Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System
Abstract
1. Introduction
2. Results
2.1. Yield and Yield Components
2.2. Dry Matter Accumulation, Translocation, and Distribution
2.2.1. Dry Matter Accumulation at Different Growth Stages
2.2.2. Characteristics of Translocation of Pre-Anthesis Dry Matter and Accumulation of Post-Anthesis Dry Matter
2.2.3. Dry Matter Distribution at Maturity
2.3. Soil Water Storage and WUE
2.3.1. Soil Water Storage
2.3.2. WUE
2.4. Effect of Straw Mulching on Water-Saving and Yield Improvement Under Different Tillage Methods
2.5. Correlation and Path Model
3. Discussion
3.1. Effects of Tillage Methods and Straw Management on Wheat Yield
3.2. Effects of Tillage Methods and Straw Management on Dry Matter Accumulation, Translocation, and Distribution
3.3. Effects of Tillage Methods and Straw Management on Soil Water and Wheat WUE
3.4. Pathway Analysis Using PLSPM and Comprehensive Evaluation
4. Materials and Methods
4.1. Experimental Site Description
4.2. Experimental Design and Field Management
4.3. Measurements and Methods
4.3.1. Dry Matter Accumulation, Translocation, and Distribution
4.3.2. Grain Yield, Yield Components, and Harvest Index
4.3.3. Soil Water Storage and WUE
4.3.4. Effectiveness of Straw Mulching on Water-Saving and Yield Productivity
4.3.5. Calculation of Comprehensive Evaluation Value
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics (NBS). China Statistical Yearbook; China Statistics Press: Beijing, China, 2024. [Google Scholar]
- Zörb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.; Li, F.; Dai, J.; Li, Q.; Xue, C.; Cao, H.; Wang, S.; Malhi, S.S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Wang, R.; Xu, N.; Huang, X.; Zhao, K.; Huang, M.; Wang, H.; Fu, G.; Wu, J.; Li, Y. Effects of one-off irrigation and nitrogen fertilizer management on grain yield and quality in dryland wheat. Sci. Agric. Sin. 2025, 58, 43–57. [Google Scholar] [CrossRef]
- Li, X.; Long, A.; Ji, X.; Wang, X.; Wang, Z.; Gong, X.; Zhang, W.; Qi, H.; Jiang, Y.; Sun, Z.; et al. Straw return and nitrogen fertilizer application regulate the efficient use of radiation, water, nitrogen and maize productivity in Northeast China. Agric. Water Manag. 2024, 301, 108973. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, Z.; Man, J.; Ma, S.; Gao, Z.; Zhang, Y. Tillage practices affect dry matter accumulation and grain yield in winter wheat in the North China Plain. Soil Tillage Res. 2016, 160, 73–81. [Google Scholar] [CrossRef]
- Kan, Z.; Liu, Q.; He, C.; Jing, Z.; Virk, A.L.; Qi, J.; Zhao, X.; Zhang, H. Responses of grain yield and water use efficiency of winter wheat to tillage in the North China Plain. Field Crops Res. 2020, 249, 107760. [Google Scholar] [CrossRef]
- Tian, S.; Ning, T.; Wang, Y.; Liu, Z.; Li, G.; Li, Z.; Lal, R. Crop yield and soil carbon responses to tillage method changes in North China. Soil Tillage Res. 2016, 163, 207–213. [Google Scholar] [CrossRef]
- Edwards, N.; Medina, N.; Asker, E. Mixing cover crops suppresses weeds and roto-till reduces urban soil penetration resistance and improves infiltration. Soil Tillage Res. 2023, 231, 105708. [Google Scholar] [CrossRef]
- Zheng, C.; Cui, S.; Wang, D.; Yu, Z.; Zhang, Y.; Shi, Y. Effects of soil tillage practice on dry matter production and water use efficiency in wheat. Acta Agron. Sin. 2011, 37, 1432–1440. [Google Scholar] [CrossRef]
- Guan, D.; Zhang, Y.; Al-Kaisi, M.M.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- Liu, X.; Huo, H.; Zhang, Y.; Yang, H.; Li, S.; Meng, L. Promotion of maize straw degradation rate by altering microbial community structure through the addition of soybean straw. Plant Soil 2024, 1–21. [Google Scholar] [CrossRef]
- Song, D.; Hou, S.; Wang, X.; Liang, G.; Zhou, W. Nutrient resource quantity of crop straw and its potential of substituting. Plant Nutr. Fert. Sci. 2018, 24, 1–21. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, C.; Ren, Y.; Zong, R.; Ma, Y.; Li, Q. Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain. Agric. Water Manag. 2017, 186, 21–28. [Google Scholar] [CrossRef]
- Yang, H.; Wu, G.; Mo, P.; Chen, S.; Wang, S.; Xiao, Y.; Ma, H.; Wen, T.; Guo, X.; Fan, G. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 2020, 197, 104485. [Google Scholar] [CrossRef]
- Dong, Q.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, L.; Xie, J.; Li, L.; Coulter, J.A.; Zhang, R.; Luo, Z.; Cai, L.; Carberry, P.; Whitbread, A. Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China. Agric. Water Manag. 2020, 231, 106024. [Google Scholar] [CrossRef]
- Wang, J.; Ghimire, R.; Fu, X.; Sainju, U.M.; Liu, W. Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield. Agric. Water Manag. 2018, 206, 95–101. [Google Scholar] [CrossRef]
- Huang, C.; Wu, Y.; Ye, Y.; Li, Y.; Ma, Y.; Ma, J.; Yan, J.; Chang, L.; Wang, Z.; Wang, Y.; et al. Straw strip mulching increases winter wheat yield by optimizing water consumption characteristics in a semi-arid environment. Water 2022, 14, 1894. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, T.; Wang, H.; Wang, M.; Meng, X.; Mou, S.; Zhang, S.; Jia, Z.; Han, Q. Effects of straw mulch on soil water and winter wheat production in dryland farming. Sci. Rep. 2015, 5, 10725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, J.; Gong, S.; Xu, D.; Mo, Y.; Zhang, B. Straw mulching improves soil water content, increases flag leaf photosynthetic parameters and maintaines the yield of winter wheat with different irrigation amounts. Agric. Water Manag. 2021, 249, 106809. [Google Scholar] [CrossRef]
- Ram, H.; Dadhwal, V.; Vashist, K.K.; Kaur, H. Grain yield and water use efficiency of wheat (Triticum aestivum L.) in relation to irrigation levels and rice straw mulching in North West India. Agric. Water Manag. 2013, 128, 92–101. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, W.; Yang, K.; Fu, J.; Wang, P. Plow tillage with buried straw increases maize yield by regulating soil properties, root growth, photosynthetic capacity, and bacterial community assembly in semi-arid black soil farmlands. Eur. J. Agron. 2025, 164, 127532. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, G.; Sun, Y.; Yang, X.; Dai, X. Analysis and evaluation of soil quality of facilities in coastal saline-alkali area of Hebei Province. Plant Nutr. Fert. Sci. 2025, 1–12. Available online: https://link.cnki.net/urlid/11.5498.s.20250510.1658.002 (accessed on 12 May 2025).
- Liu, S.; Guan, X.; Zhao, Z.; Wang, J.; Liu, S.; Gao, P.; Wang, Y.; Wu, P.; Gao, C.; Li, Y.; et al. Residual effects of tillage regime on soil moisture dynamics, grain filling characteristics and yield of summer maize in wheat-maize double cropping system. Sci. Agric. Sin. 2024, 57, 3568–3585. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Pang, D.; Han, M.; Li, Y.; Luo, Y.; Xu, X.; Li, Y.; Wang, Z. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J. Integr. Agric. 2017, 16, 1708–1719. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, F.; Hu, T.; Zhao, K.; Gao, T.; Zhao, H.; Ning, T. Using stable isotopes to quantify water uptake from different soil layers and water use efficiency of wheat under long-term tillage and straw return practices. Agric. Water Manag. 2020, 229, 105933. [Google Scholar] [CrossRef]
- Liang, C.; Yu, S.; Zhang, H.; Wang, Z.; Li, F. Economic evaluation of drought resistance measures for maize seed production based on TOPSIS model and combination weighting optimization. Water 2022, 14, 3262. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Zhang, F.; Wang, X. Effects of soil water deficit at different growth stages on maize growth, yield, and water use efficiency under alternate partial root-zone irrigation. Water 2021, 13, 148. [Google Scholar] [CrossRef]
- Zhang, Z.; An, J.; Xiong, S.; Li, X.; Xin, M.; Wang, J.; Han, Y.; Wang, G.; Feng, L.; Lei, Y. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake. Field Crops Res. 2022, 279, 108470. [Google Scholar] [CrossRef]
- Gurmani, S.; Chen, H.; Bai, Y. Dombi operations for linguistic T-spherical fuzzy number: An approach for selection of the best variety of maize. Soft Comput. 2022, 26, 9083–9100. [Google Scholar] [CrossRef]
- Nonxuba, C.S.; Elephant, D.E.; Nciizah, A.D.; Manyevere, A. Medium-term effects of tillage, crop rotation and crop residue management practices on selected soil physical properties in the sub-humid region of Eastern Cape, South Africa. Soil Tillage Res. 2025, 248, 106420. [Google Scholar] [CrossRef]
- Benitez, M.S.; Ewing, P.M.; Osborne, S.L.; Lehman, R.M. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biol. Biochem. 2021, 159, 108309. [Google Scholar] [CrossRef]
- Sharafi, S.; Nahvinia, M.J. Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions. Agric. Water Manag. 2024, 299, 108857. [Google Scholar] [CrossRef]
- Li, M.; Ali, S.; Hussain, S.A.; Khan, A.; Chen, Y. Diverse tillage practices with straw mulched management strategies to improve water use efficiency and maize productivity under a dryland farming system. Heliyon 2024, 10, e29839. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Luo, H.; Wang, Z.; Hu, L. Benefits of continuous plow tillage to fragrant rice performance. Agron. J. 2020, 112, 4171–4181. [Google Scholar] [CrossRef]
- Hartman, M.; Herzog, C.; Brunner, I.; Stierli, B.; Meyer, F.; Buchmann, N.; Frey, B. Long-term mitigation of drought changes the functional potential and life-strategies of the forest soil microbiome involved in organic matter decomposition. Front. Microbiol. 2023, 14, 1267270. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, H.; Wu, J.; Gao, C.; Zhang, S. Long-term combined subsoiling and straw mulching conserves water and improves agricultural soil properties. Land. Degrad. Dev. 2024, 35, 1050–1060. [Google Scholar] [CrossRef]
- Qin, W.; Niu, L.; You, Y.; Cui, S.; Chen, C.; Li, Z. Effects of conservation tillage and straw mulching on crop yield, water use efficiency, carbon sequestration and economic benefits in the Loess Plateau region of China: A meta-analysis. Soil Tillage Res. 2024, 238, 106025. [Google Scholar] [CrossRef]
- Guo, Z.; Ding, T.; Wang, Y.; Zhang, P.; Gao, L.; Peng, X. Quantifying and visualizing soil macroaggregate pore structure and particulate organic matter in a Vertisol under various straw return practices using X-ray computed tomography. Geoderma 2024, 452, 117105. [Google Scholar] [CrossRef]
- SK, P.G.P.; Debnath, S.; Maitra, S. Materials, advantages and crop production. Prot. Cultiv. Smart Agric. 2020, 6, 55–66. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, F.; Hu, G.; Shao, S.; He, H.; Zhang, W.; Zhang, X.; Li, L. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 2019, 333, 35–42. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Zhang, C.; Ma, D.; Zhou, G.; Ning, Q.; Zhang, J. Combining rotary and deep tillage increases crop yields by improving the soil physical structure and accumulating organic carbon of subsoil. Soil Tillage Res. 2024, 244, 106252. [Google Scholar] [CrossRef]
- Gao, F.; Li, X.; Ren, B.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Root characteristics and grain yield of summer maize under different winter wheat-summer maize tillage systems. Sci. Agric. Sin. 2017, 50, 2141–2149. [Google Scholar] [CrossRef]
- Sun, G.; Xu, S.; Zhang, H.; Chen, F.; Xiao, X. Effects of rotational tillage in double rice cropping region on organic carbon storage of the arable paddy Soil. Sci. Agric. Sin. 2010, 43, 3776–3783. [Google Scholar] [CrossRef]
- Zhai, L.; Xu, P.; Zhang, Z.; Li, S.; Xie, R.; Zhai, L.; Wei, B. Effects of deep vertical rotary tillage on dry matter accumulation and grain yield of summer maize in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2017, 170, 167–174. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Li, J.; Zhang, G.; Shu, H.; Hu, W.; Han, H.; Liu, R.; Guo, Z. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. J. Integr. Agric. 2024, 23, 669–679. [Google Scholar] [CrossRef]
- Wu, X.; Liu, M.; Li, C.; Allen, D.; Li, M.; Xiong, T.; Liu, Y.; Tang, Y. Source–sink relations and responses to sink–source manipulations during grain filling in wheat. J. Integr. Agric. 2022, 21, 1593–1605. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Wu, G.; Huang, X.; Fan, G. Maize straw mulching with no-tillage increases fertile spike and grain yield of dryland wheat by regulating root-soil interaction and nitrogen nutrition. Soil Tillage Res. 2023, 228, 105652. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Z.; Gu, F.; Wang, J.; Ding, Q. Effects of Tillage Methods on Crop Root Growth Trend Based on 3D Modeling Technology. Agriculture 2022, 12, 1411. [Google Scholar] [CrossRef]
- Yue, K.; Li, L.; Xie, J.; Wang, L.; Liu, Y.; Anwar, S. Tillage and nitrogen supply affects maize yield by regulating photosynthetic capacity, hormonal changes and grain filling in the Loess Plateau. Soil Tillage Res. 2022, 218, 105317. [Google Scholar] [CrossRef]
- Cai, P.; Wang, H.; Zhao, Z.; Li, X.; Wang, Y.; Zhan, X.; Han, X.; Cai, P.; Wang, H.; Zhao, Z.; et al. Effects of Straw Addition on Soil Priming Effects Under Different Tillage and Straw Return Modes. Plants 2024, 13, 3188. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Feng, X.; Yang, H.; Li, Y.; Yakov, K.; Liu, S.; Li, F. Effects of tillage on soil organic carbon and crop yield under straw return. Agric. Ecosyst. Environ. 2023, 354, 108543. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.; Gao, Z.; Wang, P.; Mo, F.; Xue, L.; Lei, M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Qiu, D.; Xu, R.; Gao, P.; Mu, X. Effect of vegetation restoration type and topography on soil water storage and infiltration capacity in the Loess Plateau, China. Catena 2024, 241, 108079. [Google Scholar] [CrossRef]
- Zhu, M.; Yuan, L.; Zhou, F.; Ma, S.; Zhang, W.; Miltner, A.; He, H.; Zhang, X. Time-dependent regulation of soil aggregates on fertilizer N retention and the influence of straw mulching. Soil Biol. Biochem. 2024, 198, 109551. [Google Scholar] [CrossRef]
- Zhao, H.; Qin, J.; Gao, T.; Zhang, M.; Sun, H.; Zhu, S.; Xu, C.; Ning, T. Immediate and long-term effects of tillage practices with crop residue on soil water and organic carbon storage changes under a wheat-maize cropping system. Soil Tillage Res. 2022, 218, 105309. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, M.; Gao, Z.; Cui, K.; Zhao, H.; Yang, Z.; Hao, X. Effects of Mulching on Grain Yield and Water Use Efficiency of Dryland Wheat in Different Rainfall Years. Sci. Agric. Sin. 2015, 48, 3589–3599. [Google Scholar] [CrossRef]
- Fan, D.; Jia, G.; Wang, Y.; Yu, X. The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma 2023, 438, 116643. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, J.; Dang, Y.; Fan, T.; Wang, L.; Zhou, G.; Wang, S.; Li, X.; Ni, S.; Mi, W.; et al. Effects of straw mulching on soil water temperature effect and winter wheat yield in different rainfall years in Dryland Loess Plateau. Acta Agron. Sin. 2025, 51, 1643–1653. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Liu, X.; Liu, H.; Liu, Y.; Jiang, X.; Li, Z.; Zhang, M. Application of water-energy-food nexus approach for optimal tillage and irrigation management in intensive wheat-maize double cropping system. J. Clean. Prod. 2022, 381, 135181. [Google Scholar] [CrossRef]
- Singh, P.K.; Naresh, R.K.; Singh, N.K.; Bhatt, R.; Sahoo, P.; Gupta, S.; Kaur, A.; Tiwari, H. Effect of Conservation Tillage on Changes in Soil Aggregate-associated Organic Carbon and Biological Pools to Nitrogen and Straw Alters in RWCS in North-Western India: A Review. Int. J. Environ. Clim. Change 2023, 13, 452–470. [Google Scholar] [CrossRef]
- Moradi, L.; Siosemardeh, A.; Sohrabi, Y.; Bahramnejad, B.; Hosseinpanahi, F. Dry matter remobilization and associated traits, grain yield stability, N utilization, and grain protein concentration in wheat cultivars under supplemental irrigation. Agric. Water Manag. 2022, 263, 107449. [Google Scholar] [CrossRef]
- Cai, F.; Mi, N.; Ming, H.; Zhang, Y.; Zhang, H.; Zhang, S.; Zhao, X.; Zhang, B. Responses of dry matter accumulation and partitioning to drought and subsequent rewatering at different growth stages of maize in Northeast China. Front. Plant Sci. 2023, 14, 1110727. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Yun, Y.; Sun, J. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
Years | Treatments | Spike Number (×104 ha−1) | Grain Number per Spike | 1000-Grain Weight (g) | Grain Yield (kg ha−1) | Harvest Index (%) |
---|---|---|---|---|---|---|
2014–2015 | PTNS | 563.3 ± 21.5 ab | 33.3 ± 0.1 c | 44.5 ± 0.2 c | 6668.1 ± 178.4 b | 48.9 ± 0.4 c |
PTSM | 602.7 ± 34.1 ab | 34.6 ± 0.4 b | 46.4 ± 0.2 b | 7612.9 ± 293.2 a | 51.1 ± 1.5 ab | |
RTNS | 552.0 ± 14.4 b | 32.8 ± 0.2 c | 44.6 ± 0.1 c | 6340.5 ± 161.5 b | 49.6 ± 0.3 bc | |
RTSM | 609.1 ± 16.5 a | 35.9 ± 0.7 a | 47.0 ± 0.2 a | 7937.0 ± 258.7 a | 52.7 ± 0.8 a | |
2015–2016 | PTNS | 508.0 ± 19.6 b | 32.3 ± 0.4 b | 43.6 ± 0.2 c | 6144.4 ± 209.0 b | 49.6 ± 0.3 c |
PTSM | 565.7 ± 33.1 a | 34.8 ± 0.9 a | 45.7 ± 0.4 b | 6867.9 ± 140.0 a | 50.6 ± 0.3 b | |
RTNS | 497.1 ± 14.0 b | 31.8 ± 0.2 b | 42.7 ± 0.1 d | 5840.0 ± 90.3 b | 49.8 ± 0.4 c | |
RTSM | 571.9 ± 16.0 a | 35.7 ± 0.6 a | 46.9 ± 0.2 a | 7043.9 ± 254.5 a | 52.1 ± 0.4 a | |
2016–2017 | PTNS | 427.5 ± 13.9 b | 27.4 ± 0.4 b | 41.1 ± 0.5 b | 5137.9 ± 121.7 b | 44.2 ± 0.8 a |
PTSM | 484.5 ± 13.9 a | 29.3 ± 0.6 a | 42.9 ± 0.4 a | 5699.2 ± 146.0 a | 45.1 ± 0.4 a | |
RTNS | 419.9 ± 16.5 b | 27.1 ± 0.4 b | 40.3 ± 1.0 b | 4437.9 ± 71.6 c | 43.0 ± 0.7 b | |
RTSM | 508.8 ± 22.1 a | 28.9 ± 0.6 a | 42.6 ± 0.3 a | 5902.5 ± 169.4 a | 44.8 ± 0.3 a | |
2017–2018 | PTNS | 522.7 ± 19.0 b | 32.7 ± 0.3 b | 43.2 ± 0.7 b | 7564.5 ± 171.0 b | 56.4 ± 1.0 a |
PTSM | 578.6 ± 32.1 a | 34.8 ± 0.6 a | 45.1 ± 0.8 a | 8011.4 ± 149.6 a | 55.8 ± 0.6 a | |
RTNS | 512.1 ± 13.5 b | 32.2 ± 0.2 b | 42.3 ± 0.5 b | 7396.1 ± 202.3 b | 56.6 ± 1.4 a | |
RTSM | 584.6 ± 15.5 a | 35.2 ± 0.6 a | 46.2 ± 0.8 a | 8049.6 ± 179.7 a | 56.5 ± 0.4 a | |
4-year average | PTNS | 505.4 ± 11.7 b | 25.1 ± 0.1 b | 43.1 ± 0.2 c | 6378.7 ± 69.8 b | 49.8 ± 0.1 c |
PTSM | 557.9 ± 28.2 a | 26.7 ± 0.3 a | 45.0 ± 0.2 b | 7047.8 ± 54.7 a | 50.7 ± 0.2 b | |
RTNS | 495.3 ± 10.0 b | 24.7 ± 0.2 b | 42.5 ± 0.3 d | 6003.6 ± 82.4 c | 49.7 ± 0.3 c | |
RTSM | 568.6 ± 16.0 a | 27.2 ± 0.5 a | 45.7 ± 0.3 a | 7233.2 ± 165.1 a | 51.5 ± 0.1 a | |
ANOVA results | Years (Y) | ** | ** | * | ** | ** |
Tillage methods (T) | ns | ns | ns | ns | ns | |
Straw management (S) | ** | ** | ** | ** | ** | |
Y × T | ns | ns | ns | ns | * | |
Y × S | ns | * | * | ** | ** | |
T × S | ns | ** | ** | ** | * | |
Y × T × S | ns | ns | ns | ns | ns |
Years | Treatments | Pre-Anthesis Dry Matter | Post-Anthesis Dry Matter | |||
---|---|---|---|---|---|---|
Translocation Amount (kg ha−1) | Translocation Rate (%) | Contribution Rate (%) | Accumulation (kg ha−1) | Contribution Rate (%) | ||
2014–2015 | PTNS | 2922.4 ± 190.7 c | 29.5 ± 0.8 c | 43.8 ± 2.2 c | 3745.7 ± 140.ab | 56.2 ± 2.2 a |
PTSM | 3467.5 ± 114.7 b | 32.3 ± 1.3 b | 45.6 ± 3.3 c | 4145.4 ± 401.6 a | 54.4 ± 3.3 a | |
RTNS | 4347.2 ± 173.3 a | 40.3 ± 1.5 a | 68.6 ± 3.5 a | 1993.3 ± 254.7 c | 31.4 ± 3.5 c | |
RTSM | 4514.3 ± 410.5 a | 38.7 ± 2.0 a | 56.8 ± 3.8 b | 3422.7 ± 238.2 b | 43.2 ± 3.8 b | |
2015–2016 | PTNS | 2587.6 ± 505.1 c | 29.1 ± 3.2 b | 42.0 ± 6.8 b | 3556.8 ± 306.0 a | 58.0 ± 6.8 a |
PTSM | 3267.9 ± 158.8 b | 32.8 ± 1.8 b | 47.6 ± 3.3 b | 3600.0 ± 297.7 a | 52.4 ± 3.3 a | |
RTNS | 4010.5 ± 297.9 a | 40.5 ± 1.7 a | 68.7 ± 5.0 a | 1829.5 ± 290.6 c | 31.3 ± 5.0 b | |
RTSM | 4326.0 ± 297.8 a | 40.1 ± 1.4 a | 61.4 ± 3.0 a | 2717.9 ± 203.4 b | 38.6 ± 3.0 b | |
2016–2017 | PTNS | 2547.6 ± 51.2 b | 28.2 ± 0.3 c | 49.6 ± 0.6 c | 2590.3 ± 80.9 b | 50.4 ± 0.6 a |
PTSM | 2701.4 ± 26.0 b | 28.0 ± 0.7 c | 47.4 ± 1.5 c | 2997.8 ± 162.9 a | 52.6 ± 1.5 a | |
RTNS | 3392.9 ± 142.6 a | 36.6 ± 1.6 a | 76.5 ± 3.4 a | 1045.0 ± 154.7 c | 23.5 ± 3.4 c | |
RTSM | 3446.4 ± 191.9 a | 32.2 ± 0.8 b | 58.5 ± 4.7 b | 2456.1 ± 347.3 b | 41.5 ± 4.7 b | |
2017–2018 | PTNS | 3266.0 ± 155.3 b | 32.9 ± 2.0 a | 48.6 ± 3.1 a | 3458.0 ± 278.5 ab | 51.4 ± 3.1 a |
PTSM | 3249.1 ± 75.8 b | 31.0 ± 0.8 a | 45.6 ± 1.5 a | 3872.1 ± 167.2 a | 54.4 ± 1.5 a | |
RTNS | 3306.3 ± 116.9 b | 33.7 ± 1.4 a | 50.4 ± 3.1 a | 3268.1 ± 296.0 b | 49.6 ± 3.1 a | |
RTSM | 3564.7 ± 66.5 a | 33.4 ± 1.0 a | 49.8 ± 1.6 a | 3590.4 ± 182.6 ab | 50.2 ± 1.6 a | |
4-year average | PTNS | 2830.9 ± 150.5 c | 30.0 ± 0.4 c | 46.0 ± 1.3 c | 3337.7 ± 28.3 b | 54.1 ± 1.3 a |
PTSM | 3171.5 ± 74.4 b | 31.1 ± 1.1 c | 46.6 ± 2.1 c | 3653.8 ± 237.1 a | 53.5 ± 2.2 a | |
RTNS | 3764.2 ± 86.2 a | 37.9 ± 1.0 a | 66.0 ± 2.1 a | 2034.0 ± 171.2 c | 35.1 ± 2.3 c | |
RTSM | 3962.9 ± 206.9 a | 36.1 ± 0.9 b | 56.6 ± 2.2 b | 3046.8 ± 125.0 b | 43.5 ± 2.2 b | |
ANOVA results | Years (Y) | ** | ** | ** | ** | ** |
Tillage methods (T) | ** | ** | ** | ** | ** | |
Straw management (S) | ** | ns | ** | ** | ** | |
Y × T | ** | ** | ** | ** | ** | |
Y × S | ns | * | * | * | * | |
T × S | ns | ** | ** | ** | ** | |
Y × T × S | ns | ns | * | * | * |
Years | Tillage Methods | Stem + Leaf | Glume | Grain | |||
---|---|---|---|---|---|---|---|
DMD (kg ha−1) | Percentage (%) | DMD (kg ha−1) | Percentage (%) | DMD (kg ha−1) | Percentage (%) | ||
2014 | PTNS | 5097.7 ± 140.4 a | 37.4 ± 0.3 a | 1873.7 ± 64.7 ab | 13.7 ± 0.4 a | 6668.1 ± 178.4 b | 48.9 ± 0.4 c |
PTSM | 5298.7 ± 132.1 a | 35.6 ± 1.1 ab | 1986.7 ± 52.0 a | 13.3 ± 0.4 a | 7612.9 ± 293.2 a | 51.1 ± 1.5 ab | |
RTNS | 4695.3 ± 132.2 b | 36.8 ± 0.5 a | 1741.6 ± 120.8 b | 13.6 ± 0.8 a | 6340.5 ± 161.5 b | 49.6 ± 0.3 bc | |
RTSM | 5191.7 ± 89.4 a | 34.5 ± 0.7 b | 1941.4 ± 56.6 a | 12.9 ± 0.3 a | 7937.0 ± 258.7 a | 52.7 ± 0.8 a | |
2015 | PTNS | 4600.7 ± 216.0 a | 37.1 ± 0.2 a | 1649.3 ± 59.0 bc | 13.3 ± 0.1 a | 6144.4 ± 209.0 b | 49.6 ± 0.3 c |
PTSM | 4852.0 ± 122.4 a | 35.8 ± 0.1 b | 1846.4 ± 98.7 a | 13.6 ± 0.4 a | 6867.9 ± 140.0 a | 50.6 ± 0.3 b | |
RTNS | 4293.7 ± 122.6 b | 36.6 ± 0.3 a | 1588.6 ± 78.2 c | 13.6 ± 0.4 a | 5840.0 ± 90.3 b | 49.8 ± 0.4 c | |
RTSM | 4688.0 ± 160.0 a | 34.7 ± 0.3 c | 1773.6 ± 52.4 ab | 13.2 ± 0.6 a | 7043.9 ± 254.5 a | 52.1 ± 0.4 a | |
2016 | PTNS | 4933.7 ± 92.2 b | 42.5 ± 0.3 a | 1544.1 ± 96.2 b | 13.3 ± 0.6 a | 5137.9 ± 121.7 b | 44.2 ± 0.8 a |
PTSM | 5312.3 ± 144.3 a | 42 ± 0.5 a | 1630.5 ± 30.2 ab | 12.9 ± 0.1 a | 5699.2 ± 146.0 a | 45.1 ± 0.4 a | |
RTNS | 4416.0 ± 103.7 c | 42.8 ± 0.3 a | 1457.3 ± 119.4 b | 14.1 ± 1.2 a | 4437.9 ± 71.6 c | 43 ± 0.7 b | |
RTSM | 5462.0 ± 91.8 a | 41.5 ± 0.7 a | 1797.8 ± 172.6 a | 13.7 ± 0.8 a | 5902.5 ± 169.4 a | 44.8 ± 0.3 a | |
2017 | PTNS | 4802.1 ± 213.6 bc | 35.8 ± 0.6 a | 1882.6 ± 69.7 b | 14.1 ± 0.8 a | 6724.0 ± 152.0 b | 50.2 ± 0.9 a |
PTSM | 5140.7 ± 127.8 a | 35.8 ± 0.8 a | 2093.3 ± 87.2 a | 14.6 ± 0.6 a | 7121.2 ± 133.0 a | 49.6 ± 0.6 a | |
RTNS | 4610.2 ± 158.8 c | 35.2 ± 1.1 a | 1891.7 ± 47.3 b | 14.5 ± 0.2 a | 6574.3 ± 179.8 b | 50.3 ± 1.2 a | |
RTSM | 5034.8 ± 163.0 ab | 35.3 ± 0.6 a | 2064.1 ± 49.8 a | 14.5 ± 0.3 a | 7155.2 ± 159.7 a | 50.2 ± 0.3 a | |
4-year | PTNS | 4858.5 ± 115.8 b | 38.0 ± 0.2 a | 1737.4 ± 11.3 b | 13.6 ± 0.3 a | 6168.6 ± 69.5 b | 48.3 ± 0.1 c |
PTSM | 5150.9 ± 13.4 a | 37.2 ± 0.1 ab | 1889.2 ± 51.7 a | 13.6 ± 0.3 a | 6825.3 ± 55.9 a | 49.2 ± 0.3 b | |
RTNS | 4503.8 ± 78.7 c | 37.6 ± 0.3 a | 1669.8 ± 47.2 b | 13.9 ± 0.4 a | 5798.2 ± 78.3 c | 48.4 ± 0.3 c | |
RTSM | 5094.1 ± 87.7 a | 36.4 ± 0.5 b | 1894.2 ± 82.8 a | 13.5 ± 0.5 a | 7009.6 ± 160.4 a | 50.1 ± 0.2 a | |
ANOVA results | Years (Y) | ** | ** | ** | ** | ** | ** |
Tillage modes (T) | ** | * | ns | ns | ns | * | |
Straw management (S) | ** | ** | ** | ns | ** | ** | |
Y × T | ns | ns | ns | ns | ns | ** | |
Y × S | ** | * | ns | ns | ** | ** | |
T × S | ** | ns | ns | ns | ** | * | |
Y × T × S | ns | ns | ns | ns | ns | ns |
Years | Tillage Methods | Water Storage Improvement (mm) | Yield Improvement (kg ha−1) | Dry Matter Improvement (kg ha−1) | Water-Saving per kg Yield | Yield Improvement per mm Water Consumption | ||
---|---|---|---|---|---|---|---|---|
Amount (mm) | Rate (%) | Amount (kg ha−1) | Rate (%) | |||||
2014–2015 | PT | 22.0 ± 0.6 a | 944.7 ± 115.3 b | 2417.4 ± 679.5 a | 3.5 ± 1.5 b | 6.3 ± 2.8 b | 1.2 ± 0.6 b | 21.8 ± 9.9 b |
RT | 34.5 ± 2.3 a | 1596.6 ± 112.3 a | 3348.2 ± 837.7 a | 8.1 ± 2.1 a | 13.7 ± 3.3 a | 2.7 ± 0.7 a | 45.7 ± 10.6 a | |
2015–2016 | PT | 20.9 ± 2.4 b | 723.5 ± 73.1 b | 2426.6 ± 1186.5 a | 1.1 ± 0.1 b | 2.1 ± 0.3 b | 0.4 ± 0.1 b | 7.2 ± 1.0 b |
RT | 37.4 ± 1.1 a | 1203.9 ± 182.2 a | 3052.3 ± 742.3 a | 3.1 ± 2.1 b | 5.6 ± 3.7 b | 1.1 ± 0.7 b | 19.4 ± 13.1 b | |
2016–2017 | PT | 19.7 ± 2.1 b | 561.3 ± 67.9 b | 1818.6 ± 217.8 b | 1.6 ± 0.7 b | 2.7 ± 1.2 b | 0.5 ± 0.2 b | 8.6 ± 3.9 b |
RT | 44.9 ± 5.5 a | 1464.6 ± 116.1 a | 4446.7 ± 551.5 a | 7.5 ± 2.2 a | 11.8 ± 3.2 a | 2.1 ± 0.6 a | 33.2 ± 8.7 a | |
2017–2018 | PT | 21.6 ± 1.0 a | 397.2 ± 24.6 b | 1644.9 ± 416.9 b | 1.1 ± 1 b | 2.9 ± 2.4 b | 0.8 ± 0.6 b | 19.3 ± 15.8 b |
RT | 22.9 ± 5.3 a | 580.8 ± 24.1 a | 2504.8 ± 205.4 a | 2.3 ± 0.5 b | 5.7 ± 1.3 b | 1.5 ± 0.4 b | 38.2 ± 9.4 b | |
4-year average | PT | 21.0 ± 1.0 b | 656.7 ± 7.1 b | 2076.9 ± 488.2 b | 1.6 ± 1 b | 3.1 ± 2.0 b | 0.6 ± 0.4 b | 13.0 ± 8.7 b |
RT | 34.9 ± 2.7 a | 1211.5 ± 101.3 a | 3338 ± 572.8 a | 5.3 ± 1.3 a | 9.2 ± 2.0 a | 1.9 ± 0.4 a | 34.1 ± 5.5 a | |
ANOVA results | Years (Y) | ** | ** | ns | ** | ** | ** | * |
Tillage method (T) | ** | ** | ** | ** | ** | ** | ** | |
Y × T | ** | ** | ns | * | ns | ns | ns |
Treatments | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
di+ | di− | di | Ranking | di+ | di− | di | Ranking | di+ | di− | di | Ranking | di+ | di− | di | Ranking | |
PTNS | 0.24 | 0.14 | 0.38 c | 3 | 0.26 | 0.16 | 0.38 c | 3 | 0.20 | 0.18 | 0.47 c | 3 | 0.23 | 0.16 | 0.41 c | 3 |
PTSM | 0.11 | 0.25 | 0.69 b | 2 | 0.17 | 0.22 | 0.57 b | 2 | 0.12 | 0.25 | 0.68 b | 2 | 0.15 | 0.23 | 0.60 b | 2 |
RTNS | 0.29 | 0.09 | 0.24 d | 4 | 0.29 | 0.10 | 0.26 d | 4 | 0.28 | 0.11 | 0.29 d | 4 | 0.26 | 0.11 | 0.29 d | 4 |
RTSM | 0.07 | 0.30 | 0.81 a | 1 | 0.12 | 0.26 | 0.68 a | 1 | 0.07 | 0.28 | 0.80 a | 1 | 0.11 | 0.26 | 0.71 a | 1 |
Code | Treatment | Specific Operation |
PTNS | Plowing with no straw mulching | The straw of the previous crop was removed from the plot 1–3 days before tillage. After evenly broadcasting fertilizers by hand, the plowing (30–35 cm) was carried out using a moldboard plow, and the rotary tillage (12–15 cm) was carried out to smooth land using a rotavator. The same management was applied during both wheat and soybean seasons. |
PTSM | Plowing with straw mulching | The field management was the same as PTNS except for the straw stubble (<5 cm) of the previous crop being evenly mulched to the surface of the original plot before emergence of the in-season crop. |
RTNS | Rotary tillage with no straw mulching | The straw of the previous crop was removed from the plot 1–3 days before tillage. After evenly broadcasting fertilizers by hand, the rotary tillage (12–15 cm) was carried out using a rotavator. The same management practices were applied during both wheat and soybean seasons. |
RTSM | Rotary tillage with straw mulching | The field management was the same as RTNS except for the straw stubble (<5 cm) of the previous crop being evenly mulched to the surface of the original plot before emergence of the in-season crop. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, S.; Huang, M.; Zhang, J.; Zhou, Q.; Hu, C.; Liu, A.; Wang, H.; Fu, G.; Wu, J.; Li, Y. Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System. Plants 2025, 14, 2438. https://doi.org/10.3390/plants14152438
Dong S, Huang M, Zhang J, Zhou Q, Hu C, Liu A, Wang H, Fu G, Wu J, Li Y. Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System. Plants. 2025; 14(15):2438. https://doi.org/10.3390/plants14152438
Chicago/Turabian StyleDong, Shiyan, Ming Huang, Junhao Zhang, Qihui Zhou, Chuan Hu, Aohan Liu, Hezheng Wang, Guozhan Fu, Jinzhi Wu, and Youjun Li. 2025. "Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System" Plants 14, no. 15: 2438. https://doi.org/10.3390/plants14152438
APA StyleDong, S., Huang, M., Zhang, J., Zhou, Q., Hu, C., Liu, A., Wang, H., Fu, G., Wu, J., & Li, Y. (2025). Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System. Plants, 14(15), 2438. https://doi.org/10.3390/plants14152438