Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,961)

Search Parameters:
Keywords = rotational field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3418 KiB  
Review
Review on the Theoretical and Practical Applications of Symmetry in Thermal Sciences, Fluid Dynamics, and Energy
by Nattan Roberto Caetano
Symmetry 2025, 17(8), 1240; https://doi.org/10.3390/sym17081240 - 5 Aug 2025
Abstract
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics [...] Read more.
This literature review explores the role of symmetry in thermal sciences, fluid dynamics, and energy applications, emphasizing the theoretical and practical implications. Symmetry is a fundamental tool for simplifying complex problems, enhancing computational efficiency, and improving system design across multiple engineering and physics domains. Thermal and fluid processes are applied in several modern energy use technologies, essentially involving the complex, multidimensional interaction of fluid mechanics and thermodynamics, such as renewable energy applications, combustion diagnostics, or Computational Fluid Dynamics (CFD)-based optimization, where symmetry is highly considered to simplify geometric parameters. Indeed, the interconnection between experimental analysis and the numerical simulation of processes is an important field. Symmetry operates as a unifying principle, its presence determining everything from the stability of turbulent flows to the efficiency of nuclear reactors, revealing hidden patterns that transcend scales and disciplines. Rotational invariance in pipelines; rotors of hydraulic, thermal, and wind turbines, and in many other cases, for instance, not only lowers computational cost but also guarantees that solutions validated in the laboratory can be effectively scaled up to industrial applications, demonstrating its crucial role in bridging theoretical concepts and real-world implementation. Thus, a wide range of symmetry solutions is exhibited in this research area, the results of which contribute to the development of science and fast information for decision making in industry. In this review, essential findings from prominent research were synthesized, highlighting how symmetry has been conceptualized and applied in these contexts. Full article
(This article belongs to the Special Issue Symmetry in Thermal Fluid Sciences and Energy Applications)
Show Figures

Figure 1

23 pages, 3087 KiB  
Article
MCMBAN: A Masked and Cascaded Multi-Branch Attention Network for Bearing Fault Diagnosis
by Peng Chen, Haopeng Liang and Alaeldden Abduelhadi
Machines 2025, 13(8), 685; https://doi.org/10.3390/machines13080685 - 4 Aug 2025
Abstract
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple [...] Read more.
In recent years, deep learning methods have made breakthroughs in the field of rotating equipment fault diagnosis, thanks to their powerful data analysis capabilities. However, the vibration signals usually incorporate fault features and background noise, and these features may be scattered over multiple frequency levels, which increases the complexity of extracting important information from them. To address this problem, this paper proposes a Masked and Cascaded Multi-Branch Attention Network (MCMBAN), which combines the Noise Mask Filter Block (NMFB) with the Multi-Branch Cascade Attention Block (MBCAB), and significantly improves the noise immunity of the fault diagnostic model and the efficiency of fault feature extraction. NMFB novelly combines a wide convolutional layer and a top k neighbor self-attention masking mechanism, so as to efficiently filter unnecessary high-frequency noise in the vibration signal. On the other hand, MBCAB strengthens the interaction between different layers by cascading the convolutional layers of different scales, thus improving the recognition of periodic fault signals and greatly enhancing the diagnosis accuracy of the model when processing complex signals. Finally, the time–frequency analysis technique is employed to explore the internal mechanisms of the model in depth, aiming to validate the effectiveness of NMFB and MBCAB in fault feature recognition and to improve the feature interpretability of the proposed modes in fault diagnosis applications. We validate the superior performance of the network model in dealing with high-noise backgrounds by testing it on a standard bearing dataset from Case Western Reserve University and a self-constructed composite bearing fault dataset, and the experimental results show that its performance exceeded six of the top current fault diagnosis techniques. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

12 pages, 21873 KiB  
Article
Multi-Sensor System for Analysis of Maneuver Performance in Olympic Sailing
by Eirik E. Semb, Erlend Stendal, Karen Dahlhaug and Martin Steinert
Appl. Sci. 2025, 15(15), 8629; https://doi.org/10.3390/app15158629 (registering DOI) - 4 Aug 2025
Abstract
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented [...] Read more.
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented in this study consists of a combination of commercially available sensor systems, such as the AdMos sensor for IMU and GNSS measurement, in combination with custom measurement systems for rudder and mast rotations using fully waterproofed potentiometers. Data streams are synchronized using GNSS time stamping for streamlined analysis. The resulting analysis presents a selection of 12 upwind tacks, with corresponding path overlays, detailed timeseries data, and performance metrics. The system has demonstrated the value of extended data analysis of in situ data with an elite ILCA 7 sailor. The addition of rudder and mast rotations has enabled enhanced analysis of on-water maneuvers for single-handed Olympic dinghies like the ILCA 7, on a level of detail previously reserved for simulated environments. Full article
(This article belongs to the Special Issue Applied Sports Performance Analysis)
Show Figures

Figure 1

27 pages, 14083 KiB  
Article
Numerical Investigations and Hydrodynamic Analysis of a Screw Propulsor for Underwater Benthic Vehicles
by Yan Kai, Pengfei Xu, Meijie Cao and Lei Yang
J. Mar. Sci. Eng. 2025, 13(8), 1500; https://doi.org/10.3390/jmse13081500 - 4 Aug 2025
Abstract
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, [...] Read more.
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, steady-state simulations under various advance coefficients were conducted to evaluate the influence of key geometric parameters on propulsion performance. Based on these results, a representative configuration was then selected for transient analysis to capture unsteady flow features. In the second stage, a Detached Eddy Simulation approach was employed to capture unsteady flow features under three rotational speeds. The flow field information was analyzed, and the mechanisms of vortex generation, instability, and dissipation were comprehensively studied. The results reveal that the propulsion process is dominated by the formation and evolution of tip vortices, root vortices, and cylindrical wake vortices. As rotation speed increases, vortex structures exhibit a transition from ordered spiral wakes to chaotic turbulence, primarily driven by centrifugal instability and nonlinear vortex interactions. Vortex breakdown and energy dissipation are intensified downstream, especially under high-speed conditions, where vortex integrity is rapidly lost due to strong shear and radial expansion. This hydrodynamic behavior highlights the fundamental difference from conventional propellers, and these findings provide theoretical insight into the flow mechanisms of screw propulsion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1740 KiB  
Article
Identification of Streamline-Based Coherent Vortex Structures in a Backward-Facing Step Flow
by Fangfang Wang, Xuesong Yu, Peng Chen, Xiufeng Wu, Chenguang Sun, Zhaoyuan Zhong and Shiqiang Wu
Water 2025, 17(15), 2304; https://doi.org/10.3390/w17152304 - 3 Aug 2025
Viewed by 65
Abstract
Accurately identifying coherent vortex structures (CVSs) in backward-facing step (BFS) flows remains a challenge, particularly in reconciling visual streamlines with mathematical criteria. In this study, high-resolution velocity fields were captured using particle image velocimetry (PIV) in a pressurized BFS setup. Instantaneous streamlines reveal [...] Read more.
Accurately identifying coherent vortex structures (CVSs) in backward-facing step (BFS) flows remains a challenge, particularly in reconciling visual streamlines with mathematical criteria. In this study, high-resolution velocity fields were captured using particle image velocimetry (PIV) in a pressurized BFS setup. Instantaneous streamlines reveal distinct spiral patterns, vortex centers, and saddle points, consistent with physical definitions of vortices and offering intuitive guidance for CVS detection. However, conventional vortex identification methods often fail to reproduce these visual features. To address this, an improved Q-criterion method is proposed, based on the normalization of the velocity gradient tensor. This approach enhances the rotational contribution while suppressing shear effects, leading to improved agreement in vortex position and shape with those observed in streamlines. While the normalization process alters the representation of physical vortex strength, the method bridges qualitative visualization and quantitative analysis. This streamline-consistent identification framework facilitates robust CVS detection in separated flows and supports further investigations in vortex dynamics and turbulence control. Full article
Show Figures

Figure 1

24 pages, 6041 KiB  
Article
Attention-Guided Residual Spatiotemporal Network with Label Regularization for Fault Diagnosis with Small Samples
by Yanlong Xu, Liming Zhang, Ling Chen, Tian Tan, Xiaolong Wang and Hongguang Xiao
Sensors 2025, 25(15), 4772; https://doi.org/10.3390/s25154772 - 3 Aug 2025
Viewed by 61
Abstract
Fault diagnosis is of great significance for the maintenance of rotating machinery. Deep learning is an intelligent diagnostic technique that is receiving increasing attention. To address the issues of industrial data with small samples and varying working conditions, a residual convolutional neural network [...] Read more.
Fault diagnosis is of great significance for the maintenance of rotating machinery. Deep learning is an intelligent diagnostic technique that is receiving increasing attention. To address the issues of industrial data with small samples and varying working conditions, a residual convolutional neural network based on the attention mechanism is put forward for the fault diagnosis of rotating machinery. The method incorporates channel attention and spatial attention simultaneously, implementing channel-wise recalibration for frequency-dependent feature adjustment and performing spatial context aggregation across receptive fields. Subsequently, a residual module is introduced to address the vanishing gradient problem of the model in deep network structures. In addition, LSTM is used to realize spatiotemporal feature fusion. Finally, label smoothing regularization (LSR) is proposed to balance the distributional disparities among labeled samples. The effectiveness of the method is evaluated by its application to the vibration signal data from the safe injection pump and the Case Western Reserve University (CWRU). The results show that the method has superb diagnostic accuracy and strong robustness. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 4024 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 - 1 Aug 2025
Viewed by 199
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 139
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 - 1 Aug 2025
Viewed by 175
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 8015 KiB  
Article
Differential Mechanism of 3D Motions of Falling Debris in Tunnels Under Extreme Wind Environments Induced by a Single Train and by Trains Crossing
by Wei-Chao Yang, Hong He, Yi-Kang Liu and Lun Zhao
Appl. Sci. 2025, 15(15), 8523; https://doi.org/10.3390/app15158523 (registering DOI) - 31 Jul 2025
Viewed by 99
Abstract
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that [...] Read more.
The extended operation of high-speed railways has led to an increased incidence of tunnel lining defects, with falling debris posing a significant safety threat. Within tunnels, single-train passage and trains-crossing events constitute the most frequent operational scenarios, both generating extreme aerodynamic environments that alter debris trajectories from free fall. To systematically investigate the aerodynamic differences and underlying mechanisms governing falling debris behavior under these two distinct conditions, a three-dimensional computational fluid dynamics (CFD) model (debris–air–tunnel–train) was developed using an improved delayed detached eddy simulation (IDDES) turbulence model. Comparative analyses focused on the translational and rotational motions as well as the aerodynamic load coefficients of the debris in both single-train and trains-crossing scenarios. The mechanisms driving the changes in debris aerodynamic behavior are elucidated. Findings reveal that under single-train operation, falling debris travels a greater distance compared with trains-crossing conditions. Specifically, at train speeds ranging from 250–350 km/h, the average flight distances of falling debris in the X and Z directions under single-train conditions surpass those under trains crossing conditions by 10.3 and 5.5 times, respectively. At a train speed of 300 km/h, the impulse of CFx and CFz under single-train conditions is 8.6 and 4.5 times greater than under trains-crossing conditions, consequently leading to the observed reduction in flight distance. Under the conditions of trains crossing, the falling debris is situated between the two trains, and although the wind speed is low, the flow field exhibits instability. This is the primary factor contributing to the reduced flight distance of the falling debris. However, it also leads to more pronounced trajectory deviations and increased speed fluctuations under intersection conditions. The relative velocity (CRV) on the falling debris surface is diminished, resulting in smaller-scale vortex structures that are more numerous. Consequently, the aerodynamic load coefficient is reduced, while the fluctuation range experiences an increase. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

16 pages, 3366 KiB  
Article
Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow
by Jishun Shi, Zhipeng Song, Xiaoming Chen, Ziang Bai, Jialin Yu, Qihang Ye, Zipeng Yang, Jianru Qiao, Shuhua Ma and Kailiang Zhang
Micromachines 2025, 16(8), 895; https://doi.org/10.3390/mi16080895 (registering DOI) - 31 Jul 2025
Viewed by 172
Abstract
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles [...] Read more.
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles of ICEO streaming to stimulate and adjust the whirling flow in the circle microfluidic chamber. Based on this, we studied the distribution of an ICEO whirling flow in the detection chamber by tuning the fixed potential on the gate electrodes by the simulations. Then, we established a fluid–structure interaction model to explore the influence of blade structure parameters on the rotation performance of microfluidic motors. In addition, we investigated the rotation dependence of microfluidic motors on the potential drop between two driving electrodes and fixed potential on the gate electrodes. Next, we numerically explored the capability of these microfluidic motors for the detection of low-abundance proteins. Finally, we studied the regulating effect of potential drops between the driving electrodes on the detection performance of microfluidic motors by numerical simulations. Microfluidic motors actuated by an ICEO whirling flow hold good potential in environmental monitoring and disease diagnosis for the outstanding advantages of flexible controllability, a simple structure, and gentle work condition. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

23 pages, 2253 KiB  
Article
Robust Underwater Vehicle Pose Estimation via Convex Optimization Using Range-Only Remote Sensing Data
by Sai Krishna Kanth Hari, Kaarthik Sundar, José Braga, João Teixeira, Swaroop Darbha and João Sousa
Remote Sens. 2025, 17(15), 2637; https://doi.org/10.3390/rs17152637 - 29 Jul 2025
Viewed by 201
Abstract
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board [...] Read more.
Accurate localization plays a critical role in enabling underwater vehicle autonomy. In this work, we develop a robust infrastructure-based localization framework that estimates the position and orientation of underwater vehicles using only range measurements from long baseline (LBL) acoustic beacons to multiple on-board receivers. The proposed framework integrates three key components, each formulated as a convex optimization problem. First, we introduce a robust calibration function that unifies multiple sources of measurement error—such as range-dependent degradation, variable sound speed, and latency—by modeling them through a monotonic function. This function bounds the true distance and defines a convex feasible set for each receiver location. Next, we estimate the receiver positions as the center of this feasible region, using two notions of centrality: the Chebyshev center and the maximum volume inscribed ellipsoid (MVE), both formulated as convex programs. Finally, we recover the vehicle’s full 6-DOF pose by enforcing rigid-body constraints on the estimated receiver positions. To do this, we leverage the known geometric configuration of the receivers in the vehicle and solve the Orthogonal Procrustes Problem to compute the rotation matrix that best aligns the estimated and known configurations, thereby correcting the position estimates and determining the vehicle orientation. We evaluate the proposed method through both numerical simulations and field experiments. To further enhance robustness under real-world conditions, we model beacon-location uncertainty—due to mooring slack and water currents—as bounded spherical regions around nominal beacon positions. We then mitigate the uncertainty by integrating the modified range constraints into the MVE position estimation formulation, ensuring reliable localization even under infrastructure drift. Full article
Show Figures

Figure 1

21 pages, 15647 KiB  
Article
Research on Oriented Object Detection in Aerial Images Based on Architecture Search with Decoupled Detection Heads
by Yuzhe Kang, Bohao Zheng and Wei Shen
Appl. Sci. 2025, 15(15), 8370; https://doi.org/10.3390/app15158370 - 28 Jul 2025
Viewed by 253
Abstract
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to [...] Read more.
Object detection in aerial images can provide great support in traffic planning, national defense reconnaissance, hydrographic surveys, infrastructure construction, and other fields. Objects in aerial images are characterized by small pixel–area ratios, dense arrangements between objects, and arbitrary inclination angles. In response to these characteristics and problems, we improved the feature extraction network Inception-ResNet using the Fast Architecture Search (FAS) module and proposed a one-stage anchor-free rotation object detector. The structure of the object detector is simple and only consists of convolution layers, which reduces the number of model parameters. At the same time, the label sampling strategy in the training process is optimized to resolve the problem of insufficient sampling. Finally, a decoupled object detection head is used to separate the bounding box regression task from the object classification task. The experimental results show that the proposed method achieves mean average precision (mAP) of 82.6%, 79.5%, and 89.1% on the DOTA1.0, DOTA1.5, and HRSC2016 datasets, respectively, and the detection speed reaches 24.4 FPS, which can meet the needs of real-time detection. Full article
(This article belongs to the Special Issue Innovative Applications of Artificial Intelligence in Engineering)
Show Figures

Figure 1

11 pages, 281 KiB  
Article
Validation of D-SCOPE Questionnaire: Dietitians’ Survey of Comfort, Opinions, and Perceptions on Education in Supplements
by Margaret Harris, Keston Lindsay, Lauryn Bille, Nicole Fioretti and Andrea Hutchins
Nutrients 2025, 17(15), 2451; https://doi.org/10.3390/nu17152451 - 28 Jul 2025
Viewed by 229
Abstract
Background/Objectives: The field of dietary supplements is changing and evolving quickly. Registered Dietitian Nutritionists are recognized as experts in nutrition and familiarity with the usage of dietary supplements is expected. However, education on the use of dietary supplements is not equal across accredited [...] Read more.
Background/Objectives: The field of dietary supplements is changing and evolving quickly. Registered Dietitian Nutritionists are recognized as experts in nutrition and familiarity with the usage of dietary supplements is expected. However, education on the use of dietary supplements is not equal across accredited dietetic education programs, which can lead to disparities in dietitians’ feelings of preparedness, attitudes, and consequently experience of comfort regarding dietary supplements. The purpose of this study was to create the D-SCOPE Questionnaire (Dietitians’ Survey of Comfort, Opinions, and Preparedness in Education in Supplements) and validate it. This questionnaire assesses Registered Dietitian Nutritionists’ feelings of preparedness, comfort with use, and general attitudes in the field of dietary supplements. Methods: Face and content validity was established with dietitian, nutritionist, and statistician input. For recruitment, 2000 national randomly selected emails were obtained from the Commission on Dietetic Registration. Registered Dietitian Nutritionists (n = 248) responded to the survey email request. Descriptive statistics (reported as means ± standard deviation), principal axis factoring (exploratory factor analysis) with a direct oblimin rotation and Cronbach’s a reliability analysis were used for validation techniques. Results: Five factors were created, which explained about 63% of the variance in the questionnaire. The questionnaire was generally reliable, but the factor structure could change with a non-US population. Conclusions: As a unit, the D-SCOPE Questionnaire shows validity and reliability in assessing Registered Dietitian Nutritionists’ perceptions of preparedness and attitudes in the area related to dietary supplements. Full article
Show Figures

Figure 1

18 pages, 5492 KiB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 218
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

Back to TopTop