Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = rotor magnetic bearings system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7459 KiB  
Article
Design and Analysis of a Bearing-Integrated Rotary Transformer
by Xiaoou Fan, Shaohua Ma, Dezhi Chen and Chaoqun Liu
Energies 2025, 18(15), 3991; https://doi.org/10.3390/en18153991 - 25 Jul 2025
Viewed by 232
Abstract
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure [...] Read more.
In this paper, a bearing- and transformer-integrated electric excitation synchronous motor excitation system (bearing-integrated rotary transformer) is proposed to support the motor rotor and energy transmission of excitation systems. Firstly, the working principle of the bearing-integrated rotary transformer is discussed. Secondly, the structure and electromagnetism of the bearing-integrated rotary transformer are designed through the processes and principles of pole slot matching, stator/rotor size, winding, and the magnetic regulating needle. Thirdly, the bearing-integrated rotary transformer undergoes an electromagnetic–thermal simulation. Finally, a prototype of the bearing-integrated rotary transformer is manufactured, and the electromagnetic and transmission characteristics are tested, verifying the correctness of the proposed scheme and providing additional ideas for the improvement of synchronous motor excitation systems. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

19 pages, 3193 KiB  
Article
Theoretical Analysis and Research on Support Reconstruction Control of Magnetic Bearing with Redundant Structure
by Huaqiang Sun, Zhiqin Liang and Baixin Cheng
Sensors 2025, 25(14), 4517; https://doi.org/10.3390/s25144517 - 21 Jul 2025
Viewed by 271
Abstract
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how [...] Read more.
At present, the redundant structures are one of the most effective methods for solving magnetic levitation bearing coil failure. Coil failure causes residual effective magnetic poles to form different support structures and even asymmetrical structures. For the magnetic bearing with redundant structures, how to construct the electromagnetic force (EMF) that occurs under different support structures to achieve support reconstruction is the key to realizing fault tolerance control. To reveal the support reconstruction mechanism of magnetic bearing with a redundant structure, firstly, this paper takes a single-degree-of-freedom magnetic suspension body as an example to conduct a linearization theory analysis of the offset current, clarifying the concept of the current distribution matrix (CDM) and its function; then, the nonlinear EMF mode of magnetic bearing with an eight-pole is constructed, and it is linearized by using the theory of bias current linearization. Furthermore, the conditions of no coils fail, the 8th coil fails, and the 6–8th coils fail are considered, and, with the maximum principle function of EMF, the corresponding current matrices are obtained. Meanwhile, based on the CDM, the corresponding magnetic flux densities were calculated, proving that EMF reconstruction can be achieved under the three support structures. Finally, with the CDM and position control law, a fault-tolerant control system was constructed, and the simulation of the magnetic bearing with a redundant structure was carried out. The simulation results reveal the mechanism of support reconstruction with three aspects of rotor displacement, the value and direction of currents that occur in each coil. The simulation results show that, in the 8-pole magnetic bearing, this study can achieve support reconstruction in the case of faults in up to two coils. Under the three working conditions of wireless no coil failure, the 8th coil fails and the 6–8th coils fail, the current distribution strategy was adjusted through the CDM. The instantaneous displacement disturbance during the support reconstruction process was less than 0.28 μm, and the EMF after reconstruction was basically consistent with the expected value. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

16 pages, 4741 KiB  
Article
Plug-In Repetitive Control for Magnetic Bearings Based on Equivalent-Input-Disturbance
by Gang Huang, Bolong Liu, Songlin Yuan and Xinyi Shi
Eng 2025, 6(7), 141; https://doi.org/10.3390/eng6070141 - 28 Jun 2025
Viewed by 212
Abstract
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect [...] Read more.
The radial magnetic bearing system is an open-loop, unstable, strong nonlinear system with a high rotor speed, predisposition to jitter, and poor interference immunity. The system is subjected to the main interference generated by gravity, and rotor imbalance and sensor runout seriously affect the system’s rotor position control performance. A plug-in repetitive control method based on equivalent-input-disturbance (EID) is presented to address the issue of decreased control accuracy of the magnetic bearing system caused by disturbances from gravity, rotor imbalance, and sensor runout. First, a linearized model of the magnetic bearing rotor containing parameter fluctuations due to the eddy current effect and temperature rise effect is established, and a plug-in repetitive controller (PRC) is designed to enhance the rejection effect of periodic disturbances. Next, an EID system is introduced, and a Luenberger observer is used to estimate the state variables and disturbances of the system. The estimates of the EID are then used for feedforward compensation to address the issue of large overshoot in the system. Finally, simulations are conducted for comparison with the PID control method and PRC control method. The plug-in repetitive controller method assessed in this paper improves control performance by an average of 87.9% and 57.7% and reduces the amount of over-shooting by an average of 66.5% under various classes of disturbances, which proves the efficiency of the control method combining a plug-in repetitive controller with the EID theory. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 5751 KiB  
Article
Gyro-System for Guidance with Magnetically Suspended Gyroscope, Using Control Laws Based on Dynamic Inversion
by Romulus Lungu, Constantin-Adrian Mihai and Alexandru-Nicolae Tudosie
Actuators 2025, 14(7), 316; https://doi.org/10.3390/act14070316 - 25 Jun 2025
Viewed by 318
Abstract
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis [...] Read more.
The authors have designed a gyro-system for orientation (guidance) and stabilization, with two gimbals and a rotor in magnetic suspension (AMB—Active Magnetic Bearing) usable for self-guided rockets. The gyro-system (DGMSGG—double gimbal magnetic suspension gyro-system for guidance) orients and stabilizes the target coordinator’s axis (CT) and, at the same time, the AMB–rotor’s axis so that they overlap the guidance line (the target line). DGMSGG consists of two decoupled systems: one for canceling the AMB–rotor translations along the precession axes (induced by external disturbing forces), the other for canceling the AMB–rotor rotations relative to the CT-axis (induced by external disturbing moments) and, at the same time, for controlling the gimbals’ rotations, so that the AMB–rotor’s axis overlaps the guidance line. The nonlinear DGMSGG model is decomposed into two sub-models: one for the AMB–rotor’s translation, the other for the AMB–rotor’s and gimbals’ rotation. The second sub-model is described first by nonlinear state equations. This model is reduced to a second order nonlinear matrix—vector form with respect to the output vector. The output vector consists of the rotation angles of the AMB–rotor and the rotation angles of the gimbals. For this purpose, a differential geometry method, based on the use of the output vector’s gradient with respect to the nonlinear state functions, i.e., based on Lie derivatives, is used. This equation highlights the relative degree (equal to 2) with respect to the variables of the output vector and allows for the use of the dynamic inversion method in the design of stabilization and guidance controllers (of P.I.D.- and PD-types), as well as in the design of the related linear state observers. The controller of the subsystem intended for AMB–rotor’s translations control is chosen as P.I.D.-type, which leads to the cancellation of both its translations and its translation speeds. The theoretical results are validated through numerical simulations, using Simulink/Matlab models. Full article
Show Figures

Figure 1

21 pages, 3324 KiB  
Article
The Influence of Axial-Bearing Position of Active Magnetic Suspension Flywheel Energy Storage System on Vibration Characteristics of Flywheel Rotor
by Lei Wang, Tielei Li and Zhengyi Ren
Actuators 2025, 14(6), 290; https://doi.org/10.3390/act14060290 - 13 Jun 2025
Viewed by 394
Abstract
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the [...] Read more.
This study introduces a flywheel rotor support structure for an active magnetic suspension flywheel energy storage system. In this structure, there is an axial offset between the axial-bearing position and the mass-center of the flywheel rotor, which affects the tilting rotation of the flywheel rotor and which causes the coupling between its tilting rotation and radial motion. Therefore, the influence of the bearing position on the vibration characteristics of the flywheel rotor is explored in this paper. The tilting rotation constraint of the flywheel rotor by axial active magnetic bearing (AAMB) is analyzed, and the radial active magnetic bearing (RAMB) is equivalently treated with dynamic stiffness and dynamic damping. Based on this, a dynamic model of the active magnetic suspension rigid flywheel rotor, considering the position parameter of the axial bearing, is established. To quantify the axial offset between the position of the AAMB and the mass-center of the flywheel rotor, the axial-bearing position offset ratio γ is defined. The variation trend of the vibration characteristics of flywheel rotor with γ is discussed, and its correctness is validated through experiments. It is indicated that, with the increase of γ, the second-order positive precession frequency of the flywheel rotor decreases obviously, and the influence of the gyroscope torque gradually weakens. Meanwhile, its second-order critical speed ω2c decreases significantly (when γ is 0.5, ω2c decreases by about 62%); ω2c corresponds to the inclined mode, revealing that the offset ratio γ has a prominent influence on the critical speed under this mode. In addition, as γ increases, the mass unbalance response amplitude of the flywheel rotor under the speed of ω2c decreases significantly. The reasonable design of the axial-bearing position parameter can effectively improve the operational stability of the active magnetic suspension flywheel energy storage system. Full article
(This article belongs to the Special Issue Actuators in Magnetic Levitation Technology and Vibration Control)
Show Figures

Figure 1

12 pages, 6571 KiB  
Article
Multi-Physics Coupling Dynamics Simulation of Thermally Induced Vibration of Magnetically Suspended Rotor in Small and Micro Nuclear Reactors
by Yihao Xu, Zeguang Li and Dianchuan Xing
Energies 2025, 18(10), 2433; https://doi.org/10.3390/en18102433 - 9 May 2025
Viewed by 481
Abstract
The power conversion system of a small micro-reactor has strict requirements on the compactness of the rotating mechanical support. Although the active magnetic bearing is an ideal choice, the thermally induced vibration caused by it may destroy the stability of the system. As [...] Read more.
The power conversion system of a small micro-reactor has strict requirements on the compactness of the rotating mechanical support. Although the active magnetic bearing is an ideal choice, the thermally induced vibration caused by it may destroy the stability of the system. As such, this study proposes a multi-physics coupling simulation framework, which integrates electromagnetic, thermal, and mechanical multi-physics coupling mechanisms and quantifies the stability of the system under thermal-induced vibration in the frequency domain. Firstly, the equivalent magnetic circuit and electromagnetic finite element modeling and calculation of the compressor rotor are carried out. In the case of the maximum AC current of 10 A, the equivalent stiffness of the magnetic pole is 4.21 × 108 N/m and 2.1 × 108 N/m, and the eddy current loss of the rotor is 4.17496 W. Based on the eddy current loss, a magneto-thermal coupling model is established to reveal the temperature gradient distribution and the thermal sensitivity coefficient of the journal is 0.006. Subsequently, the thermal stress and equivalent stiffness are coupled to the rotor dynamics equation, and the maximum amplitude of the rotor is obtained at a value of 0.001 mm. Finally, the critical stability threshold of the system is determined by a Nyquist diagram, and the results show that the system is stable as a whole. In this paper, the quantitative analysis of the cross-scale coupling mechanism of electromagnetic, thermal, and mechanical multi-physical fields is realized, which provides a systematic analysis method for the thermally induced vibration of magnetically suspended rotors and has important engineering significance for high power density rotating mechanical systems in small micro-reactors. Full article
Show Figures

Figure 1

15 pages, 5561 KiB  
Article
A Sensorless Speed Estimation Method for PMSM Supported by AMBs Based on High-Frequency Square Wave Signal Injection
by Lei Gong, Yu Li, Dali Dai, Wenjuan Luo, Pai He and Jingwen Chen
Electronics 2025, 14(8), 1644; https://doi.org/10.3390/electronics14081644 - 18 Apr 2025
Viewed by 384
Abstract
Active magnetic bearings (AMBs) are a class of electromechanical equipment that effectively integrate Magnetic Bearing technology with PMSM technology, particularly for applications involving high-power and high-speed permanent magnet motors. However, as the rotor operates in a suspended state, the motor’s trajectory changes continuously. [...] Read more.
Active magnetic bearings (AMBs) are a class of electromechanical equipment that effectively integrate Magnetic Bearing technology with PMSM technology, particularly for applications involving high-power and high-speed permanent magnet motors. However, as the rotor operates in a suspended state, the motor’s trajectory changes continuously. The installation of a speed sensor poses a risk of collisions with the shaft, which inevitably leads to rotor damage due to imbalance, shaft wear, or other mechanical effects. Consequently, for the rotor control system of PMSM, it is crucial to adopt a sensorless speed estimation method to achieve high-performance speed and position closed-loop control. This study uses the rotor system of a 75 kW AMB high-speed motor as a case study to provide a detailed analysis of the principles of high-frequency square wave signal injection (HFSWSII) and current signal injection for speed estimation. The high-frequency current response signal is derived, and a speed observer is designed based on signal extraction and processing methods. Subsequently, a speed estimation model for PMSM is constructed based on HFSWSII, and the issue of “filter bandwidth limitations and lagging effects in signal processing” within the observer is analyzed. A scheme based on the high-frequency pulse array current injection method is then proposed to enhance the observer’s performance. Finally, to assess the system’s anti-interference capability as well as the motor’s static and dynamic tracking performance, its dynamic behavior is tested under conditions of increasing and decreasing speed and load. Simulation and experimental results demonstrate that the PMSM control system based on HFSWSII achieves accurate speed estimation and shows excellent static and dynamic performance. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

16 pages, 6540 KiB  
Article
Dynamic Balance Correction of Active Magnetic Bearing Rotor Based on Adaptive Notch Filter and Influence Coefficient Method
by Xudong Guan, Hao Peng, Hui Li and Jiajing Zhang
Appl. Sci. 2025, 15(8), 4147; https://doi.org/10.3390/app15084147 - 9 Apr 2025
Viewed by 443
Abstract
In an active magnetic bearing (AMB) rotor system, the mass imbalance of the rotor is inevitable due to uneven materials, machining errors, assembly errors and other factors. When the rotor rotates, the unbalanced mass generates centrifugal force at the same frequency as the [...] Read more.
In an active magnetic bearing (AMB) rotor system, the mass imbalance of the rotor is inevitable due to uneven materials, machining errors, assembly errors and other factors. When the rotor rotates, the unbalanced mass generates centrifugal force at the same frequency as the rotational speed, which causes vibration and affects the smooth operation of the rotor. Aiming at the mass imbalance of AMB rotor, a new method based on an adaptive notch filter (ANF) and the influence coefficient method (ICM) is proposed. Firstly, the improved ANF is used to track the rotor displacement signal, and the amplitude and phase information of the displacement signal are calculated. Then, according to the amplitude and phase information calculated by ANF, the ICM is used to calculate the counterweight information of the rotor dynamic balance, which includes the counterweight mass and counterweight position. Finally, the dynamic balance correction of the AMB rotor is realized by adding the calculated counterweight mass to both sides of the rotor. This paper validates the feasibility of the proposed method for the dynamic balance correction of the AMB rotor through simulation and experiment. The four radial displacement unbalances of the rotor were reduced by 56.6%, 62.8%, 49.2% and 63.7%, respectively. Full article
Show Figures

Figure 1

14 pages, 3941 KiB  
Article
Modelling and Experimental Testing of Passive Magnetic Bearings for Power Loss Reduction
by Alessandro Vigliani, Salvatore Paolo Cavallaro and Simone Venturini
Appl. Sci. 2025, 15(8), 4149; https://doi.org/10.3390/app15084149 - 9 Apr 2025
Viewed by 496
Abstract
The development of rotordynamic systems with reduced energy dissipation is a key challenge in modern applications, such as Flywheel Energy Storage Systems. This paper investigates a fully passive vertical rotor system supported by two passive magnetic bearings whose configuration provides radial stability while [...] Read more.
The development of rotordynamic systems with reduced energy dissipation is a key challenge in modern applications, such as Flywheel Energy Storage Systems. This paper investigates a fully passive vertical rotor system supported by two passive magnetic bearings whose configuration provides radial stability while minimising power losses due to their thrust effect. A numerical model describes the forces and stiffness of the magnetic bearings, identifying the operational range of the thrust–radial support configuration. A test rig is developed for the experimental characterisation of the rotor and passive magnetic bearings in both static and dynamic conditions. Different magnetic thrust force levels are tested by varying the axial distance between the rotor and stator magnetic rings of the bearings. Static tests are performed to measure the weight force compensation corresponding to the different bearing configurations, validating the numerical model. Dynamic tests analyse the rotor power losses with a non-invasive approach via optical sensor measurements. Full article
(This article belongs to the Special Issue Rotor Dynamics: Research and Applications)
Show Figures

Figure 1

27 pages, 8045 KiB  
Article
Research on Sensorless Technology of a Magnetic Suspension Flywheel Battery Based on a Genetic BP Neural Network
by Weiyu Zhang and Fei Guo
Actuators 2025, 14(4), 174; https://doi.org/10.3390/act14040174 - 2 Apr 2025
Cited by 2 | Viewed by 419
Abstract
The research object of this paper is a new type of multi-functional, air-gap-type, vehicle-mounted magnetic suspension flywheel battery. It is a new energy storage technology with a long working life, high energy conversion efficiency, multiple charging and discharging times, low carbon and environmental [...] Read more.
The research object of this paper is a new type of multi-functional, air-gap-type, vehicle-mounted magnetic suspension flywheel battery. It is a new energy storage technology with a long working life, high energy conversion efficiency, multiple charging and discharging times, low carbon and environmental protection. However, when the vehicle-mounted flywheel battery is operating, it will inevitably be disturbed by road conditions, resulting in loose sensors and feedback errors, thereby reducing the control accuracy and reliability of the system. To solve these problems, a sensorless control system came into being. It samples the current of the magnetic bearing coil through the hardware circuit and converts it into displacement for real-time control, eliminating the risk of sensor failure. However, the control accuracy of the traditional sensorless system is relatively low. Therefore, this paper adopts a BP (backpropagation) neural network PID controller based on genetic algorithm optimization on the basis of the sensorless control system. Through the joint simulation of the dynamic simulation software ADAMS/VIEW2018 and MATLAB2022b, the optimal PID control parameter database for complex road conditions is established. Through sensorless technology, the current of the flywheel battery is converted into the position error for extensive training so that the genetic BP neural network PID controller can accurately identify the current complex road conditions according to the position error, so as to provide the optimal PID control parameters corresponding to the road conditions to carry out accurate real-time stability control of the flywheel rotor. The experimental results show that the method can effectively reduce feedback errors, improve the control accuracy, and output optimal control parameters in real time under complex road conditions, which significantly improves the reliability and control performance of the vehicle flywheel battery system. Full article
Show Figures

Figure 1

21 pages, 21267 KiB  
Article
Rotor Unbalanced Vibration Control of Active Magnetic Bearing High-Speed Motor via Adaptive Fuzzy Controller Based on Switching Notch Filter
by Lei Gong, Wenjuan Luo, Yu Li, Jingwen Chen and Zhiguang Hua
Appl. Sci. 2025, 15(7), 3681; https://doi.org/10.3390/app15073681 - 27 Mar 2025
Cited by 1 | Viewed by 466
Abstract
This paper proposes an adaptive fuzzy controller based on a switching notch filter to address the rotor unbalance vibration control problem of an active magnetic bearing (AMB) high-speed motor system in the full rotational speed range. Aiming at the complex nonlinear and time-varying [...] Read more.
This paper proposes an adaptive fuzzy controller based on a switching notch filter to address the rotor unbalance vibration control problem of an active magnetic bearing (AMB) high-speed motor system in the full rotational speed range. Aiming at the complex nonlinear and time-varying characteristics of the AMB rigid rotor system, this study designs an adaptive fuzzy controller (AFC) that obtains fuzzy quantities by blurring the rotor vibration information and vibration rate of change as the input signals and then obtains the fuzzy set through fuzzy reasoning and modifies the parameters of the initial fuzzy controller. The initial fuzzy controller parameters are modified through fuzzy reasoning to improve the control effect and ensure the stable suspension of the rotor during high-speed rotation. At the same time, in order to effectively suppress the vibration of the rotor in high-speed operation due to unbalance and other factors, this paper introduces an adapting notch filter (ANF) as a vibration control strategy on the basis of AFC, and the notch filter is able to monitor the rotor vibration signals and adaptively adjust the center frequency and bandwidth. Finally, the correctness and effectiveness of the adaptive fuzzy controller based on a switching notch filter (AFC-ANF) are verified via simulations and experiments. The simulation results demonstrate that compared to traditional PID control, the AFC reduces the response time by 0.11 s. Under constant-speed operating conditions, the AFC-ANF strategy decreases rotor vibration by 60%, while under variable-speed conditions, it reduces rotor vibration displacement by 40%, showcasing significant vibration suppression effectiveness. This research provides a novel solution for vibration control in magnetic bearing systems, offering both important theoretical significance and practical application value. Full article
Show Figures

Figure 1

20 pages, 10647 KiB  
Article
Speed Estimation Method of Active Magnetic Bearings Magnetic Levitation Motor Based on Adaptive Sliding Mode Observer
by Lei Gong, Yu Li, Wenjuan Luo, Jingwen Chen, Zhiguang Hua and Dali Dai
Energies 2025, 18(6), 1539; https://doi.org/10.3390/en18061539 - 20 Mar 2025
Viewed by 463
Abstract
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the [...] Read more.
The installation distance between the speed sensor of the traditional rolling or sliding bearing permanent magnet synchronous motor and the rotor was very close, and the rotor of the magnetic levitation motor supported by Active Magnetic Bearings (AMBs) was in suspension. When the motor was running at high speed, the radial trajectory of the rotor changed all the time. The same frequency vibration caused by the unbalanced mass of the rotor made it easy to cause mechanical collision between the sensor and the rotor, resulting in direct damage of the sensor. Therefore, the sensorless speed estimation method was needed for the rotor control system of the magnetic levitation motor (MLM) to achieve high performance closed-loop control of speed and position. More importantly, in order to control or compensate the unbalanced force of the electromagnetic bearing rotor system, the rotor rotation speed signal should be obtained as accurately as possible. Therefore, the principle of adaptive sliding mode observer (SMO) was analyzed in detail by taking the rotor system of MLM as an example. Then, the sliding mode surface was designed, the speed estimation algorithm based on adaptive SMO was derived, and the stability analysis was completed. Finally, in order to verify the anti-disturbance performance of the system and the static and dynamic tracking performance of the motor, the dynamic performance was verified by increasing and decreasing the speed and load. The results showed that the speed estimation method based on adaptive SMO could achieve accurate speed estimation and had good static and dynamic performance. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

22 pages, 7689 KiB  
Article
Guidance Gyro System with Two Gimbals and Magnetic Suspension Gyros Using Adaptive-Type Control Laws
by Romulus Lungu, Constantin-Adrian Mihai and Alexandru-Nicolae Tudosie
Micromachines 2025, 16(3), 245; https://doi.org/10.3390/mi16030245 - 20 Feb 2025
Cited by 1 | Viewed by 614
Abstract
The authors have designed a structure for a gyro system (used for the guidance of self-guided missiles) with two gimbals and a rotor in magnetic suspension (AMBs—active magnetic bearings). The system (double-gimbal magnetic suspension gyro system for guidance—DGMSGG) orients the common axis rotor [...] Read more.
The authors have designed a structure for a gyro system (used for the guidance of self-guided missiles) with two gimbals and a rotor in magnetic suspension (AMBs—active magnetic bearings). The system (double-gimbal magnetic suspension gyro system for guidance—DGMSGG) orients the common axis rotor AMB (the sight line) in the direction of the target line (the guide line) by means of some control system of the gyro rotor’s rotations and translations, as well as by means of some servo systems for the gimbals’ rotation angle control. The DGMSGG provides specific signals for the missile’s autopilot, to guide it toward the target, so that the guidance line translates parallel to itself to the point of interception of the target (according to the self-guidance method by parallel approach). Based on the DGMSGG’s established mathematical model, the authors propose and design adaptive control systems for the decoupled dynamics of the gyro rotor’s translations and rotations and of the gimbals’ rotations; the concept of dynamic inversion is used, as well as linear dynamic compensators (P.D.- and P.I.D.-type), state observers, reference models, and neural networks. The theoretical results are validated through numerical simulations, using Simulink/Matlab models’ stabilization and orientation operating regimes. Full article
Show Figures

Figure 1

20 pages, 12818 KiB  
Article
Modal Vibration Suppression for Magnetically Levitated Rotor Considering Significant Gyroscopic Effects and Interface Contact
by Kun Zeng, Yang Zhou, Yuanping Xu and Jin Zhou
Actuators 2025, 14(2), 76; https://doi.org/10.3390/act14020076 - 6 Feb 2025
Cited by 1 | Viewed by 817
Abstract
Featured with optimal power consumption, active magnetic bearings (AMBs) have been extensively integrated into turbomachinery applications. For turbomachinery components, including the rotor and impeller, their connection is generally based on bolted joints, which would easily induce excessive interface contact. As a result, the [...] Read more.
Featured with optimal power consumption, active magnetic bearings (AMBs) have been extensively integrated into turbomachinery applications. For turbomachinery components, including the rotor and impeller, their connection is generally based on bolted joints, which would easily induce excessive interface contact. As a result, the pre-tightening torque can induce modal vibrations in the rotor upon levitation. Although a notch filter can be adopted to suppress the vibrations, it should be noted that the current reported notch filters are based on fixed center frequency, making it challenging to enable high effectiveness over a broad range of rotor speeds, particularly in cases where the gyroscopic effect is significant. Herein, a modal vibration suppression based on a varying-frequency notch filter is proposed, considering gyroscopic effect and interface contact. First, the rotor–AMB system was developed, taking into consideration the bolted-joint interface contact. This modeled the effect of the interface contact as a time-varying force in the positive feedback. Secondly, the relationship between vibration frequency and rotational speed was obtained, based on simulations. Lastly, a test rig was configured to validate the performance of the frequency-varying notch filter. The experimental data confirm that the filter is capable of attenuating the modal vibrations resulting from interface contact across all operational speeds. Full article
(This article belongs to the Special Issue Advanced Theory and Application of Magnetic Actuators—2nd Edition)
Show Figures

Figure 1

33 pages, 11404 KiB  
Review
Review on Key Development of Magnetic Bearings
by Tong Wu and Weiyu Zhang
Machines 2025, 13(2), 113; https://doi.org/10.3390/machines13020113 - 30 Jan 2025
Cited by 3 | Viewed by 3191
Abstract
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of [...] Read more.
A magnetic suspension bearing is a device that suspends the rotating shaft in a balanced position by magnetic force, thereby eliminating the friction between the rotor and the stator. Different from traditional bearing support methods, magnetic bearings show significant advantages in terms of speed, accuracy, and loss. Because there is no contact, magnetic bearings enable high-speed operation, precise control, and zero friction. Magnetic bearings, with their excellent performance, are widely applied in fields such as industrial production, flywheel energy storage, and aerospace. However, with the continuous growth of the demand for high-performance bearings and the deepening of the concept of low-carbon and environmental protection, breakthroughs in the key technologies of magnetic bearings are urgently needed. In this paper, relevant research on magnetic bearings is summarized. Magnetic bearings are classified according to the different ways in which they generate suspension forces. Research on the topological structure design, mathematical modeling, and control strategies of the magnetic bearing system is covered. The aim is to provide readers and researchers with a comprehensive overview of the key technologies of magnetic bearings from a new perspective. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

Back to TopTop