Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (191)

Search Parameters:
Keywords = rotary tillage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2187 KiB  
Article
Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System
by Shiyan Dong, Ming Huang, Junhao Zhang, Qihui Zhou, Chuan Hu, Aohan Liu, Hezheng Wang, Guozhan Fu, Jinzhi Wu and Youjun Li
Plants 2025, 14(15), 2438; https://doi.org/10.3390/plants14152438 - 6 Aug 2025
Abstract
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer [...] Read more.
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer bean (hereafter referred to as wheat-soybean) double-cropping system. A long-term located field experiment (onset in October 2009) with two tillage methods—plowing (PT) and rotary tillage (RT)—and two straw management—no straw mulching (NS) and straw mulching (SM)—was conducted at a typical dryland in China. The wheat yield and yield component, dry matter accumulation and translocation characteristics, and water use efficiency were investigated from 2014 to 2018. Straw management significantly affected wheat yield and yield components, while tillage methods had no significant effect. Furthermore, the interaction of tillage methods and straw management significantly affected yield and yield components except for the spike number. RTSM significantly increased the spike number, grains per spike, 1000-grain weight, harvest index, and grain yield by 12.5%, 8.4%, 6.0%, 3.4%, and 13.4%, respectively, compared to PTNS. Likewise, RTSM significantly increased the aforementioned indicators by 14.8%, 10.1%, 7.5%, 3.6%, and 20.5%, compared to RTNS. Mechanistic analysis revealed that, compared to NS, SM not only significantly enhanced pre-anthesis and post-anthesis dry matter accumulation, and pre-anthesis dry matter tanslocation to grain, but also significantly improved pre-sowing water storage, water consumption during wheat growth, water use efficiency, and water-saving for produced per kg grain yield, with the greatest improvements obtained under RT than PT. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis confirmed RTSM’s yield superiority was mainly ascribed to straw-induced improvements in dry matter and water productivity. In a word, rotary tillage with straw mulching could be recommended as a suitable practice for high-yield wheat production in a dryland wheat-soybean double-cropping system. Full article
(This article belongs to the Special Issue Emerging Trends in Alternative and Sustainable Crop Production)
Show Figures

Figure 1

17 pages, 3112 KiB  
Article
Impacts of Conservation Tillage on Soil Organic Carbon Mineralization in Eastern Inner Mongolia
by Boyu Liu, Jianquan Wang, Dian Jin and Hailin Zhang
Agronomy 2025, 15(8), 1847; https://doi.org/10.3390/agronomy15081847 - 30 Jul 2025
Viewed by 210
Abstract
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of [...] Read more.
Soil organic carbon (SOC) mineralization plays the critical role of regulating carbon sequestration potential. This process is strongly influenced by agricultural practices, particularly tillage regimes and straw management. However, the complex interactions between tillage methods, straw types, and application rates in terms of SOC dynamics, especially in semi-arid agroecosystems like eastern Inner Mongolia, remain poorly understood. In this study, we assessed the combined effects of no tillage (NT) vs. rotary tillage (RT), three straw types (maize/MS, wheat/WS, and oilseed rape/OS), and three application rates (0.4%/low, 0.8%/medium, and 1.2%/high) on SOC concentration and mineralization using controlled laboratory incubation with soils from long-term plots. The key findings revealed that NT significantly increased the SOC concentration in the topsoil (0–20 cm) by an average of 14.5% compared to that in the RT. Notably, combining NT with medium-rate wheat straw (0.8%) resulted in the achievement of the highest SOC accumulation (28.70 g/kg). SOC mineralization increased with straw inputs, exhibiting significant straw type × rate interactions. Oilseed rape straw showed the highest specific mineralization rate (33.9%) at low input, while maize straw mineralized fastest under high input with RT. Therefore, our results demonstrate that combining NT with either 0.8% wheat straw or 1.2% maize straw represents an optimal application strategy, as the SOC concentration is enhanced by 12–18% for effective carbon sequestration in this water-limited semi-arid region. Therefore, optimizing SOC sequestration requires the integration of appropriate crop residue application rates and tillage methods tailored to different cropping systems. Full article
Show Figures

Figure 1

18 pages, 4915 KiB  
Article
The Quality of Seedbed and Seeding Under Four Tillage Modes
by Lijun Wang, Yunpeng Gao, Zhao Ma and Bo Wang
Agriculture 2025, 15(15), 1626; https://doi.org/10.3390/agriculture15151626 - 26 Jul 2025
Viewed by 247
Abstract
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize [...] Read more.
Crop residue management and soil tillage (CRM and ST) are key steps in agricultural production. The effects of different CRM and ST modes on the quality of seedbed, seeding, and harvest yield are not well determined. In this study, the system of maize (Zea mays L.)–soybean (Glycine max (L.) Merr) rotation under ridge-tillage in the semi-arid regions of Northeast China was chosen as the study conditions. Four modes were investigated: deep tillage and seeding (DT and S), stubble field and no-tillage seeding (SF and NTS), three-axis rotary tillage and seeding (TART and S), and shallow rotary tillage and seeding (SRT and S). Results show that the DT and S mode produced the best quality of seedbed and seeding. Among the conservation tillage modes, the SRT and S mode produced the shortest average length of roots and straw, the best uniformity of their distribution in the seedbed, and the highest soybean yield. Both the SRT and S and SF and NTS modes yielded a higher net profit as their cost-effectiveness. When considering only the quality of seedbed and seeding under conservation tillage as a prerequisite, it can be concluded that the SRT and S mode is both advantageous and sustainable. Full article
(This article belongs to the Special Issue Effects of Crop Management on Yields)
Show Figures

Graphical abstract

22 pages, 4888 KiB  
Article
The Combined Effects of Irrigation, Tillage and N Management on Wheat Grain Yield and Quality in a Drought-Prone Region of China
by Ming Huang, Ninglu Xu, Kainan Zhao, Xiuli Huang, Kaiming Ren, Yulin Jia, Shanwei Wu, Chunxia Li, Hezheng Wang, Guozhan Fu, Youjun Li, Jinzhi Wu and Guoqiang Li
Agronomy 2025, 15(7), 1727; https://doi.org/10.3390/agronomy15071727 - 17 Jul 2025
Viewed by 331
Abstract
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat [...] Read more.
With the swift progression of the High-Standard Farmland Construction Program in China and worldwide, many dryland wheat fields can be irrigated once during the wheat growth stage (one-off irrigation). However, the combined strategies of one-off irrigation, tillage, and N management for augmenting wheat grain yield and quality are still undeveloped in drought regions. Two-site split–split field experiments were conducted to study the impacts of irrigation, tillage, and N management and their combined effects on grain yield; the contents of protein and protein components; processing quality; and the characteristics of N accumulation and translocation in wheat from a typical dryland wheat production area in China from 2020 to 2022. The irrigation practices (I0, zero irrigation and I1, one-off irrigation), tillage methods (RT, rotary tillage; PT, plowing; and SS, subsoiling) and N management (N0, N120, N180, and N240) were applied to the main plots, subplots and sub-subplots, respectively. The experimental sites, experimental years, irrigation practices, tillage methods, and N management methods and their interaction significantly affected the yield, quality, and plant N characteristics of wheat in most cases. Compared to zero irrigation, one-off irrigation significantly increased the plant N accumulation, enhancing grain yield by 33.7% while decreasing the contents of total protein, albumin, globulin, gliadin, and glutenin by 4.4%, 6.4%, 8.0%, 12.2%, and 10.0%, respectively. It also decreased the wet gluten content, stability time, sedimentation value, extensibility by 4.1%, 10.7%, 9.7%, and 5.5%, respectively, averaged across sites and years. Subsoiling simultaneously enhanced the aforementioned indicators compared to rotary tillage and plowing in most sites and years. With the increase in N rates, wheat yield firstly increased and then decreased under zero irrigation combined with rotary tillage, while it gradually increased when one-off irrigation was combined with subsoiling; however, the contents of total protein and protein components and the quality tended to increase firstly and then stabilize regardless of irrigation practices and tillage methods. The correlations of yield and quality indicators with plant N characteristics were negative when using distinct irrigation practices and tillage methods, while they were positive under varying N management. The decrease in wheat quality induced by one-off irrigation could be alleviated by optimizing N management. I1STN180 exhibited higher yield, plant N accumulation and translocation, and better quality in most cases; thus, all metrics of wheat quality were significantly increased, with a yield enhancement of 50.3% compared to I0RTN180. Therefore, one-off irrigation with subsoiling and an N rate of 180 kg ha−1 is an optimal strategy for high yield, high protein, and high quality in dryland wheat production systems where one-off irrigation is assured. Full article
Show Figures

Figure 1

24 pages, 2712 KiB  
Article
Impacts of Different Tillage and Straw Management Systems on Herbicide Degradation and Human Health Risks in Agricultural Soils
by Yanan Chen, Feng Zhang, Qiang Gao and Qing Ma
Appl. Sci. 2025, 15(14), 7840; https://doi.org/10.3390/app15147840 - 13 Jul 2025
Viewed by 434
Abstract
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five [...] Read more.
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five commonly used herbicides in a long-term experimental field located in the maize belt of Siping, Jilin Province. Post-harvest soil samples were analyzed for residual herbicide concentrations and basic soil physicochemical properties. A human health risk assessment was conducted, and a controlled incubation experiment was carried out to evaluate herbicide degradation dynamics under three management systems: straw incorporation with traditional rotary tillage (ST), straw incorporation with strip tillage (SS), and no-till without straw (CK). Residual concentrations of atrazine ranged from not detected (ND) to 21.10 μg/kg (mean: 5.28 μg/kg), while acetochlor showed the highest variability (2.29–120.61 μg/kg, mean: 25.26 μg/kg). Alachlor levels were much lower (ND–5.71 μg/kg, mean: 0.34 μg/kg), and neither nicosulfuron nor mesotrione was detected. Soil organic matter (17.6–20.89 g/kg) positively correlated with available potassium and acetochlor residues. Health risk assessments indicated negligible non-cancer risks for both adults and children via ingestion, dermal contact, and inhalation. The results demonstrate that tillage methods significantly influence herbicide degradation kinetics, thereby affecting environmental persistence and ecological risks. Integrating straw with ST or SS enhanced the dissipation of atrazine and mesotrione, suggesting their potential as effective residue mitigation strategies. This study highlights the importance of tailoring tillage and straw management practices to pesticide type for optimizing herbicide fate and promoting sustainable agroecosystem management. Full article
Show Figures

Figure 1

18 pages, 673 KiB  
Article
Effects of Tillage Methods on Carbon and Nitrogen Sequestration and Soil Microbial Stoichiometric Equilibrium in a Black Soil Farmland with Full Return of Straw to the Field
by Meiren Rong, Zhigang Wang, Xiangqian Zhang, Zhanyuan Lu, Lanfang Bai, Zhipeng Cheng, Tianhao Wang, Yajing Zhang, Hongwei Liang, Tiantian Meng, Lingyue Liu and Fang Luo
Agronomy 2025, 15(7), 1664; https://doi.org/10.3390/agronomy15071664 - 9 Jul 2025
Viewed by 254
Abstract
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an [...] Read more.
Long-term irrational farming practices and low return of organic materials to the fields in the black soil area have led to reduced soil carbon and nitrogen stability and nutrient imbalance, which in turn affect soil fertility and crop yields. Straw return is an effective way to enhance soil organic matter and crop productivity, but the effects of long-term straw return under tilling practices on carbon and nitrogen sequestration and soil microbial stoichiometric equilibrium in black soil need to be further investigated. This study investigated the physical, chemical and biological properties of the 0–60 cm soil layer under deep tillage with straw return to the field (DTS), deep harrow with straw return to the field (DHS), rotary tillage with straw return to the field (RTS), no tillage with straw return to the field (NTS), and conventional tillage with straw removal (CT) on the basis of seven consecutive years of tillage pattern location trials in the black soil area of eastern Inner Mongolia. The results showed that DTS and NTS significantly increased the soil organic carbon (SOC), soil total nitrogen (TN), soil microbial biomass carbon (MBC), soil microbial biomass nitrogen (MBN) contents, and the SOC/TN ratio in the 0–40 cm soil layer, enhancing soil carbon and nitrogen sequestration capacity, while the concomitant increase in the average MBC/MBN ratio in the plow layer from 6.8 to 8.2. The soil microbial quotient increased by 29.0% and 26.2%, respectively, and the stoichiometric imbalance ratio decreased by 7.9% and 5.7%, respectively. Meanwhile, in terms of maize yield from 2018 to 2024, DTS showed the most stable and significant yield increase with 41.53%. Whereas NTS showed a higher yield increase potential with a 27.36% increase in yield as the number of years of straw return increased. Therefore, DTS and NTS are superior tillage methods to improve the quality of the black soil tillage layer, to promote soil microbial carbon and nitrogen balance, and to increase crop yields. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 2894 KiB  
Article
Synergistic Effects of Deep Rotary Tillage and Microbial Decomposition Agents on Straw Decomposition, Soil Nutrient Dynamics, and Microbial Communities in Rice Systems
by Xinyue Wang, Jie Huang, Yanting Tan, Lili Yang, Yuanhuan Li, Bing Xia, Hailin Li and Xiaohua Deng
Agriculture 2025, 15(13), 1447; https://doi.org/10.3390/agriculture15131447 - 4 Jul 2025
Viewed by 308
Abstract
This study evaluated the synergistic effects of microbial decomposition agents and deep rotary tillage on rice straw decomposition, soil nutrient dynamics, and microbial communities in paddy fields of southern China. A two-factor randomized block experiment was conducted, with straw decomposition dynamics modeled using [...] Read more.
This study evaluated the synergistic effects of microbial decomposition agents and deep rotary tillage on rice straw decomposition, soil nutrient dynamics, and microbial communities in paddy fields of southern China. A two-factor randomized block experiment was conducted, with straw decomposition dynamics modeled using a modified Olson decay model, and microbial communities were assessed via high-throughput sequencing and network analysis. The combined treatment significantly increased the decomposition rate constant, reduced the time for 50% decomposition to 81 days, and enhanced soil nutrient availability, especially total nitrogen, phosphorus, and potassium. Microbial richness, diversity, and network complexity were also improved. Structural equation modeling indicated that nutrient availability, rather than microbial α-diversity, was the main driver of decomposition processes. These findings suggest that integrating microbial agents with deep tillage offers an effective strategy for optimizing straw return, improving soil fertility, and enhancing microbial functional resilience in rice systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

23 pages, 6736 KiB  
Article
Parameter Calibration and Experimental Study of a Discrete Element Simulation Model for Yellow Cinnamon Soil in Henan, China
by Huiling Ding, Mengyang Wang, Qiaofeng Wang, Han Lin, Chao Zhang and Xin Jin
Agriculture 2025, 15(13), 1365; https://doi.org/10.3390/agriculture15131365 - 25 Jun 2025
Cited by 1 | Viewed by 379
Abstract
To investigate the interaction mechanism between agricultural tillage machinery and soil, this study established a precise simulation model by integrating physical and numerical experiments using typical yellow cinnamon soil collected from western Henan Province, China. The discrete element parameters for soils with varying [...] Read more.
To investigate the interaction mechanism between agricultural tillage machinery and soil, this study established a precise simulation model by integrating physical and numerical experiments using typical yellow cinnamon soil collected from western Henan Province, China. The discrete element parameters for soils with varying moisture contents were calibrated based on the Hertz–Mindlin (no slip) contact model. Through Plackett–Burman screening, steepest ascent optimization, and Box–Behnken response surface methodology, a predictive model correlating moisture content, parameters, and repose angle was developed, yielding the optimal contact parameter combination: interparticle static friction coefficient (0.6), soil–65Mn static friction coefficient (0.69), and interparticle rolling friction coefficient (0.358). For the Bonding model, orthogonal experiments coupled with NSGA-II multi-objective optimization determined the optimal cohesive parameters targeting maximum load (673.845 N) and displacement (9.765 mm): normal stiffness per unit area (8.8 × 107 N/m3), tangential stiffness per unit area (6.85 × 107 N/m3), critical normal stress (6 × 104 Pa), critical tangential stress (3.15 × 104 Pa), and bonding radius (5.2 mm). Field validation using rotary tillers and power harrows demonstrated less than 6% deviation in soil fragmentation rates between simulations and actual operations, confirming parameter reliability and providing theoretical foundations for constructing soil-tillage machinery interaction models. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 1524 KiB  
Article
Responses of Corn Yield, Soil Microorganisms, and Labile Organic Carbon Fractions Under Integrated Straw Return and Tillage Practices in Black Soil
by Lei Feng, Yunyun Sun and Guifen Chen
Appl. Sci. 2025, 15(13), 7129; https://doi.org/10.3390/app15137129 - 25 Jun 2025
Viewed by 191
Abstract
In Northeast China, due to long-term, high-intensity continuous cultivation of black soil, the practice of “overuse with insufficient nurturing” has led to severe degradation of the black soil. Straw return is a crucial strategy for enhancing soil organic matter (SOM). However, the mechanism [...] Read more.
In Northeast China, due to long-term, high-intensity continuous cultivation of black soil, the practice of “overuse with insufficient nurturing” has led to severe degradation of the black soil. Straw return is a crucial strategy for enhancing soil organic matter (SOM). However, the mechanism of combing straw return with different tillage methods on black soil microbial community structure and soil organic carbon (SOC) fractions remains unclear. A field experiment was conducted in black soil using four tillage treatments: conventional tillage without straw return (CK), no tillage with straw incorporation (NTS), rotary tillage with straw incorporation (RTS), and deep tillage with straw incorporation (PTS). Corn yield and the contents and fractions of SOC were measured, whereas the microbial structure at different soil depths was assessed by high-throughput sequencing technology. Meanwhile, the correlations between microbial diversity, changes in SOC fractions, and corn yield were analyzed. As a result, the straw return treatments significantly increased the contents of SOC in the 0–20 cm soil layer (up to 19.82 g kg−1 under RTS) and its labile fractions, enhanced soil microbial diversity (with a 7.03–25.14% increase in the Bacterial Chao1 index), and optimized the microbial community structure. Fungal diversity under PTS was the most prominent in the 20–40 cm depth. Correlation analysis indicated that the active SOC fractions and microbial diversity jointly explain the yield variation. The conclusions of this study will provide a theoretical foundation for developing scientifically sound straw return strategies in agricultural production. Full article
Show Figures

Figure 1

18 pages, 5056 KiB  
Article
Research into the Mechanical Tillage Regulation Mechanisms of the Soil Structure in Black Soil Paddy Fields
by Qiuju Wang, Bingqi Bai, Yuping Liu, Baoguang Wu, Jingyang Li and Jiahe Zou
Agriculture 2025, 15(11), 1145; https://doi.org/10.3390/agriculture15111145 - 26 May 2025
Viewed by 374
Abstract
This study investigated the impact of the response mechanism of tillage construction on paddy yield in black soil fields by adopting four mechanical tillage techniques, namely, rotary tillage (RT), shallow plowing (SP), deep plowing (DP), and culvert pipe drainage (CD), to solve the [...] Read more.
This study investigated the impact of the response mechanism of tillage construction on paddy yield in black soil fields by adopting four mechanical tillage techniques, namely, rotary tillage (RT), shallow plowing (SP), deep plowing (DP), and culvert pipe drainage (CD), to solve the problems associated with the reduction in the effective tillage layer in black soil paddy fields, as well as the poor quality and low yield of paddy rice. The results showed that SP, DP, and CD techniques were able to increase the rice yield and improve the effective tillage layer of the soil and the soil structure. Among them, DP had the most obvious effect, compared with traditional RT; the fast-acting N was 37.27 mg/kg higher in the 20–30 cm soil layer, and the soil solid phase decreased by 1.86–3.90% in the soil tripartite ratio. The soil bulk density of DP in the 10–20 cm soil layer decreased by 0.08 g/cm3, and, in the 20–30 cm soil layer, it decreased by 0.03 g/cm3. These physicochemical properties promoted the development and growth of roots and increased the growth of the root system by 6.53–16.33%, with the yield also increased by up to 9.81%. The CD technique could improve paddy field drainage and increase crop yields. This study combines four mechanical tillage techniques and proposes a mechanism of tillage construction from soil structure improvement to soil physicochemical property enhancement, and then to root system and yield enhancement. This mechanism may help to guide the implementation of mechanical tillage methods in paddy fields, which will provide important insights for future agricultural practices. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

20 pages, 4183 KiB  
Article
Biological Characteristics, Hazard Patterns, and Control Measures of Aegilops tauschii, the Most Harmful Weed in Chinese Wheat Fields
by Yaling Geng, Chencan Wang, Jiangwei Han, Yiyun Ban, Zongran Su, Linghui Wang, Jing Xu and Libing Yuan
Plants 2025, 14(11), 1607; https://doi.org/10.3390/plants14111607 - 24 May 2025
Viewed by 500
Abstract
The control of A. tauschii is critical to ensuring food security. This study investigated a range of different aspects of the biology of A. tauschii, including its emergence characteristics, population development dynamics, and its impact on wheat yield. Moreover, the efficacy of [...] Read more.
The control of A. tauschii is critical to ensuring food security. This study investigated a range of different aspects of the biology of A. tauschii, including its emergence characteristics, population development dynamics, and its impact on wheat yield. Moreover, the efficacy of different herbicides and cultural control measures for managing A. tauschii was explored. Through laboratory cultivation and statistical analysis of the emergence rate of A. tauschii, it was found that its emergence rate significantly increased when temperatures ranged from 10 °C to 20 °C and the environmental osmotic potential fell between −0.1 MPa and −0.5 MPa—conditions similar to those found in wheat fields. Additionally, by recording the emergence rates at different depths, A. tauschii emergence was found to occur optimally at a sowing depth of 1–5 cm, which aligns with the shallow rotary tillage currently employed in wheat production. The weed was also found to be tolerant to weakly acidic and alkaline environments, while also presenting with moderate salt tolerance. Through field experiments, it was found that, upon spreading to new areas, A. tauschii rapidly expanded its population size. While its impact on wheat yield was relatively mild during the early stages of growth, it escalated to severe outbreaks with the passage of time. Field experiments were conducted to test the efficacy of five herbicides on weed control. The analysis indicated that Mesosulfuron-methyl was the only effective herbicide in controlling A. tauschii. Adopting three two-year-three-crop rotation patterns reduced the density of A. tauschii from 186 stems/m2 to 11–15 stems/m2. Watering-induced emergence also proved effective. The most effective watering was performed 15 days before sowing. Deep plowing was another effective measure. The deeper the plowing, the lower the emergence of A. tauschii. Delayed sowing time resulted in the additional suppression of the emergence of A. tauschii. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 3201 KiB  
Article
The Design and Testing of a New Antitangling and Antisticking Knife for a Wet Clay Soil Environment
by Guosheng Geng, Tailai Chen, Maohua Xiao, Chenshuo Xie and Cungan Tang
Agriculture 2025, 15(10), 1102; https://doi.org/10.3390/agriculture15101102 - 20 May 2025
Viewed by 383
Abstract
Aiming at the problem that rotary tiller knife rollers are prone to entanglement with straw in the wet and sticky soil environment of rice fields in the middle and lower reaches of the Yangtze River in China, an antitangling and sticking cutter was [...] Read more.
Aiming at the problem that rotary tiller knife rollers are prone to entanglement with straw in the wet and sticky soil environment of rice fields in the middle and lower reaches of the Yangtze River in China, an antitangling and sticking cutter was designed. The cutter reduces knife roller entanglement in order to reduce rotary tiller energy consumption and improve work efficiency, and its effectiveness was verified through theoretical analysis, discrete element simulation, and field trials. The design’s validity was verified through theoretical analysis, discrete element simulation, and field tests. The blade inclination design was completed through motion force analysis, and the tool geometry was optimized with a 36.87° inclination baffle and staggered arrangement. A simulation model of the soil–straw–rotary tillage knife interaction was established and we used the discrete element method to analyze the variation in torque between the antisticking knife and the China standard rotary tillage knife (IT245) at four different cutter shaft rotational speeds. In the simulation, the average torque for the antisticking knives was smaller than that of the national standard rotary tillage knives, with reductions of 37.1%, 52.1%, 52.8%, and 50.0%, respectively, demonstrating a remarkable effect. Field tests showed that the average operational efficiency of the antisticking knife was 0.57 hm2/h, with an operation qualification rate of 95.72%. The average torque results from simulation (with and without the antisticking knife) and field tests were analyzed, yielding correlation coefficients of 0.994 and 0.973 for the change curves of average torque between the antisticking knife and the national standard rotary tillage knife. This result confirms the accuracy of the simulation model and the consistency between the simulation and field test results. This study can provide some references for the design and test of antisticking of rotary tillers. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 8188 KiB  
Article
Operational and Cost Assessment of Mechanizing Soil Removal Between Peach Trees Planted on Raised Berms
by Coleman Scroggs, Ali Bulent Koc, Guido Schnabel and Michael Vassalos
AgriEngineering 2025, 7(5), 144; https://doi.org/10.3390/agriengineering7050144 - 6 May 2025
Viewed by 594
Abstract
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting [...] Read more.
Armillaria root rot (ARR) is a fungal disease caused by Desarmillaria caespitosa and the leading cause of peach tree decline in the Southeastern U.S. It affects the roots and lower stems of trees, leading to the decay of the tree’s root system. Planting peach trees shallow on berms and excavating soil around the root collar after two years can extend the economic life of infected trees. However, berms pose operational challenges, including elevation changes, soil erosion from water flow, and herbicide and fertilizer runoff, thereby reducing orchard management efficiency. This study aimed to develop a tractor-mounted rotary tillage method to flatten the area between peach trees planted on berms, improving safety and reducing runoff. A custom paddle wheel attachment (20.3 cm height, 30.5 cm length) was retrofitted to an existing mechanical orchard weed management implement equipped with a hydraulic rotary head. A hydraulic flow meter, two pressure transducers, and an RTK-GPS receiver were integrated with a wireless data acquisition system to monitor the paddle wheel rotational speed and tractor ground speed during field trials. The effects of three paddle wheel speeds (132, 177, and 204 RPM) and three tractor ground speeds (1.65, 2.255, and 3.08 km/h) were evaluated in two orchards with Cecil sandy loam soil (bulk density: 1.93 g/cm3; slope: 2–6%). The paddle wheel speed had a greater influence on the torque and power requirements than the tractor ground speed. The combination of a 177 RPM paddle speed and 3 km/h tractor speed resulted in the smoothest soil surface with minimum torque demand, indicating this setting as optimal for flattening berms in similar soil conditions. Future research will include optimizing the paddle wheel structure and equipping the berm leveling machine with tree detection sensors to control the rotary head position. Full article
(This article belongs to the Collection Research Progress of Agricultural Machinery Testing)
Show Figures

Figure 1

20 pages, 4520 KiB  
Article
Design and Test of an Energy-Saving Bionic-Inspired Rotary Blade: A Study on Power Consumption and Soil Surface Quality
by Yue Qin, Yunpeng Gao, Chenggong Xie, Jiarui Tong, Qi Wang and Xin Feng
Agriculture 2025, 15(9), 938; https://doi.org/10.3390/agriculture15090938 - 25 Apr 2025
Viewed by 469
Abstract
To reduce the power consumption of rotary tillage and enhance the operational quality of rotary tillage, a rotary blade that imitates the surface of a pufferfish was designed through reverse engineering. The bump structure on the pufferfish surface was employed to decrease the [...] Read more.
To reduce the power consumption of rotary tillage and enhance the operational quality of rotary tillage, a rotary blade that imitates the surface of a pufferfish was designed through reverse engineering. The bump structure on the pufferfish surface was employed to decrease the power consumption when the blades till the soil. The performance of the bionic blade was investigated. A single-factor soil bin test was conducted, with the forward speed of the rotary tiller and the rotation speed of the blade shaft serving as the test factors, and the power consumption of the rotary tiller and the ground surface flatness as the evaluation indexes. The test results revealed that the power consumption of the rotary tiller initially decreases, then increases, and finally decreases with the increase in the forward speed of the rotary tiller. It is positively correlated with the rotation speed of the blade shaft. The ground surface flatness is positively correlated with the forward speed of the rotary tiller but negatively correlated with the rotation speed of the blade shaft. Compared with the rotary tiller with standard IT225 blades, the rotary tiller with bionic blades achieves a 9.4% reduction in power consumption and a 6.5% improvement in ground surface flatness. This study has demonstrated that the bump structure of the pufferfish surface can effectively reduce the power consumption of the blades and enhance ground surface quality, thus offering novel insights for the development of energy-saving tillage tools. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 15316 KiB  
Article
Evaluating the Adaptability and Sustainability of Different Straw Incorporation Strategies in Northeastern China: Impacts on Rice Yield Formation, Nitrogen Use Efficiency, and Temporal Soil Nutrient Dynamics
by Yuanyuan Sun, Bida Ren, Chang Liu, Bingchun Yan, Li Lin, Yanze Zhao, Hai Xu, Wenzhong Zhang, Xiaoyi Cheng and Xiaori Han
Agronomy 2025, 15(3), 729; https://doi.org/10.3390/agronomy15030729 - 18 Mar 2025
Cited by 1 | Viewed by 543
Abstract
Straw incorporation effectively improves soil fertility and crop yield, and its adaptation to single-season rice production in cold temperate regions is a current research focus. This study conducted a two-year continuous in situ field experiment with four treatments: no straw incorporation (CK), straw [...] Read more.
Straw incorporation effectively improves soil fertility and crop yield, and its adaptation to single-season rice production in cold temperate regions is a current research focus. This study conducted a two-year continuous in situ field experiment with four treatments: no straw incorporation (CK), straw incorporation with autumn rotary tillage (SC), straw incorporation with autumn plowing (SH), and straw incorporation with spring rotary tillage (ST). This study investigated the effects of straw incorporation on rice growth and the soil environment to understand the soil-crop interactions and their impact on rice yield. The results indicate that in the single-season rice production system of Northeast China, straw incorporation reduces the number of tillers, dry matter accumulation, and leaf area index in the early rice growth stage but promotes dry matter accumulation in the later stages. Straw incorporation over two consecutive years increased the rice yield by 2.07%, with the SC treatments showing optimal performance. This increased yield could lead to higher economic returns for the farmers. Additionally, straw incorporation potentially increases the total nitrogen and soil organic matter (SOM) content in the topsoil, thus providing environmental benefits by reducing the need for synthetic fertilizers. Factor analysis reveals that the SC treatments enhances dry matter accumulation by influencing soil nutrient levels in the later rice growth stages, thereby improving rice yield and nitrogen recovery efficiency. By altering soil nutrient availability at different growth stages, different straw incorporation regimes regulate the material production strategy of rice and the ‘source-sink’ relationship. This research provides a theoretical basis for enhancing soil fertility and rice yield in cold temperate regions through improved straw management strategies. These findings support policy initiatives that promote large-scale straw incorporation in commercial rice production for its potential economic and environmental benefits. Full article
(This article belongs to the Special Issue Rice Cultivation and Physiology)
Show Figures

Figure 1

Back to TopTop