns, identifying three typical categories: pre-1980s adobe dwellings, 1980s–1990s brick–wood structures, and post-1990s brick–concrete houses. Tailored sunspace design strategies were proposed through simulation: low-cost plastic film sunspaces for adobe dwellings (dynamic payback period: 2.8 years; net present value: CNY 2343), 10 mm hollow polycarbonate (PC) panels for brick–wood structures (cost–benefit ratio: 1.72), and high-efficiency broken bridge aluminum Low-e sunspaces for brick–concrete houses (annual natural gas savings: 345.24 m3). Economic analysis confirmed the feasibility of the selected strategies, with positive net present values and cost–benefit ratios exceeding 1. The findings demonstrate that classification-based retrofitting strategies effectively balance energy-saving benefits with economic costs, providing a scientific hierarchical implementation framework for rural residential energy efficiency improvements in cold regions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Co-Optimized Design of Islanded Hybrid Microgrids Using Synergistic AI Techniques: A Case Study for Remote Electrification
by Ramia Ouederni and Innocent E. Davidson
Energies 2025, 18(13), 3456; https://doi.org/10.3390/en18133456 - 1 Jul 2025
Viewed by 488
Abstract
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy [...] Read more.
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy insecurity when harnessed in a hybrid manner. Advances in space solar power systems are recognized to be feasible sources of renewable energy. Their usefulness arises due to advances in satellite and space technology, making valuable space data available for smart grid design in these remote areas. In this case study, an isolated village in Namibia, characterized by high levels of solar irradiation and limited wind availability, is identified. Using NASA data, an autonomous hybrid system incorporating a solar photovoltaic array, a wind turbine, storage batteries, and a backup generator is designed. The local load profile, solar irradiation, and wind speed data were employed to ensure an accurate system model. Using HOMER Pro software V 3.14.2 for system simulation, a more advanced AI optimization was performed utilizing Grey Wolf Optimization and Harris Hawks Optimization, which are two metaheuristic algorithms. The results obtained show that the best performance was obtained with the Grey Wolf Optimization algorithm. This method achieved a minimum energy cost of USD 0.268/kWh. This paper presents the results obtained and demonstrates that advanced optimization techniques can enhance both the hybrid system’s financial cost and energy production efficiency, contributing to a sustainable electricity supply regime in this isolated rural community. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

17 pages, 3695 KiB  
Article
Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China
by Lei Yu, Xuening Han, Songyang Ju, Yuejiao Tao and Xiaolong Xu
Buildings 2025, 15(12), 2050; https://doi.org/10.3390/buildings15122050 - 14 Jun 2025
Viewed by 462
Abstract
In this work, the indoor thermal environment and indoor air quality of rural houses in Northern China were investigated in detail. The current heating situation in rural areas, the causes of indoor air pollution, and the indoor ventilation habits of residents were analyzed. [...] Read more.
In this work, the indoor thermal environment and indoor air quality of rural houses in Northern China were investigated in detail. The current heating situation in rural areas, the causes of indoor air pollution, and the indoor ventilation habits of residents were analyzed. The indoor thermal environment and indoor air quality were improved by upgrading the thermal insulation of the rural housing envelope and installing indoor ventilation systems with heat recovery, leading to an average indoor temperature increase of 6 °C. The Predicted Mean Vote reached approximately 1.0, so the human body heat sensation was more moderate. The air age was greatly reduced, and the indoor air quality was significantly improved. The Predicted Percentage of Dissatisfied dramatically decreased to 15%. Thus, when focusing on heat source renovation in rural areas, priority should be given to improving the energy efficiency of buildings, especially the building envelope insulation performance. Ventilation and air exchange systems with heat recovery are inexpensive and effective, and they are suitable for rural dwellings where the temperatures are not as high as they should be but where the indoor air quality is poor and ventilation is urgently needed. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 984 KiB  
Article
Study on Performance Index of Near-Zero-Energy Consumption Residence in Towns of Southern Jiangsu Province
by Lei Jiang, Lei Zhang, Weidong Lu, Jingjing Xu and Daiwei Luo
Buildings 2025, 15(11), 1922; https://doi.org/10.3390/buildings15111922 - 2 Jun 2025
Viewed by 371
Abstract
This study initially examined the thermal comfort of rural residents in southern Jiangsu, analyzing their tolerance levels and expected temperature ranges during winter and summer. Subsequently, Design Builder 7.02.004 software was utilized to simulate the energy consumption of typical residential buildings. Furthermore, an [...] Read more.
This study initially examined the thermal comfort of rural residents in southern Jiangsu, analyzing their tolerance levels and expected temperature ranges during winter and summer. Subsequently, Design Builder 7.02.004 software was utilized to simulate the energy consumption of typical residential buildings. Furthermore, an orthogonal test method was employed to investigate the significant relationships among seven factors influencing building energy consumption in both winter and summer. These factors include external wall heat transfer coefficient, roof heat transfer coefficient, external window heat transfer coefficient, external window solar heat gain coefficient (SHGC), window-to-wall-area ratio, air tightness, and building orientation. Finally, based on the findings from the thermal comfort study, recommended passive design parameters for near-zero-energy residential buildings in southern Jiangsu were proposed. This provides valuable references for the future construction efforts of such buildings within this region. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

30 pages, 3023 KiB  
Article
Integrated Design as a Strategy for Innovating Native Timber Products and Promoting Sustainable Forest Management
by Alejandra Schueftan, Marjorie Martin, Carlos Buchner, Sol García, Mariela Reyes and Michael Arnett
Buildings 2025, 15(11), 1886; https://doi.org/10.3390/buildings15111886 - 29 May 2025
Viewed by 626
Abstract
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter [...] Read more.
This study explores how integrating design processes into the native timber industry of southern Chile, specifically in the Araucanía and Los Ríos regions, can improve the value chain and promote sustainability. Chile’s native wood sector is constrained by fragmented value chains, underutilised small-diameter logs and limited market confidence. These challenges jeopardise forest sustainability and rural livelihoods, underscoring the imperative to find innovative solutions to reinvigorate the sector. A market gap analysis revealed critical limitations in the current industry, including low supply, limited demand, and weak technological development, especially in producing value-added wood products. The research identified over 417,000 hectares of second-growth roble (Nothofagus obliqua)-raulí (Nothofagus alpina)-coigüe (Nothofagus dombeyi) forests suitable for sustainable management. Interviews with woodworking SMEs showed that 66% already use native timber, yet 46% of the projected volume remains underutilised due to the prevalence of short and thin logs. In response to these challenges, the study developed innovative prototypes such as interior claddings and lattices made from smaller, underutilised logs. These designs were evaluated and validated for use in residential and public buildings, demonstrating their potential to meet new market demands while promoting resource efficiency. The results show that, whilst there is a clear need for better infrastructure, workforce training, and commercial planning to support product adoption, design-driven innovation offers a promising path forward enhancing the industry’s competitiveness. Demonstrating how design-led integration can transform under-used native timber into high-value products, simultaneously driving sustainable forest stewardship and local economic growth. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
Show Figures

Figure 1

27 pages, 8118 KiB  
Article
Assessment of Winter Indoor Humiture and Spatial Optimization of Rural Residential Buildings in Mengda National Nature Reserve, China
by Yuan Kang, Yingying Cang, Jingru Zhang and Shiyuan Zhou
Buildings 2025, 15(8), 1366; https://doi.org/10.3390/buildings15081366 - 19 Apr 2025
Viewed by 360
Abstract
The development of global nature reserves is currently in a rapid growth phase. One of the key challenges in establishing nature reserves is balancing environmental protection with rural residential development within these areas, where housing plays a crucial role in the built environment. [...] Read more.
The development of global nature reserves is currently in a rapid growth phase. One of the key challenges in establishing nature reserves is balancing environmental protection with rural residential development within these areas, where housing plays a crucial role in the built environment. Successful residential architecture in nature reserves typically meets residents’ diverse needs and environmental protection requirements by considering regional ecology, culture, economic conditions, natural environment, indoor thermal comfort, and energy consumption. This study examines rural residential buildings in the Mengda National Nature Reserve (MNNR) under cold climate conditions in Western China. Through surveys, architectural mapping, and thermal–humidity environment assessment of typical residential buildings across multiple rural communities within the nature reserve, this research explores possibilities for improving indoor thermal comfort in nature reserve residential buildings. Combined with local climate adaptability and architectural design characteristics, this study proposes rational spatial improvement strategies. This study explores climate-adaptive design in the MNNR, integrating passive solar energy and sustainable heating. It proposes spatial strategies to reduce energy use and enhance thermal comfort. The research findings provide a valuable reference for the spatial optimisation of rural residential construction in nature reserves under similar climatic conditions. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 7694 KiB  
Article
From Traditional Settlements to Arrival Cities: A Study on Contemporary Residential Patterns in Chinese Siheyuan
by Mengying Wang, Xin Xu, Yingtao Qi and Dingqing Zhang
Buildings 2025, 15(8), 1216; https://doi.org/10.3390/buildings15081216 - 8 Apr 2025
Viewed by 702
Abstract
With the rapid expansion of Chinese cities, traditional siheyuan in some old urban areas and historic districts have gradually transformed into overcrowded courtyard tenements inhabited primarily by rural migrants. Multiple families reside together in one siheyuan, creating a housing model akin to “shared [...] Read more.
With the rapid expansion of Chinese cities, traditional siheyuan in some old urban areas and historic districts have gradually transformed into overcrowded courtyard tenements inhabited primarily by rural migrants. Multiple families reside together in one siheyuan, creating a housing model akin to “shared housing”. Due to the complex relationship between property rights holders and users, coupled with the absence of a unified management and supervision system, siheyuan residents are confronted with the predicament of aging buildings, backward infrastructure, and poor living conditions. Finding a means of improving living conditions while maintaining the existing settlement style and population structure is an issue that demands urgent resolution. This study focuses on Mizhi, an ancient city in Shaanxi Province, China. Through the investigation and mapping of 31 typical siheyuan and in-depth, semi-structured interviews with 160 families, it reveals the property rights division, current spatial usage, and future demands of the residents of traditional settlements dominated by siheyuan and proposes suggestions for their renewal. This study finds that siheyuan can be categorized into three types based on property rights, that the primary motivation for migration is to access quality educational resources, and that the insufficiency of per capita facilities is the primary source of inconvenience in residents’ lives. Future siheyuan renewal efforts should adopt a multi-stakeholder framework that integrates the government, urban planners, and residents. Improving the residential environment requires a dual strategy: optimizing spatial design and strengthening policy management. This research provides fundamental data for the protection and renewal of siheyuan and has practical reference value for formulating future settlement development strategies. Full article
Show Figures

Figure 1

29 pages, 21754 KiB  
Article
Multi-Objective Optimization-Driven Research on Rural Residential Building Design in Inner Mongolia Region
by Dezhi Zou, Cheng Sun and Denghui Gao
Energies 2025, 18(7), 1867; https://doi.org/10.3390/en18071867 - 7 Apr 2025
Viewed by 751
Abstract
According to the China Building Energy Consumption and Carbon Emissions Research Report (2023), the construction industry accounts for 36.3% of total societal energy consumption, with residential buildings contributing significantly due to their extensive coverage and high operational frequency. Addressing energy efficiency and carbon [...] Read more.
According to the China Building Energy Consumption and Carbon Emissions Research Report (2023), the construction industry accounts for 36.3% of total societal energy consumption, with residential buildings contributing significantly due to their extensive coverage and high operational frequency. Addressing energy efficiency and carbon reduction in this sector is critical for achieving national sustainability goals. This study proposes an optimization methodology for rural dwellings in Inner Mongolia, focusing on reducing energy demand while enhancing indoor thermal comfort and daylight performance. A parametric model was developed using Grasshopper, with energy consumption, thermal comfort (PPD), and Useful Daylight Illuminance (UDI) simulated through Ladybug and Honeybee tools. Key parameters analyzed include building morphology, envelope structures, and indoor thermal environments, followed by systematic optimization of building components. To refine multi-objective inputs, a specialized wall database was established, enabling categorization and dynamic visualization of material properties and construction methods. Comparative analysis demonstrated a 22.56% reduction in energy consumption, 19.26% decrease in occupant thermal dissatisfaction (PPD), and 25.44% improvement in UDI values post-optimization. The proposed framework provides a scientifically validated approach for improving energy efficiency and environmental adaptability in cold-climate rural architecture. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

23 pages, 6146 KiB  
Article
Design and Implementation of a Low-Pressure Briquetting Machine for the Use of Pinus spp. Wood Residues: An Approach to Appropriate Rural Technology
by Mario Morales-Máximo, Víctor Manuel Ruíz-García, José Guadalupe Rutiaga-Quiñones and Luis Bernado López-Sosa
Clean Technol. 2025, 7(1), 22; https://doi.org/10.3390/cleantechnol7010022 - 6 Mar 2025
Viewed by 1405
Abstract
This research analyzes the technical feasibility and implementation of an appropriate technology for the production of briquettes from Pinus spp. waste (sawdust and shavings) in a rural community in Michoacán, Mexico. The results indicate that local small-scale briquette production in the Pichátaro community [...] Read more.
This research analyzes the technical feasibility and implementation of an appropriate technology for the production of briquettes from Pinus spp. waste (sawdust and shavings) in a rural community in Michoacán, Mexico. The results indicate that local small-scale briquette production in the Pichátaro community has the potential to boost a local economy based on the manufacturing and marketing of densified solid biofuels. The design of the manual briquetting machine was developed through a participatory approach with community users. Structural simplicity and locally accessible maintenance were prioritized, the aspects that were addressed little in previous studies. The machine allows for the production of briquettes using a low-cost mixture composed of sawdust and Pinus spp. shavings, corn starch, and water. Based on local conditions and production needs, parameters such as reduced processing times and simplified manufacturing methods were identified as essential to establishing an efficient regional production and supply chain. Furthermore, the valorization of solid waste through the production of alternative biofuels contributes to the diversification of the energy matrix in rural residential sectors and small industries in communities in Mexico. The estimated cost of the machine is USD 75.44, and most of its components are easily replaceable, which favors its sustainability and prolonged use. This study demonstrates that the implementation of a low-pressure briquette system based on appropriate rural technologies represents a viable strategy for the use of wood waste and the promotion of sustainable energy solutions in rural communities. Full article
Show Figures

Graphical abstract

35 pages, 31242 KiB  
Article
A Typological Analysis Method for Rural Dwellings: Architectural Features, Historical Transformations, and Landscape Integration: The Case of “Capo Due Rami”, Italy
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Anna Irene Del Monaco and Alvaro Marucci
Land 2025, 14(2), 374; https://doi.org/10.3390/land14020374 - 11 Feb 2025
Cited by 5 | Viewed by 1065
Abstract
Focusing on the agricultural area of “Capo Due Rami” in Rome, this research aims to interpret the architectural features of the rural dwellings through a typological analysis. Drawing on data collected from direct surveys, historical records, cartographic materials, and documentary sources, the morphological [...] Read more.
Focusing on the agricultural area of “Capo Due Rami” in Rome, this research aims to interpret the architectural features of the rural dwellings through a typological analysis. Drawing on data collected from direct surveys, historical records, cartographic materials, and documentary sources, the morphological and settlement evaluation of agricultural constructions refines traditional methods and techniques used in the analysis of residential models. Using specifically designed observation sheets, the study highlights how the reclamation and drainage works carried out predominantly between the 19th and 20th centuries in the area have influenced the typology of buildings and their relationship with the agricultural environment. The findings underscore that the morphotype of the dwellings in “Capo Due Rami” derives from the practical demands of agriculture and the functional requirements of rural life, incorporating targeted architectural solutions to address sanitary and environmental concerns. The observation sheets were designed to integrate qualitative indicators, drawing on previous investigative experiences in typological analysis. While adhering to established methodologies, they have been modified to reflect the cartographic and documentary data specific to “Capo Due Rami”. This approach has made it possible to highlight the distinctive features of the area, such as the proximity between buildings and reclamation canals. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

25 pages, 5134 KiB  
Article
Evaluation and Analysis of Passive Energy Saving Renovation Measures for Rural Residential Buildings in Cold Regions: A Case Study in Tongchuan, China
by Ping Cao, Jiawei Wang, Dinglei Huang, Zhi Cao and Danyang Li
Sustainability 2025, 17(2), 540; https://doi.org/10.3390/su17020540 - 12 Jan 2025
Cited by 1 | Viewed by 971
Abstract
Energy-saving renovation of rural residences is an effective means of promoting sustainable rural development. This study focuses on a single-story rural residential building located in Tongchuan City, Shaanxi Province, China (a cold region), as a case study. Retrofits were conducted on the exterior [...] Read more.
Energy-saving renovation of rural residences is an effective means of promoting sustainable rural development. This study focuses on a single-story rural residential building located in Tongchuan City, Shaanxi Province, China (a cold region), as a case study. Retrofits were conducted on the exterior windows, roof, and exterior walls, with the addition of a sunroom. Using life cycle assessments (LCAs) and orthogonal experimental methods combined with value engineering principles, we calculated various indicators including the energy efficiency improvement rate, implied carbon emissions, proportion of implied carbon emissions, carbon footprint, carbon reduction rate, carbon payback period, and investment payback period. The impact of traditional retrofitting measures on these indicators was analyzed. The results indicate that carbon emissions from the production of building materials are a key concern among the embodied carbon emissions from the retrofits, while transportation, construction, and demolition contribute minimally. Changes in the depth of the sunroom had the most significant impact on comprehensive indicators, followed by changes to the roof. After retrofitting, the carbon reduction rate was underestimated by 9.35% to 12.02% due to embodied carbon emissions. The carbon payback period for all schemes is estimated to be between 3.27 and 4.21 years. Based on current market conditions, developing corresponding carbon economics can enhance the economic viability of the project. This approach extends the investment payback period by more than 7% while also helping to narrow the income gap between urban and rural residents to some extent. Overall, the environmental impact assessment of the alternative schemes promotes sustainable rural development and provides scientific and effective guidance for the construction of project decision-making evaluation systems and architectural designers. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

23 pages, 8211 KiB  
Article
An Exploratory Study on Spatial Governance Toward Urban–Rural Integration: Theoretical Analysis with Case Demonstration
by Lin Tan, Qinyu Cui, Lan Chen and Lan Wang
Land 2024, 13(12), 2035; https://doi.org/10.3390/land13122035 - 28 Nov 2024
Cited by 3 | Viewed by 3814
Abstract
Establishing a territorial space governance system that supports URI is essential for modernizing national governance capacity and systems. It also serves as a critical strategic measure to promote sustainable development in both urban and rural areas. The current research has not adequately explored [...] Read more.
Establishing a territorial space governance system that supports URI is essential for modernizing national governance capacity and systems. It also serves as a critical strategic measure to promote sustainable development in both urban and rural areas. The current research has not adequately explored the theoretical mechanisms and pathways of territorial spatial governance, resulting in challenges in providing the necessary theoretical foundations and practical guidance for advancing URI. The methods used in this study include theoretical analysis, logical deduction, and field research. The findings are as follows: (1) The key characteristics of TSG are the synergy of governance entities, the comprehensiveness of governance objects, the diversification of governance methods, and the systematization of governance content. Territorial spatial governance, driven by multiple stakeholders, influences the structure and functional arrangement of urban and rural territorial systems through means such as spatial planning, rights allocation, and top-level institutional design. (2) The essential process and core driving path to promote URI involve the interaction of urban and rural elements, the complementarity of their functions, and the reciprocity of their values, all guided by territorial space governance. (3) In the case study area, TSG facilitates the construction of an orderly element circulation channel, coordinating land circulation and capitalization, promoting local urbanization, and aligning residential with industrial development. This results in a complementary urban–rural functional structure, multifunctional rural development, and an urban–-rural model characterized by stable interest relationships and balanced service facility layouts. Full article
Show Figures

Figure 1

17 pages, 4260 KiB  
Article
Ecological Benefit Optimization and Design of Rural Residential Roofs Based on the “Dual Carbon” Goal
by Zhixiu Li, Yuyan Wang, Yihan Wang and Yangyang Wei
Buildings 2024, 14(12), 3715; https://doi.org/10.3390/buildings14123715 - 21 Nov 2024
Cited by 1 | Viewed by 1136
Abstract
With the continuous advancement of urbanization, rural areas are facing increasingly severe environmental pollution, excessive energy consumption, and high carbonization resulting from both daily living and production activities. This study, which is aligned with the low-carbon objectives of “carbon sequestration increase and emissions [...] Read more.
With the continuous advancement of urbanization, rural areas are facing increasingly severe environmental pollution, excessive energy consumption, and high carbonization resulting from both daily living and production activities. This study, which is aligned with the low-carbon objectives of “carbon sequestration increase and emissions reduction”, explores the optimization strategies for ecological benefits through the combined application of rooftop photovoltaics and rooftop greening in rural residences. Three design approaches are proposed for integrating rooftop photovoltaics with green roofing: singular arrangement, distributed arrangement, and combined arrangement. Using PVsyst (7.4.7) software, this study simulates the effects of roof inclination, system output, and installation formats on the performance of photovoltaic systems, providing a comprehensive analysis of carbon reduction benefits in ecological rooftop construction. A rural area in East China was selected as a sample for adaptive exploration of ecological roof applications. The results of our research indicate that the optimal tilt angle for rooftop photovoltaic (PV) installations in the sample rural area is 17°. Based on simulations combining the region’s annual solar path and the solar parameters on the winter solstice, the minimum spacing for PV arrays is calculated to be 1.925 m. The carbon reduction benefits of the three arrangement methods are ranked, from highest to lowest, as follows: combined arrangement 14530.470tCO2e > singular arrangement 11950.761tCO2e > distributed arrangement 7444.819tCO2e. The integrated design of rooftop PV systems and green roofing not only meets the energy demands of buildings but also significantly reduces their carbon footprint, achieving the dual objectives of energy conservation and sustainable development. Therefore, the combined application of rooftop PV systems and green roofing in rural spaces can provide data support and strategic guidance for advancing green transformation and ecological civilization in East China, offering significant practical value for promoting low-carbon rural development. Full article
(This article belongs to the Special Issue Urban Sustainability: Sustainable Housing and Communities)
Show Figures

Figure 1

Back to TopTop