Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China
Abstract
1. Introduction
2. Materials and Methods
2.1. Research on Ventilation and Air Exchange Technology for Rural Dwellings
2.2. Case Design
3. Results and Discussion
3.1. Summary of the Research Questionnaire Results
3.1.1. Characteristics of Energy Consumption
3.1.2. Indoor Pollution Characteristics
3.1.3. Rural People’s Work and Rest
3.1.4. Indoor Air Quality Satisfaction Survey
3.1.5. Research on Indoor Ventilation Habits
3.2. Field Tests of Ventilation and Air Exchange in Rural Dwellings
3.3. Indoor Environment Simulation Under Winter Ventilated Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- China Building Energy Consumption Research Report. 2020. Available online: https://www.cabee.org/site/content/24021.html (accessed on 19 May 2025).
- Wang, Y.; Guo, L.; Ma, Y.; Han, X.; Xing, J.; Miao, W.; Wang, H. Study on operation optimization of decentralized integrated energy system in northern rural areas based on multi-objective. Energy Rep. 2022, 8, 3063–3084. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, L.; Yang, W.; Hao, X.; Li, C.-Q. A review on research and development of passive building in China. J. Build. Eng. 2021, 42, 102509. [Google Scholar] [CrossRef]
- Gao, Y.; He, F.; Meng, X.; Wang, Z.; Zhang, M.; Yu, H.; Gao, W. Thermal behavior analysis of hollow bricks filled with phase-change material (PCM). J. Build. Eng. 2020, 31, 101447. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y.; Liu, Z.; Du, J.; Xu, L.; Zhang, G.; Shi, L. Trombe wall for a residential building in Sichuan-Tibet alpine valley—A case study. Renew. Energy 2020, 156, 31–46. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, T.; Liu, Z.; Hou, C.; Fukuda, H. A study on influencing factors of optimum insulation thickness of exterior walls for rural traditional dwellings in northeast of Sichuan hills, China. Case Stud. Constr. Mater. 2022, 16, e01033. [Google Scholar] [CrossRef]
- Bai, C.; Zhan, J.; Wang, H.; Yang, Z.; Liu, H.; Liu, W.; Wang, C.; Chu, X.; Teng, Y. Heating choices and residential willingness to pay for clean heating: Evidence from a household survey in rural China. Energy Policy 2023, 178, 113617. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Wu, F. Does energy transition improve air quality? Evidence derived from China’s Winter Clean Heating Pilot (WCHP) project. Energy 2020, 206, 118130. [Google Scholar] [CrossRef]
- Figueroa-Lopez, A.; Arias, A.; Oregi, X.; Rodríguez, I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. J. Build. Eng. 2021, 43, 102607. [Google Scholar] [CrossRef]
- Zoure, A.N.; Genovese, P.V. Implementing natural ventilation and daylighting strategies for thermal comfort and energy efficiency in office buildings in Burkina Faso. Energy Rep. 2023, 9, 3319–3342. [Google Scholar] [CrossRef]
- Guo, W.; Liang, S.; He, Y.; Li, W.; Xiong, B.; Wen, H. Combining EnergyPlus and CFD to predict and optimize the passive ventilation mode of medium-sized gymnasium in subtropical regions. Build. Environ. 2022, r207 Pt A, 108420. [Google Scholar] [CrossRef]
- Wen, Y.; Lau, S.-K.; Leng, J.; Zhou, K.; Cao, S.-J. Passive ventilation for sustainable underground environments from traditional underground buildings and modern multiscale spaces. Tunn. Undergr. Space Technol. 2023, 134, 105002. [Google Scholar] [CrossRef]
- Li, J.; Calautit, J.K.; Jimenez-Bescos, C. Experiment and numerical investigation of a novel flap fin louver windcatcher for multi-directional natural ventilation and passive technology integration. Build. Environ. 2023, 242, 110429. [Google Scholar] [CrossRef]
- Zhang, T.T.; Zhao, Y.; Wang, S.; Wang, J. A passive pivoted window for stabilizing the natural ventilation rate. Energy Build. 2022, 267, 112151. [Google Scholar] [CrossRef]
- Liu, M.; Jimenez-Bescos, C.; Calautit, J.K. Passive heat recovery wind tower: Assessing the overheating risk in summertime and ventilation heat loss reduction in wintertime. Sustain. Energy Technol. Assess. 2023, 58, 103310. [Google Scholar] [CrossRef]
- Liu, M.; Jimenez-Bescos, C.; Calautit, J.K. Performance evaluation of wind tower natural ventilation with passive solid tube heat recovery based on CO2 levels. J. Build. Eng. 2023, 72, 106457. [Google Scholar] [CrossRef]
- Hussein, M.; Maghrabie Abdelkareem, M.A.; Elsaid, K.; Sayed, E.T.; Radwan, A.; Rezk, H.; Wilberforce, T.; Abo-Khalil, A.G.; Olabi, A.G. A review of solar chimney for natural ventilation of residential and non-residential buildings. Sustain. Energy Technol. Assess. 2022, 52 Pt B, 102082. [Google Scholar]
- Fine, J.P.; Zhang, S.; Li, Y.; Touchie, M.F. Analysis of solar chimney ventilation systems in high-rise residential buildings using parallel flow networks. Build. Environ. 2022, 218, 109096. [Google Scholar] [CrossRef]
- Prabhakar, M.; Saffari, M.; de Gracia, A.; Cabeza, L.F. Improving the energy efficiency of passive PCM system using controlled natural ventilation. Energy Build. 2020, 228, 110483. [Google Scholar] [CrossRef]
- Piselli, C.; Prabhakar, M.; de Gracia, A.; Saffari, M.; Pisello, A.L.; Cabeza, L.F. Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renew. Energy 2020, 162, 171–181. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, J. Operating behavior and corresponding performance of mechanical ventilation systems in Chinese residential buildings. Build. Environ. 2020, 170, 106600. [Google Scholar] [CrossRef]
- Maask, V.; Rosin, A.; Korõtko, T.; Thalfeldt, M.; Syri, S.; Ahmadiahangar, R. Aggregation ready flexibility management methods for mechanical ventilation systems in buildings. Energy Build. 2023, 296, 113369. [Google Scholar] [CrossRef]
- Fernandes, M.S.; Rodrigues, E.; Gaspar, A.R.; Costa, J.J.; Gomes, Á. The contribution of ventilation on the energy performance of small residential buildings in the Mediterranean region. Energy 2020, 191, 116577. [Google Scholar] [CrossRef]
- Lai, D.; Qi, Y.; Liu, J.; Dai, X.; Zhao, L.; Wei, S. Ventilation behavior in residential buildings with mechanical ventilation systems across different climate zones in China. Build. Environ. 2018, 143, 679–690. [Google Scholar] [CrossRef]
- Park, S.; Lee, S.; Yeo, M.-S.; Rim, D. Performance of a heat recovery ventilation system for controlling human exposure to airborne particles in a residential building. Build. Environ. 2023, 239, 110412. [Google Scholar] [CrossRef]
- Bai, H.Y.; Liu, P.; Alonso, M.J.; Mathisen, H.M. Mathisen. A review of heat recovery technologies and their frost control for residential building ventilation in cold climate regions. Renew. Sustain. Energy Rev. 2022, 162, 112417. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Q. Study of natural ventilation in buildings by large eddy simulation. J. Wind Eng. Ind. Aerodyn. 2001, 89, 1155–1178. [Google Scholar] [CrossRef]
- Ma, H.; Tu, Y.; Yang, X.; Yang, Z.; Liang, C. Influence of tunnel ventilation on the indoor thermal environment of a poultry building in winter. Build. Environ. 2022, 223, 109448. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Ramos, J.C.; Beiza, M.; Gastelurrutia, J.; Rivas, A.; Antón, R.; Larraona, G.S.; de Miguel, I. Numerical modelling of the natural ventilation of underground transformer substations. Appl. Therm. Eng. 2013, 51, 852–863. [Google Scholar] [CrossRef]
- Bidarmaghz, A.; Makasis, N.; Fei, W.; Narsilio, G.A. An efficient and sustainable approach for cooling underground substations. Tunn. Undergr. Space Technol. 2021, 113, 103986. [Google Scholar] [CrossRef]
- Dai, H.; Zhu, C.; Liu, Y. Thermal performance of double-layer porous-microchannel with phase change slurry. Appl. Therm. Eng. 2022, 211, 118457. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Yang, P.; Liu, Y.; Zhu, C.; Wang, L.; Zhong, H. Optimizing air inlet designs for enhanced natural ventilation in indoor substations: A numerical modelling and CFD simulation study. Case Stud. Therm. Eng. 2024, 59, 104408. [Google Scholar] [CrossRef]
- Oosthuizen, P.H.; Oosthuizen, P.H.; Naylor, D. An Introduction to Convective Heat Transfer Analysis; McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- Hunt, J.C.R. Mathematical Models of Turbulence. By B. E. LAUNDER and D. B. SPALDING. Academic Press, 1972. 169 pp. £2.50 or $7.50. J. Fluid Mech. 1973, 57, 826–828. [Google Scholar] [CrossRef]
- Zune, M.; Tubelo, R.; Rodrigues, L.; Gillott, M. Improving building thermal performance through an integration of Passivhaus envelope and shading in a tropical climate. Energy Build. 2021, 253, 111521. [Google Scholar] [CrossRef]
- GB/T 51350-2019; Technical Standard for Nearly Zero Energy Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Building Services. Available online: https://passipedia.org/planning/building_services (accessed on 19 May 2025).
- Shen, H.-Y.; Zhang, Y.; Lu, X.-Y.; Chen, L.-B.; Zhu, N.-Z.; Xiao, H.; Yang, G.; Huang, C.; Dai, X.; Ye, J.; et al. How indoor decoration materials contribute to phthalates pollution: Uncovering occurrences, sources, and their implications for environmental burdens in households. J. Hazard. Mater. 2025, 490, 137719. [Google Scholar] [CrossRef]
- Cerri, S.; Maskrey, A.; Peppard, E. Retaining a healthy indoor environment in on-demand mixed-mode classrooms. Dev. Built Environ. 2020, 4, 100031. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2020.
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- Karyono, K.; Abdullah, B.M.; Cotgrave, A.J.; Bras, A. The adaptive thermal comfort review from the 1920s, the present, and the future. Dev. Built Environ. 2020, 4, 100032. [Google Scholar] [CrossRef]
Classification of Issues | Question Options | ||
---|---|---|---|
Building structure | Wall construction | Building floors | North–south transparency |
Heating methods | Firebed/fire wall/fireplace | Heater/underfloor heating | Heat pump/solar water heater |
Cooking energy | Straw/firewood | Gas | Biogas |
Indoor pollution | Smoking | Home renovation | Mold on interior walls |
Ventilation behavior | Window opening time | Length of stay at home | —— |
Indoor air quality satisfaction | Very satisfactory | Satisfactory | Unsatisfactory |
Forms of ventilation | Open window/skylight | Exhaust fan/ventilation fan | Fresh air ventilator |
Test Instruments | Test Content | Test Range | Test Accuracy |
---|---|---|---|
Temperature and humidity self-recording instrument | Indoor and outdoor temperature and relative humidity | Temperature: (−40 °C~+85 °C); Relative humidity: 0~100% RH | Temperature: ±0.5 °C Relative humidity: ±3% RH |
Multiparameter ventilation tester | Wind speed | 0~50 m/s | ±3% (±0.15 m/s) |
Indoor air quality tester | CO2 | 0~5000 ppm | ±3% (3 ppm) |
Model Category | Number of Individuals | Size (m) | Model Type | Boundary Type | Value |
---|---|---|---|---|---|
Room | 1 | 10.8 × 8.4 × 3.3 | Room | Thermal insulation | —— |
Window | 6 | 1.2 × 1.5 | Walls | Constant temperature | Winter: −19 °C Summer: 31.4 °C Transition season: 10 |
Residents | 3 | 0.4 × 0.25 × 1.1 | Blocks | Constant heat flow | 75 W/person |
Fluorescent light | 7 | 0.8 × 0.8 × 0.2 | Blocks | Constant heat flow | 60 W/lamp |
Firebed | 2 | 2.5 × 2 × 0.6 | Blocks | Constant heat flow | 6000 W/pcs |
Air supply vents | 1 | 1 × 1 | Openings | - | Design variable |
Return air vent | 1 | 1 × 1 | Vents | Free-flowing | Design variable |
Equipment Parameters | PPD-350 | PPD-550 |
---|---|---|
New (exhaust) air volume (m3/h) | 350 | 550 |
Exhaust air pressure (Pa) | 150 | 120 |
Fresh air inlet air pressure (Pa) | 150 | 120 |
Enthalpy efficiency (%) | Cooling > 50; Heating > 55 | Cooling > 50; Heating > 55 |
Temperature efficiency (%) | Cooling60; Heating65 | Cooling60; Heating65 |
Power supply | AC 220 V/50 Hz | AC 220 V/50 Hz |
Input power (W) | 110 | 140 |
Noise (dB) | 45 | 44 |
Thermal efficiency (%) | 73 | 70 |
Indoor Pollution Questionnaire | Yes | No |
---|---|---|
Smoking behavior | 72% | 28% |
Interior decoration | 74% | 26% |
Indoor wall mold conditions | 31% | 69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Han, X.; Ju, S.; Tao, Y.; Xu, X. Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China. Buildings 2025, 15, 2050. https://doi.org/10.3390/buildings15122050
Yu L, Han X, Ju S, Tao Y, Xu X. Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China. Buildings. 2025; 15(12):2050. https://doi.org/10.3390/buildings15122050
Chicago/Turabian StyleYu, Lei, Xuening Han, Songyang Ju, Yuejiao Tao, and Xiaolong Xu. 2025. "Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China" Buildings 15, no. 12: 2050. https://doi.org/10.3390/buildings15122050
APA StyleYu, L., Han, X., Ju, S., Tao, Y., & Xu, X. (2025). Optimization Design of Indoor Thermal Environment and Air Quality in Rural Residential Buildings in Northern China. Buildings, 15(12), 2050. https://doi.org/10.3390/buildings15122050